The Need for Structures :-

There are cases where the value of one variable depends upon that of another
variable. Take the example of date. A date can be programmatically represented in
C by three different integer variables taken together. Say,

int d,m,y; //three integers for representing dates

Here ‘d’, ‘m’, and ‘y’ represent the day of the month, the month, and the year,
respectively.

Observe carefully. Although these three variables are not grouped together in the
code, they actually belong to the same group. The value of one variable may
influence the value of the other two. In order to understand this clearly, consider a
function next_day () that accepts the addresses of the three integers that represent a
date and changes their values to represent

the next day.

The prototype of this function will be

void next_day (int *, int *, int *); //function to calculate the next day

Suppose,

d=1;

m=1;

y=2002; //1st January, 2002

Now, if we write

next_day(&d,&m, &y);

‘d” will become 2, ‘m” will remain 1, and ‘y’ will remain 2002.

But if

d=28;

m=2;

y=1999; //28th February, 1999

As you can see, ‘d’, ‘m’, and ‘y’ actually belong to the same group. A change in the
value of one may change the value of the other two. But there is no language
construct that actually places them in the same group. Thus, members of the wrong
group may be accidentally sent to the function.

Let us try arrays to solve the problem. Suppose the next_day() function accepts an
array as a parameter. Its prototype will be
void next_day(int *);

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE "CAMBRIDGE INSTITYTEOF TECHNOLOGY

Source diginotes.in

Let us declare date as an array of three integers.
int date[3];

date[0]=28;

date[1]=2;

date[2]=1999; //28th February, 1999

Now, let us call the function as follows:

next_day(date);

The values of ‘date[0]’, ‘date[1]’, and ‘date[2]” will be correctly setto 1, 3, and 1999,
respectively. Although this method seems to work, it certainly appears
unconvincing. After all any integer array can be passed to the function, even if it
does not necessarily represent a date. There is no data type of date itself. Moreover,
this solution of arrays will not work if the variables are not of the same type. The
solution to this problem is to create a data type called date itself using structures

struct date //a structure to represent dates

{

intd, m,vy;

¥ o il _

Now, the next_day() function will accept the address of a variable of the structure
date

as a parameter. Accordingly, its prototype will be as follows:

void next_day(struct date *);

struct date di,;
d1.d=28;
dl.m=2;
d1.y=1999;
next_day(&d1);

‘d1.d’, ‘d1.m’, and ‘d1.y’ will be correctly set to 1, 3, and 1999, respectively. Since
the function takes the address of an entire structure variable as a parameter at a time,
there is no chance of variables of the different groups being sent to the function.
Structure is a programming construct in C that allows us to put together
variables that should be together.

Library programmers use structures to create new data types. Application programs
and other library programs use these new data types by declaring variables of this
data type.

Finally, they use the resultant value of the passed variable further as per
requirements

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE "CAMBRIDGE INSTITYTEOF TECHNOLOGY

Source diginotes.in

printf(“The next day is: %d/%d/%d\n”, d1.d, d1.m, d1.y);
Output
The next day is: 1/3/1999

Creating a New Data Type Using Structures

Creation of a new data type using structures is loosely a three-step process that is
executed

by the library programmer.

Step 1: Put the structure definition and the prototypes of the associated functions in
a header

file,

Header file containing definition of a structure variable and prototypes of its
associated functions.

[*Beginning of date.h*/
[*This file contains the structure definition and
prototypes of its associated functions*/

struct date

{

intd,m,y;

2

void next_day(struct date *); //get the next date

void get_sys_date(struct date *); //get the current

//system date

/[Prototypes of other useful and relevant functions to work upon variables of the
date structure

/*End of date.h*/ code and create a library.

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE "CAMBRIDGE INSTITYTEOF TECHNOLOGY

Source diginotes.in

Defining the associated functions of a structure
//Beginning of date.c
[[This file contains the definitions of the associated functions
#include “date.h”
void next_day(struct date * p)
{
/lcalculate the date that immediately follows the one
/lrepresented by *p and set it to *p.

¥
void get_sys_date(struct date * p)

{

//determine the current system date and set it to *p

¥

//Definitions of other useful and relevant functions to work upon variables
of the date structure

[*End of date.c*/
Step 3: Provide the header file and the library, in whatever media, to other
programmers who

want to use this new data type. Creation of a structure and creation of its associated
functions are two separate steps that together constitute one complete process.

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE "CAMBRIDGE INSTITYTEOF TECHNOLOGY

Source diginotes.in

Using Structures in Application Programs

The steps to use this new data type are as follows:

Step 1: Include the header file provided by the library programmer in the source
code.

[*Beginning of dateUser.c*/

#include“date.h”
void main()

{

[*End of dateUser.c*/

Step 2: Declare variables of the new data type in the source code.
/*Beginning of dateUser.c*/

#include“date.h”

void main()

{

struct date d;

[*End of dateUser.c*/

Step 3: , embed calls to the associated functions by passing these

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE "CAMBRIDGE INSTITYTEOF TECHNOLOGY

Source diginotes.in

variables in the source code.

Using a structure in an application program
/*Beginning of dateUser.c*/
#include“date.h”

void main()

{

struct date d;

d.d=28;

dm=2;

d.y=1999;

next_day(&d);

[*End of dateUser.c*/

Step 4: Compile the source code to get the object file.

Step 5: Link the object file with the library provided by the library programmer to
get the

executable or another library.

Program

/[date.h

struct date

{
}

void nextdate(struct date *);
void getdate(struct date *);

/I end of date.h

intd,m,y;

/lprogram.cpp

#include<stdio.h>
#include "date.h"

void nextdate(struct date *p)

{

¥
void getdate(struct date *p)

p->d++;

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE "CAMBRIDGE INSTITYTEOF TECHNOLOGY

Source diginotes.in

{
printf("date is %d/%d/%d\n",p->d,p->m,p->y);

}

void main()

{
struct date dat;
dat.d=2;
dat.m=3;
dat.y=2001;
nextdate(&dat);
getdate(&dat);

}

Procedural oriented programmin op):-

A program in a procedural language is a list of instruction where each statement
tells the computer to do some task. It focuses on procedure (function) & algorithm
Is needed to perform the derived computation.

When program become larger, it is divided into function & each function has clearly
defined purpose. Dividing the program into functions & module is one of the
cornerstones of structured programming.

Characteristics of Procedural oriented programming:-

~ It focuses on function rather than data.

~ It takes a problem as a sequence of things to be done such as reading,
calculating and printing. Hence, a number of functions are written to solvea
problem.

~ A program is divided into a number of functions and each function has
clearly defined purpose.

~ Most of the functions share global data.

- Data moves openly around the system from function to function.

Drawback of Procedural oriented programming (structured programming):-

It emphasis on doing things(functionality). Data is not given important status
even through data is the reason for the existence of the program.

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE "CAMBRIDGE INSTITYTEOF TECHNOLOGY

Source diginotes.in

~ Since every function has complete access to the global variables, the new
programmer can corrupt the data accidentally by creating function.
Similarly, if new data is to be added, all the function needed to be modified
to access the data.

Object-Oriented Programming Systems

In OOPS, we try to model real-world objects.

But, what are real-world objects?

Most real world objects have internal parts and interfaces that enable us to
operate them. These interfaces perfectly manipulate the internal parts of the
objects. They also have the exclusive rights to do so.

In object-oriented programming languages like C++, the data and functions
(procedures to manipulate the data) are bundled together as a self-contained
unit called an object.

A class is an extended concept similar to that of structure in C programming
language; this class describes the data properties alone.

In C++ programming language, a class describes both the properties (data)
and behaviors (functions) of objects.

Classes are not objects, but they are used to instantiate objects.

Encapsulation:

Encapsulation is an object-oriented programming concept that binds together
the data and functions that manipulate the data, and that keeps both safe from
outside interference and misuse

Encapsulation means that the internal representation of an object is generally
hidden from view outside of the object’s definition. Typically, only the
object’s own methods can directly inspect or manipulate its fields.

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE "CAMBRIDGE INSTITYTEOF TECHNOLOGY

Source diginotes.in

Data abstraction :

Data abstraction refers to providing only essential information to the outside
world and hiding their background details, i.e., to represent the needed
information in program without presenting the details.

Data abstraction is a programming (and design) technique that relies on the
separation of interface and implementation.

Let's take one real life example of a TV, which you can turn on and off,
change the channel, adjust the volume, and add external components such as
speakers, VCRs, and DVD players, BUT you do not know its internal details,
that is, you do not know how it receives signals over the air or through a cable,
how it translates them, and finally displays them on the screen.

In C++, we use classes to define our own abstract data types (ADT). You can
use the cout object of class ostream to stream data to standard output like
this —

#include <iostream>

using namespace std;

int main() {
cout << "Hello C++" <<endl;

return O;

Here, you don't need to understand how cout displays the text on the user's
screen. You need to only know the public interface and the underlying
implementation of ‘cout’ is free to change.

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE "CAMBRIDGE INSTITYTEOF TECHNOLOGY

Source diginotes.in

Inheritance

Inheritance is a way to reuse code of existing objects, or to establish a subtype
from an existing object, or both, depending upon programming language
support.

In classical inheritance where objects are defined by classes, classes can
inherit attributes and behavior from pre-existing classes called base classes,
superclasses, parent classes or ancestor classes.

The resulting classes are known as derived classes, subclasses or child classes

Polymorphism:

Polymorphism means one name, many forms. Polymorphism manifests itself
by having multiple methods all with the same name, but slightly different
functionality.

There are 2 basic types of polymorphism.

Overridding, also called run-time polymorphism. For method overloading,
the compiler determines which method will be executed, and this decision is
made when the code gets compiled.

Overloading, which is referred to as compile-time polymorphism. Method
will be used for method overriding is determined at runtime based on the
dynamic type of an object.

Comparison of C and C++

C++ is the extension of C language, ie it is superset of C language this means that
C++ compiler can compile programs written in C language(vice versa is not
possible).

The syntax of decision making looping constructs and structure remains same as that
of C language.

The main differences between C++ over C language

e The keyword “class” has been used instead of “struct”.

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE "CAMBRIDGE INSTITYTEOF TECHNOLOGY

Source diginotes.in

[1 The C++ uses access specifiers (public, private, protected) for providing
security, but this option is not there in C.

e Apart from the data members it also has one special function called
“constructor”.it has same name as that of class but no return type and access
specifier.

Console Input /Output in C++

Console Output

The output functions in C language, such as printf(), can be included in C++
programs

because they are anyway defined in the standard library. However, there are some
more ways of outputting to the console in C++. Let us consider an example

/*Beginning of cout.cpp*/
#include<iostream.h>
void main()

{

int Xx;

x=10;

cout<<x; //outputting to the console
}

/*End of cout.cpp*/
Output

10

Syntax
cout<<variable

cout (pronounce see-out) is actually an object of the class ostream_withassign .
It stands as an alias for the console output device, that is, the monitor.

The << symbol, originally the left shift operator, has had its definition extended in
C++.In the given context, it operates as the insertion operator. It is a binary operator.
It takes two operands.

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE "CAMBRIDGE INSTITYTEOF TECHNOLOGY

Source diginotes.in

The operand on its left must be some object of the ostream class. The operand on
its right must be a value of some fundamental data type.

The value on the right side of the insertion operator is ‘inserted’ (hence the name)
into the stream headed towards the device associated with the object on the left.
Consequently, the value of ‘x’ is displayed on the monitor.

The file iostream.h needs to be included in the source code to ensure successful
compilation because the object cout and the insertion operator have been declared in
that file.
Cascading the insertion operator
#include<iostream.h>
int main()
{
int x;
float y;
x=10;
y=12.5;
cout<<’the value of x="<<x<<endl<<”the value of y="<<y<<endl;
}
Output
The value of x=10
The value of y=12.5

Console input

The input function in C language such as scanf() can be included in C++ program
because it is defined in standard library. However,we have some more ways to input
in C++ that 1s “cin”.

Cin (see-in) is actually an object of the class ‘istream_withassign’.it stands as an
alias for standard input ie keyboard.

Syntax

cin >>variable.

“>> originally the right shift operator, has had its definition extended in C++ as

the ‘extraction’ operator.
It is a binary operator takes two operands.

the operand on its left must be some object of ‘istream_withassign’ class.

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE "CAMBRIDGE INSTITYTEOF TECHNOLOGY

Source diginotes.in

The operand on right side is variable, this operator will extracted from the stream
originating from the keyboard device and stores in the variable on right hand side.

/*Beginning of cin.cpp*/
#include<iostream.h>
void main()

{

int iVar;

char cVar;

float fVar;

cout<<“Enter a whole number: ”;
cin>>iVar;

cout<<“Enter a character: ”’;
cin>>cVar;

cout<<“Enter a real number: ”’;
cin>>fVar;

cout<<“You entered: "<<iVar<<* ’<<cVar<<* ’<<fVar;

b
[*End of cin.cpp*/

Output

Enter a whole number: 10<enter>
Enter a character: x<enter>

Enter a real number: 2.3<enter>
You entered: 10 x 2.3

Cascading the extraction operator

#include<iostream.h>
void main()

{

int x,y;
cout<<’enter the two values™;
cin>>x>>y;

cout<<’’the two values are”’<<x<,”and<<y;
9 9

¥

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE "CAMBRIDGE INSTITYTEOF TECHNOLOGY

Source diginotes.in

Variables in C++

We can declare the variable anywhere inside the function and not necessarily at very
beginning.

Example

#include<iostram.h>

Void main()

{

int x=10;
cout<<’x="<<x;

int y=x;
cout<<’y="<<y;

Int sum=x+y,
cout<<’sum="<<sum,;

¥

Reference Variables in C++

First, let us understand the basics. How does the operating system (OS) display the
value of variables? How are assignment operations such as ‘x=y’ executed during
run time?

The OS maintains the addresses of each variable as it allocates memory for them
during run time. In order to access the value of a variable, the OS first finds the
address of the variable and then transfers control to the byte whose address matches
that of the variable.

Suppose the following statement is executed (‘x” and ‘y’ are integer type variables).
X=Y;

The steps followed are:

1. The OS first finds the address of ‘y’.

2. The OS transfers control to the byte whose address matches this address.

3. The OS reads the value from the block of four bytes that starts with this byte (most
C++

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE "CAMBRIDGE INSTITYTEOF TECHNOLOGY

Source diginotes.in

compilers cause integer-type variables to occupy four bytes during run time and we
will
accept this value for our purpose).
4. The OS pushes the read value into a temporary stack.
5. The OS finds the address of “x’.
6. The OS transfers control to the byte whose address matches this address.
7. The OS copies the value from the stack, where it had put it earlier, into the block
of four
bytes that starts with the byte whose address it has found above (address of
X).

A reference variable is nothing but a reference for an existing variable. It shares the
memory location with an existing variable.

The syntax for declaring a reference variable is as follows:
<data-type> & <ref-var-name>=<existing-var-name>;

For example, if ‘X’ is an existing integer-type variable and we want to declare iRef
as a reference to it the statement is as follows:

int & iRef=x;

IRef is a reference to ‘x’. This means that although iRef and ‘x’ have separate entries
in the OS, their addresses are actually the same!

Thus, a change in the value of ‘x’ will naturally reflect in iRef and vice versa

Example :

#include<iostream.h>

void main()

{

int x;

x=10;

cout<<x<<endl;

int & iRef=x; //iRef is a reference to x
iRef=20; //same as x=10;
cout<<x<<endl;

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE "CAMBRIDGE INSTITYTEOF TECHNOLOGY

Source diginotes.in

x++: //same as iRef++;
cout<<iRef<<endl;

¥

Output
10
20
21

Reading the value of a reference variable

#include<iostream.h>

void main()

{

int x,y;

x=10;

int & iRef=x;

y=iRef; //same as y=Xx;

cout<<y<<endl;

y++; //x and iRef unchanged
cout<<x<<endl<<iRef<<endl<<y<<endl;

¥

Output
10
10
10
11

Passing by reference

#include<iostream.h>

void increment(int &); //formal argument is a reference
/to the passed parameter

void main()

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE "CAMBRIDGE INSTITYTEOF TECHNOLOGY

Source diginotes.in

{

int x;

x=10;
increment(x);
cout<<x<<endl;

¥

void increment(int & r)

{

r++:; //same as x++;

k

Output
11

Function Prototyping

A prototype describes the function’s interface the compiler.it tells to the compiler
the return type of the function and number and type of the formal parameters of the
function.

Syntax

return_type function_name(argument_list);

example

int add(int,int);

this tells to compiler that the return type of add function is int and it takes two
parameters of type int.

providing names to the formal parameter is optional.

Example

#include<iostream.h>

int add(int,int);

void main()

{

int X,y,z;

cout<<’enter the value two numbers”’;

cin>>x>>y;

z=add(x,y);

cout<<’sum="<<z;

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE "CAMBRIDGE INSTITYTEOF TECHNOLOGY

Source diginotes.in

}
int add(int a,int b)
{
return(a+b);
}
Output
Enter the two numbers 10 20
Sum=30
Importance of prototype
e The return value of the function is handled correctly.
e Correct type and correct number of arguments are passed to a function
In the absence of prototypes the compiler will assume the type of the returned type
value, if called function may return a value of an incompatible type then it shows the
error in function definition not on function call.
However if the function definition is defined in a different file to be compiled
separately, then no compile time errors will arise instead it gives the wrong result.
Example

/ldef.c

struct abc

{

char a;

int b;

}

struct abc test()
{

struct abc al;
al.a="x’;
al.b=15;
return al;

}

/lend od def.c
/ldriver.c
void main()

{

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE "CAMBRIDGE INSTITYTEOF TECHNOLOGY

Source diginotes.in

int Xx;
x=test();
printf(“%d”,x);
}
Output
1688
Since the C++ compiler necessitates function prototyping ,it will report an error
against the “function call “ not on function definition thus providing guarantees
protection from errors arising out of incorrect function calls.
Function prototyping produces automatic type conversion wherever
appropriate
Suppose if the compiler do not enforces prototyping and a function except the integer
value but we passed a double value, the the first 4 bytes of data is extracted from 8
bytes of data which is undesirable.
However, C++ compiler will convert the double value to integer if we give the
function prototype (because it already knows that the function parameter is integer)
But the C++ compiler cannot convert from a structure type to integer type.
in absence of function prototype is it possible for the compiler to simply scan
the rest of the source code and find out how function has been defined.
Answer is “No”
Why because

e It is inefficient: the compiler will have to suspend the compilation of the line

containing the function call and search the rest of the file.
e Most of the times the function definition is not contained in the file where it
is called.it is usually contained in a library.
Such type of checking is known as static type checking

Function overloading

C++ allows two or more functions to have the same name.

It is possible only when the two or more functions have different signature
Signature means here they should have different type or different number of
parameters.

Depending upon the type and number of parameters that are passed to the
function call the compiler will decide which of the function definition to be
executed.

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE "CAMBRIDGE INSTITYTEOF TECHNOLOGY

Source diginotes.in

Example
#include<iostream>
using namespace std;
int add(int a,int b);

int add(int a,int b,int c);

int main()

{
int res=add(5,6,7);
cout<<res<<endl;
res=add(4,6);
cout<<res<<endl;

}

int add(int a,int b)

{
return (a+b);

}

int add(int a,int b,int c)

{

return(a+b+c);

¥

Function prototyping is important for function overloading because the compiler
Is able to not only restrict the number of ways in which the function can be called
but also support more than one way in which the function can be called.

Function overloading is also known as function polymorphism because just like
in the real world where an entity exists in more than one form with different
meanings

Since which function definition should execute is decided by the compiler during
the function call. So the function overloading is called static polymorphism.

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE "CAMBRIDGE INSTITYTEOF TECHNOLOGY

Source diginotes.in

Default values for formal argument of functions

It is possible to specify default values for some or all the formal arguments of a

function.

If no value is passed during the function call the default value specified is passed.
If all parameter values are passed in normal fashion the default value is ignored.
Example

#include<iostream>

using namespace std;

int add(int a,int b,int c=0);

int main()

{
int res=add(5,6);
cout<<res<<endl,
res=add(4,6,5);
cout<<res<<endl;

¥

int add(int a,int b,int c)

{
return(a+b+c);

¥

Output

11

15

e Default values can be assigned to more than one argument starting from the
rightmost argument

Example : int add(int a,int b=0,int c=0);
Program

#include<iostream>

using namespace std;

int add(int a,int b=0,int c=0);

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE "CAMBRIDGE INSTITYTEOF TECHNOLOGY

Source diginotes.in

int main()

{
int res=add(4,6,5);
cout<<res<<endl;
res=add(4,6);
cout<<res<<endl;
res=add(4);
cout<<res<<endl;

}

int add(int a,int b,int ¢)

{
return(a+b+c);

¥

Output

15

10

4

e ‘intadd(int a,int b=0,int c¢);

this is not possible compiler will throw an error because the third value is missing

o Default values must be specified in function prototype alone.
If the function definition is given after the function call, the compiler will not
know the default value if it is given in function definition, so it will throw an
error.
Sometimes the function definition will be different file, if we try to give
default value in function prototype as well as function definition, the compiler
will think that we are passing two different values for the same argument, so
it will throw an error.
For these two reasons we must specify the default values in function prototype
alone.

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE "CAMBRIDGE INSTITYTEOF TECHNOLOGY

Source diginotes.in

e |f two or more functions are overloaded with default value of same type of
parameters it will lead to ambiguity error.
Ex: int add(int ,int ,int =0);
int add(int,int);
e \We can assign any data type values as default value
double add(double,double=3.2);

void print(char="a’);
Inline function

When a program started to execute the operating system loads each
instructions in to the memory.
If there is any looping or branch out,the control skips over instruction or jumps
backward or forward as needed.
When a program reaches the function call,it stores the memory address of the
instruction immediately following the function call and jumps to the line
where the function is defined.
After completion of function statements it jumps back to the instruction whose
address is it has saved earlier.
There are overhead involved in

e Making the control jump back and forth and

e Storing the address of the instruction to which the control should jump after
function terminates

To overcome this overhead C++ provides the solution “inline”.

An inline function is function whose compiled code ‘in line’ with the rest
of the program
ie the compiler replaces the function call with the corresponding function
code
for specifying an inline function, we must
o Prefix the definition of the function with the inline keyword
e Define the function before all the function calls it.
#include<iostream>
using namespace std;

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE "CAMBRIDGE INSTITYTEOF TECHNOLOGY

Source diginotes.in

inline double cube(double x);

int main()

{
double res=cube(5);//compiler replaces the function definition of cube
cout<<res<<endl;
res=cube(1.1);//compiler replaces the function definition of cube
cout<<res<<endl;

}

double cube(double x)

{
return(x*x*x);

}

Output

125

1.331

However under some circumstances the compiler despite our indications may not
expand the function inline instead it will run as ordinary function call for:

e |f the function is recursive

e There are looping constructs in the function.

e There are static variables in the function

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE "CAMBRIDGE INSTITYTEOF TECHNOLOGY

Source diginotes.in

Class and structure

Introduction to Classes and Objects

Classes are to C++ what structures are to C. Both provide the library programmer a means
to create new data types.

First, we must notice that functions have also been defined within the scope of the structure
definition. This means that not only the member data of the structure can be accessed through the
variables of the structures but also the member functions can be invoked. The struct keyword has
actually been redefined in C++.

Member functions are invoked in much the same way as member data are accessed, that is, by
using the variable-to-member access operator. In a member function, one can refer directly to
members of the object for which the member function is invoked.

However, in this example, note that the member data of structure variables can still be accessed
directly. The following line of code illustrates this, d1.ifeet=2; //legal!!

#include<iostream>
using namespace std;

struct dist
{
int ifeet;
float finch;
void setfeet(int x)
{
ifeet=x;
}
int getfeet()
{
return ifeet;
}
void setinch(float y)
{
finch=y;
}
float getinch()
{
return finch;
}
|3
int main()
{
dist d1;

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

di.setfeet(29);
di.setinch(3.8);
cout<<dl.getfeet()<<endl<<d1.getinch();

2.1.1 Private and Public Members

What is the advantage of having member functions also in structures? We have put together
the data and functions that work upon the data but we have not been able to give exclusive
rights to these functions to work upon the data. Problems in code debugging can still arise
as before. Specifying member functions as public but member data as private obtains the
advantage.

struct distance

{
private:
int iFeet;
float fInches;
public:
void setFeet(int x)
{
iFeet=x; //LEGAL.: private member accessed by
/Imember function
}
int getFeet()
{
return iFeet;
void setinches(float y)
{
fInches=y;
}
float getinches()
return finches;
}
3
void main()
{

distance d1,d2;

dl.setFeet(2);

d1.setinches(2.2);

dl.iFeet++; //[ERROR!!: private member accessed by
/Inon-member function

cout<<dl.getFeet()<<* ”<<dl.getInches()<<end];

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

¥

new keywords, private and public have been introduced in the definition of the structure. Their
presence in the foregoing example tells the compiler that iFeet and finches are private data
members of variables of the structure Distance and the member functions are public. Thus,
values of iFeet and fInches of each variable of the structure Distance can be accessed/
modified only through member functions of the structure and not by any non-member

function .

As we can observe , the compiler refuses to compile the line in which a

private member of a structure variable is accessed from a non-member function .

The keywords private and public are also known as access modifiers or access specifiers
because they control the access to the members of structures.

C++ introduces a new keyword class as a substitute for the keyword struct. In a structure,
members are public by default.

struct Distance
{ -
private:
int iFeet;
float fInches;
public:
void setFeet(int x)

{

}
int getFeet()

{

iFeet=x;

return iFeet;

void setinches(float y)
{

}
float getinches()

fInches=y;

return finches;

can also be written as
struct Distance

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

void setFeet(int x) //public by default

{
iFeet=x;
}
int getFeet() //public by default
{
return iFeet;
}
void setInches(float y) //public by default
{
fInches=y;
}

float getinches() //public by default

return flnches;
} -
private:

int iFeet;

float fInches;

Class members are private by default
class Distance
{
int iFeet; //private by default
float finches; //private by default
public:
void setFeet(int x)

{

}
int getFeet()

iFeet=x;

return iFeet;

}

void setinches(float y)

{
}
float getinches()
{

¥

fInches=y;

return finches;

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

2.1.2 Objects

Variables of classes are known as objects.

An object of a class occupies the same amount of memory as a variable of a structure that
has the same data members. This is illustrated by Listing 2.6. Size of a class object is equal to that
of a structure variable with identical data members

[*Beginning of objectSize.cpp*/
#include<iostream>
Using namespace std;

struct A
{
char a;
intb;
float c;
+
class B //a class with the same data members
{
char a;
intb;
float c;
+
void main()
{
cout<<sizeof(A)<<endl<<sizeof(B)<<endl;
}
Output
9
9

Scope resolution operator

It is possible and usually necessary for the library programmer to define the member functions outside
their respective classes.

The scope resolution operator makes this possible.

The use of the scope resolution operator (::).

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

/*Beginning of scopeResolution.cpp*/
class Distance
{
int iFeet;
float fInches;
public: void setFeet(int); //prototype only
int getFeet(); //prototype only
void setinches(float); //prototype only
float getinches(); //prototype only

|7
void Distance::setFeet(int x) //definition
{
iFeet=x;
}
int Distance::getFeet() //definition
{
return iFeet;
}
void Distance::setIinches(float y) //definition
{
finches=y;
}
float Distance::getInches() //definition
{

return flnches;
} /*End of scopeResolution.cpp*/

We can observe that the member functions have been only prototyped within the class; they have been
defined outside. The scope resolution operator signifies the class to which they belong.

The class name is specified on the left-hand side of the scope resolution operator. The name of the
function being defined is on the right-hand side.

Creating Libraries Using the Scope Resolution Operator As in C language, creating a new data type in C++
using classes is also a three-step process that is executed by the library programmer.

Step 1: Place the class definition in a header file.
/*Beginning of Distance.h*/
/*Header file containing the definition of the Distance class*/
class Distance
{
int iFeet; float fInches;
public: void setFeet(int); //prototype only
int getFeet(); //prototype only
void setinches(float); //prototype only
float getinches(); //prototype only
}; /*End of Distance.h*/

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

Step 2: Place the definitions of the member functions in a C++ source file (the library source code). A file
that contains definitions of the member functions of a class is known as the implementation file of that
class. Compile this implementation file and put in a library.

/*Beginning of Distlib.cpp*/

/*Implementation file for the class Distance*/

#include“Distance.h”

void Distance::setFeet(int x) //definition

{
iFeet=x;
}
int Distance::getFeet() //definition
{
return iFeet;
}
void Distance::setIinches(float y) //definition
{
finches=y;
}
float Distance::getInches() //definition
{

return finches;
} /*End of Distlib.cpp*/

Step 3: Provide the header file and the library, in whatever media, to other programmers who want to
use this new data type.

#include<iostream>
using namespace std;
class dist
{
int ifeet;
float finch;
public:
void setfeet(int x);
int getfeet();
void setinch(float y);
float getinch();
|3
void dist::setfeet(int x)
{
ifeet=x;
}
int dist:: getfeet()
{
return ifeet;
}
void dist:: setinch(float y)

{

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

finch=y;

}
float dist::getinch()
{
return finch;

}

int main()

{

dist d1;

d1.setfeet(29);
di.setinch(3.8);
cout<<dl.getfeet()<<endl<<d1.getinch();

This pointer
Every object in c++ has access to its own address through an important pointer called this pointer.

The this pointer is an implicit parameter to all member function. Therefore , inside a member
function , this may be used to refer to the invoking object .

The this pointer is always a constant pointer. The this pointer always points at the object with respect to
which the function was called.

#include<iostream>
using namespace std;

class Test
{
int x;
public:
void setx(int x)
{
this->x=x;
}
void print()
{
cout<<"x="<<x<<endl<<"address of obj"<<this;
}
|3
int main()
{
Test bl,b2;
b1.setx(5);
bl.print();
b2.setx(8);

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

b2.print();

An explanation that follows shortly explains why and how it functions.

After the compiler has ascertained that no attempt has been made to access the private members of an
object by non-member functions, it converts the C++ code into an ordinary C language code as follows:

1. It converts the class into a structure with only data members as follows.
Before

class Distance
{
int iFeet;
float fInches;
public: void setFeet(int);//prototype only
int getFeet(); //prototype only
void setinches(float); //prototype only
float getinches(); //prototype only
|3
After

struct Distance

{
int iFeet;
float fInches;

|5

2. It puts a declaration of the this pointer as a leading formal argument in the prototypes ofall
member functions as follows. (Distance * const)

Before

void setFeet(int);

After

void setFeet(Distance * const, int);

Before

int getFeet();

After

int getFeet(Distance * const);

Before

void setinches(float);

After

void setinches(Distance * const, float);

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

Before

float getinches();

After

float getinches(Distance * const);

3. It puts the definition of the this pointer as a leading formal argument in the definitions of all
member functions as follows. It also modifies all the statements to access object members by
accessing them through the this pointer using the pointer-to-member access operator (->).

Before
void Distance::setFeet(int x)

{

iFeet=x;

}

After

void setFeet(Distance * const this, int x)

{

this->iFeet=x;

}

Before
int Distance::getFeet()

{

return iFeet;

}

After
int getFeet(Distance * const this)

{

return this->iFeet;

}

Before

void Distance::setInches(float y)
{

finches=y;

}

After

void setinches(Distance * const this, float y)
{

this->flnches=y;

}

Before

float Distance::getinches()

{

return flnches;

}

After float getinches(Distance * const this)

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

{

return this->fInches;

}

We must understand how the scope resolution operator works. The scope resolution operator is also
an operator. Just like any other operator, it operates upon its operands. The scope resolution operator
is a binary operator, that is, it takes two operands. The operand on its left is the name of a pre-defined
class. On its right is a member function of that class.

Based upon this information, the scope resolution operator inserts a constant operator of the correct
type as a leading formal argument to the function on itsright.

For example, if the class name is Distance, as in the above case, the compiler inserts a pointer of type
Distance * const as a leading formal argument to the function on its right.

4. It passes the address of invoking object as a leading parameter to each call to the member
functions as follows.

Before
d1.setFeet(1);
After
setFeet(&d1,1);
Before
dl.setinches(1.1);
After
setinches(&d1,1.1);
Before
cout<<dl.getFeet()<<endl;
After
cout<<getFeet(&d1)<<endl;
Example :
Class dist
{
int ifeet;
float finch;
public:
void setfeet(int ifeet)
{
this->ifeet=ifeet;
}
int getfeet()
{
return ifeet;
}

void setinch(float finch)

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

{
this->finch=finch;
}
float getinch()
{

return finch;

}
|3

int main()
{
dist d1,d2;
d1.setfeet(29);
d1.setinch(3.8);
d2.setfeet(30);
d2.setinch(31.8);
cout<<dl.getfeet()<<endl<<dl.getinch()<<endl;
cout<<d2.getfeet()<<endl<<d2.getinch();

}

Accessing data members of local objects inside member functions and of objects that are passed as
parameters

/*Beginning of Distance.h*/

class Distance

{
/* rest of the class Distance */
Distance add(Distance);

}; I*End of Distance.h*/

[*Beginning of Distlib.cpp*/
#include“Distance.h”
Distance Distance::add(Distance dd)

{
Distance temp;
temp.iFeet=iFeet+dd.iFeet; //legal to access both temp.iFeet and dd.iFeet
temp.fInches=fInches+dd.fInches;
return temp;
}

/* definitions of the rest of the functions of class Distance
/*End of Distlib.cpp*/

/*Beginning of Distmain.cpp*/

#include<iostream>
#include“Distance.h”

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

using namespace std;

int main()
{
Distance d1,d2,d3;
dl.setFeet(1);
dl.setinches(1.1);
d2.setFeet(2);
d2.setinches(2.2);
d3=dl.add(d2);
cout<<d3.getFeet()<<*’-"<<d3.getInches()<<*“’’\n";

}
/*End of Distmain.cpp*/ Output 3'-3.3'

Explicit address manipulation

#include<iostream>
using namespace std;
class dist
{
int ifeet;
float finch;
public:
void setfeet(int x)
{
ifeet=x;
}
int getfeet()
{
return ifeet;
}
void setinch(float y)
{
finch=y;
}
float getinch()

{
}

return finch;

b
int main()

{

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

dist d1;

d1.setfeet(256);

d1.setinch(3.8);

char *p=(char *)&d1;

*p=1;
cout<<dl.getfeet()<<endl<<dl.getinch()<<endl;

Arrow operator

#include<iostream>
using namespace std;
class dist
{
int ifeet;
float finch;
public:
void setfeet(int x)
{
ifeet=x;
}
int getfeet()
{
return ifeet;
}
void setinch(float y)
{
finch=y;
}
float getinch()
{

return finch;

}
b

int main()
{
dist d1,*d2;
d1.setfeet(256);
d1.setinch(3.8);
d2=8&d1;
cout<<d2->getfeet()<<endl<<d2->getinch()<<endl;

Calling one member function from another

#include<iostream>
using namespace std;
class dist

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

int ifeet;
float finch;
public:
void setfeet(int x)
{
ifeet=x;
}
int getfeet()
{

return ifeet;
}
void setinch(float y)
{

finch=y;
}
float getinch()
{

return finch;

}

void setfeetfeet(int r)

{
setfeet(r);
}
b
int main()
{
dist d1;
d1.setfeetfeet(256);
d1.setinch(3.8);
cout<<dl.getfeet()<<endl<<dl.getinch()<<endl;
}

//Overloaded member function

#include<iostream>
using namespace std;

class A
{
public:void show();
void show(int);
b
void A::show()
{
cout<<"HI\n";
}
void A::show(int x)
{

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

for(int i=0;i<x;i++)
cout<<"helo\n";

}

int main()

{
AAl;
Al.show();
Al.show(3);
return 0;

}

//Default values for formal arguments of member function

#include<iostream>
using namespace std;

class A
{
public:
void show(int=1);
b
void A::show(int x)
{
for(int i=0;i<x;i++)
cout<<"helo\n";
}
int main()
{
AAl;
Al.show();
Al.show(4);
return 0;
}

//INLINE MEMBER FUNCTION
#include<iostream>

using namespace std;
#define square(v) v*v

inline int squarel(int x)

int r=0;
r=x*x;
returnr;

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

int main()
{
int r1=0,r2=0,r3=0,r4=0;
rl=square(5);
r2=square(2+3);
r3=squarel(5);
r4=squarel(2+3);
cout<<"rl="<<rl<<endl<<"r2="<<r2<<endl<<"r3="<<r3<<endl<<"r4="<<rd<<endl;

//CONSTANT MEMBER FUNCTION
#include<iostream>
using namespace std;
class dist
{
int ifeet;
mutable float finch;
public:
void setfeet(int x);
int getfeet() const;
void setinch(float y);
float getinch() const;
b
void dist::setfeet(int x)
{
ifeet=x;
}
int dist::getfeet() const
{
l/ ifeet++;
return ifeet;

}

void dist::setinch(float y)
{

finch=y;
}

float dist::getinch() const

{
finch=0.0;
return finch;

}

int main()

{
dist d1;
d1.setfeet(29);
d1.setinch(3.8);

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

cout<<d1l.getfeet()<<endl<<dl.getinch();

//MUTABLE DATA MEMBER
#include<iostream>
using namespace std;
class dist
{
mutable int ifeet;
float finch;
public:
void setfeet(int x);
int getfeet()const ;
void setinch(float y);
float getinch();
b
void dist::setfeet(int x)
{
ifeet=x;
}
int dist::getfeet() const
{
ifeet++;
return ifeet;
}

void dist::setinch(float y)

{
finch=y;
}
float dist::getinch()
{
finch=0.0;
return finch;

int main()
{
dist d1;
d1.setfeet(29);
d1.setinch(3.8);
cout<<dl.getfeet()<<endl<<d1.getinch();

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

Friend as non member function

A friend function is a non-member function that has special rights to access private
data members of any object of the class of whom it is a friend.

A friend function is prototyped within the definition of the class of which it is
intended to be a friend.

The prototype is prefixed with the keyword friend.

Since it is a non-member , it is defined without using the scope resolution operator.
Moreover, it is not called with respect to an object.

#include<iostream>
using namespace std;

class A
t
int X;
public:
void setx(int);
int getx();
friend void Display(A a);
ioid Display(A a)
{
a.x=10;
cout<<"now the x value after changing"<<a.x<<endl;
¥
void A::setx(int a)
{
X=a;
¥
int A::getx()
{
return x;
b
int main()

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

Aal;
al.setx(3);
cout<<"the value of x is"<<al.getx()<<endl;
Display(al);
¥

A few points about the friend functions that we must keep in mind are as follows:
*) friend keyword should appear in the prototype only and not in the definition.

*) Since it is a non-member function of the class of which it is a friend, it can be
prototyped in either the private or the public section of the class.

*) A friend function takes one extra parameter as compared to a member function
that performs the same task. This is because it cannot be called with respect to any
object. Instead, the object itself appears as an explicit parameter in the function call.

*)We need not and should not use the scope resolution operator while defining a
friend function.

Friend as a class

A class can be a friend of another class.

Member functions of a friend class can access private data members of objects of
the class of which it is a friend.

If class B is to be made a friend of class A, then the statement
friend class B; should be written within the definition of class A.

It does not matter whether the statement declaring class B as a friend is mentioned
within the private or the public section of class A. Now, member functions of class
B can access the private data members of objects of class A

#include<iostream>
using namespace std;
class A

{

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

int x;

public:
void setx(int);
int getx();
friend class B;
Y
class B
{
public:
void read(A a);
Y
void A::setx(int a)
{
X=q;
¥
int A::getx()
{
return Xx;
¥
void B::read(A a)
{
a.x=10;
cout<<"now the x value after accessing in B is"<<a.x<<endl;
¥
int main()
{
Aal;
B b;
al.setx(3);
cout<<"the value of x is"<<al.getx()<<endl;
b.read(al);
¥

Friend as a member function of another class

Friend member functions How can we make some specific member functions of one
class friendly to another class?

For making only B::test_friend() function a friend of class A, replace the line

friend class B; in the declaration of the class A with the line

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

friend void B::test_friend();

The modified definition of the class A is
class A {

[* rest of the class A */

friend void B::test_friend();

b

However, in order to compile this code successfully, the compiler should first see
the definition of the class B. Otherwise, it does not know that test friend() is a
member function of the class B. This means that we should put the definition of class
B before the definition of class A.

#include<iostream>
using namespace std;

class A;
class B
{

public:

void read(A a);

j
class A
{

int X;

public:

void setx(int);

int getx();

friend void B::read(A a);
Y
void A::setx(int a)
{

X=2;
}
int A::getx()
{

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

return Xx;

}
void B::read(A a)
{
a.x=10;
cout<<"now the x value after accessing in B is"<<a.x<<endl;
¥
int main()
{
Aal;
B b;
al.setx(5);
cout<<"the value of x is"<<al.getx()<<endl;
b.read(al);
}

Friend as a Bridge

Friend functions can be used as bridges between two classes.

Suppose there are two unrelated classes whose private data members need a
simultaneous update through a common function. This function should be declared
as a friend to both the classes.

#include<iostream>
using namespace std;

class A;
class B
{
inty;
public:void sety(int v)
{
y=V;
}
int gety()
{
returny;
¥

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

friend void Display(A a,B b);

h3
class A
{

int X;

public:void setx(int v)

{

X=V;
¥
int getx()
{
return Xx;
¥

friend void Display(A a,B b);
¥
void Display(A a, B b)
{
cout<<”after changing”;
a.x=20;
b.y=25;
cout<<"x="<<a.x<<"y="<<p.y<<endl;
}
int main()
{

A g;

B b;

a.setx(100);

b.sety(200);

cout<<’x="<<a.getx()<<’y="<<b.gety()<<endl;

Display(a,b);
¥

Static Data Member

We can define class members static using static keyword. When we declare a
member of a class as static it means no matter how many objects of the class are
created, there is only one copy of the static member.

A static member is shared by all objects of the class.

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

All static data is initialized to zero when the first object is created, if no other
Initialization is present.

We can't put it in the class definition but it can be initialized outside the class as
done in the following example by declaring the static variable, using the scope
resolution operator :: to identify which class it belongs to.

Introducing static data members does not increase the size of objects of the class.
Static data members are not contained within objects. There is only one copy of the
static data member in the memory.

Static data members are not a part of objects

[*Beginning of staticSize.cpp*/
#include<iostream>

using namespace std;

class Account

{
static int x;
float y;
I3
int main()
{
Account a;
cout<<"'size of account is''<<sizeof(a)<<endl;
}

#include<iostream>
using namespace std;
class sample
L
public:static int a,b;
h¢

int sample::a;

int sample::b=10;

int main()

{

sample s;

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

cout<<"a="<<s.a<<endl,
cout<<"p="<<sample::b<<endl;

#include<iostream>
using namespace std;
class sample

{
public:static int a,b;
void sum()

int s=a+b;
cout<<"sum "<<s<<endl;

¥

Y

int sample::a;

int sample::b=10;
int main()

{

sample s;
cout<<"a="<<s.a<<endl;
cout<<"p="<<sample::b<<endl;
s.sum();

static Function Members
By declaring a function member as static, you make it independent of any particular
object of the class.

A static member function can be called even if no objects of the class exist and
the static functions are accessed using only the class name and the scope resolution
operator ::.

A static member function can only access static data member, other static member
functions and any other functions from outside the class.

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

Static member functions have a class scope and they do not have access to
the this pointer of the class. You could use a static member function to determine
whether some objects of the class have been created or not.

#include<iostream>
using namespace std;
class sample
{
public:static int a,b;
static int x;
static void sum()
{
int s=a+b;
int avg=s/X;
cout<<"sum "<<s<<endl;
cout<<"avg "<<avg<<endl,

}

Y

int sample::a;

int sample::b=10;

int main()

{
sample s;
cout<<"a="<<s.a<<endl;
cout<<"b="<<sample::b<<endl;
sample::sum();
s.sum();

}

STATIC VARIABLE CAN BE USED AS DEFAULT VALUE

#include<iostream>
using namespace std;
class Account
{ »
static Int X;
public :

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

void display(int=x);

Y
int Account::x=5;
void Account::display(int m)

cout<<"m value="<<m<<endl;

}

int main()

{

Account a;

a.display();
a.display(100);

Example :

#include<iostream>
using namespace std;
class Account

t

int z;

static float rate;

static char name[30];
public: void interest(float p,int t);
}.

float Account::rate=5;
char Account::name[30]="state bank of india";

void Account::interest(float p,int t)

{
cout<<"the name of the bank is "<<name<<endl;
float i=p*t*rate/100;
cout<<"interest="<<i<<endl;

}

int main()

{

Account a;
a.interest(1000,2);

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

Il cout<<"size of Account"<<sizeof(Account)<<endl;

Namespace

#include<iostream>
using namespace std;
namespace a

{
void add()
{
int a=5,b=9.4;
int sum=a+b;
cout<<"sum="<<sum,;
}
}
namespace b
{
void add()
{
float a=5,b=9.4;
float sum=a+b;
cout<<"sum="<<sum,;
}
}

/Inamespace.cpp

#include<iostream>
#include "a.cpp”
#include "b.cpp™
using namespace a;
using namespace b;

using namespace std;
int main()

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

{
b::display();
read();

int main()

{
a::add();
b::add();
¥

a.Cpp

#include<iostream>
using namespace std;
namespace a

{

void display()
{

}

void read()

cout<<"this is A";

cout<<"hi";

o
o

#include<iostream>
using namespace std:;
namespace b

{

void display()
{

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

cout<<"this is B";

=

//ARRAY OF OBJECT
#include<iostream>
using namespace std;
#define SIZE 3

class Distance

{
int feet;
float inches;
public : void setFeet(int x)
{
feet=x;
}
void setinches(float y)
{
inches=y;
}
int getFeet()
{
return feet;
}
float getinches()
{
return inches;
}
b
int main()
{
Distance dArray[SIZE];
int a;
float b;
for(int i=0;i<SIZE;i++)
{
cout<<"Enter the feet : ";
cin>>a;

dArray[i].setFeet(a);
cout<<"Enter the inches : ";
cin>>b;
dArray[i].setinches(b);

}

for(int i=0;i<SIZE;i++)

{

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

cout <<dArray[i].getFeet()<<" "<<dArray[i].getinches()<<endl;

}
}

//ARRAY INSIDE OBJECT
#include<iostream>
using namespace std;
#define size 3

class student

{
int roll_no;
int marks[size];
public:
void getdata ()
{
cout<<"\nEnter roll no: ";
cin>>roll_no;
for(int i=0; i<size; i++)
{
cout<<"Enter marks in subject"<<(i+1)<<": ";
cin>>marksli] ;
}
}
void tot_marks()
{
int total=0;
for(int i=0; i<size; i++)
total=total+ markslil;
cout<<"\n\nTotal marks "<<total;
}
b
int main()
{
student s;

s.getdata() ;
s.tot_marks() ;

}

NESTED CLASS

#include<iostream>
using namespace std;

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

class A
{
public: int x;
public :
class B
{
public:void Btest()

{

cout<<"b class"<<endl;

b
void Atest()
{

cout<<"a class"<<x<<endl;

}

b

int main()

{
Aa;
A::B b;
a.x=100;
a.Atest();
b.Btest();

//CREATING OBJECT INSIDE THE NESTED CLASS
#include<iostream>
using namespace std;

class A

{
public: int x;
public :
class B
{

public:void Btest();

b
B b1;
void Atest()

{
b1.Btest();

cout<<"a class"<<x<<endl;

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

b
void A::B::Btest()
{
cout<<"b class"<<endl;
}
int main()
{
A a;
a.x=100;
a.Atest();
}

//DEFINING MEMBER FUNC OUTSIDE THE NESTED CLASS
#include<iostream>
using namespace std;

class A
{
public: int x;
public :
class B
{
public:void Btest();
b
void Atest()
{
cout<<"a class"<<x<<endl;
}
b
void A::B::Btest()
{
cout<<"b class"<<endl;
}
int main()
{
A a;
A::Bb;
a.x=100;
a.Atest();

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

b.Btest();

//ACCESSING NESTED CLASS VARIABLE
#include<iostream>

using namespace std;

class A

{

staticint x;

public :
inty;
class B
{
public:void Btest(A a)
{
cout<<x;
cout<<a.y;
cout<<"b class"<<endl;

}

b
void Atest()
{

cout<<"a class"<<endl<<"x="<<x<<endl;

}

b
int A::x=100;

int main()

{
A a;
a.y=20;
A::B b;
a.Atest();
b.Btest(a);

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

Rules of Constructor

In C++, Constructor is automatically called when an object (a instance of the class)
create. It is a special member function of the class.

It has the same name of the class.

It must be a public member.

No Return Values.

Default constructors are called when constructors are not defined for the classes.

Default Constructor

#include<iostream>
using namespace std;
class Example {
int a, b;
public:
/[Constructor
Example() {
/I Assign Values In Constructor
a=10;
b = 20;
cout<< "Im Constructor\n;
}
void Display() {
cout<< "Values :" << a << "\t" << b;

}
};

int main() {
Example Object; // Constructor invoked.
Obiject.Display();

}

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

Parameterized Constructor

#include<iostream>
using namespace std;
class Example {
inta, b;
public:
//parameterized Constructor
Example(intx,int y) {
Il Assign Values In Constructor
a=x;
b=vy;
cout<< "Im parameterized Constructor\n";
¥
void Display() {
cout<< "Values :" << a << "\t" << b;

}
1

Int main() {

Example Object(10,100); // Constructor invoked.
Obiject.Display();
¥

Overloading Constructor
#include<iostream>

using namespace std;
class Example {
int a, b;
public:
/ldefault constructor
Example()
{
a=3;
b=6;
cout<<"Im default Constructor"<<endl;

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

/lparameterized Constructor
Example(int x,int y) {
/I Assign Values In Constructor
a=xXx;
b=y,
cout<< "Im parameterized Constructor\n";
}
void Display() {
cout<< "Values :" << a << "\t" << b<<endl;

}
)3

Int main() {
Example object;
object.Display();
Example object1(10,100); // Constructor invoked.
object.Display();

}

Copy Constructor
#include<iostream>

using namespace std;

class Point

{

intx,vy;
public:
Point(int x1, int y1)
{
X = X1,
y=yl
}

/I Copy constructor

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

Point(Point&p)

{
X =p.X;
y=p.Yy;
¥
intgetX()
{
return X;
¥
Int getY()
{
returny;
¥
¥
intmain()
{

Point p1(10, 15); // Normal constructor is called here
Point p2 = p1,;

/I or Point p2(pl); Copy constructor is called here

/I Let us access values assigned by constructors

cout<< "pl.x =" << pl.getX() << ", pl.y =" << pl.getY();
cout<< "\np2.x =" << p2.getX() << ", p2.y =" << p2.getY();
return O;

}

Rules of Destructor.

e Should start with a tilde(~) and same name of the class.
e Destructors do not have parameters and return type.
e Destructors are called automatically and cannot be called from a program manually.

Destructor usage

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

Releasing memory of the objects.
Releasing memory of the pointer variables.
Closing files and resources.

Class class_name {

public:

~class_name() //Destructor
{
¥

2

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF'CSE. € AWIBRIDGE INSPITJTE OF TECHNOLOGY

Source diginotes.in

Rules of Constructor

In C++, Constructor is automatically called when an object (a instance of the class)
create. It is a special member function of the class.

It has the same name of the class.

It must be a public member.

No Return Values.

Default constructors are called when constructors are not defined for the classes.

Default Constructor

#include<iostream>
using namespace std;
class Example

{
inta, b;
public:
/IConstructor
Example()
{
/I Assign Values In Constructor
a=10;
b = 20;
cout<< "Im Constructor\n";
¥
void Display()
{
cout<< "Values :" << a << "\t" << b;
¥
¥
int main()
{
Example Object; // Constructor invoked.
Object.Display();
¥

Source diginotes.in

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE; CAMBRIDGE INSHTUTE OF TECHNOLOGY

Parameterized Constructor

#include<iostream>
using namespace std;
class Example

{
inta, b;
public:
/lparameterized Constructor
Example(int x,int y)
{
/I Assign Values In Constructor
a=x;
b=y,
cout<< "Im parameterized Constructor\n";
¥
void Display()
{
cout<< "Values :" << a << "\t" << b;
¥
2
int main()
{
Example Object(10,100); // Constructor invoked.
Object.Display();
¥

Overloading Constructor
#include<iostream>

using namespace std;
class Example {
inta, b;
public:
/ldefault constructor
Example()
{
a=3;
b=6;
cout<<"Im default Constructor'<<endl;

Source diginotes.in

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE; CAMBRIDGE INSHTUTE OF TECHNOLOGY

//parameterized Constructor
Example(int x,int y)

{
/I Assign Values In Constructor
a=x;
b=y;
cout<< "Im parameterized Constructor\n";
¥
void Display()
{
cout<< "Values :" << a << "\t" << b<<endl,
}
Y
int main()
{
Example object;
object.Display();
Example object1(10,100); // Constructor invoked.
object.Display();
}

Source diginotes.in

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE; CAMBRIDGE INSHTUTE OF TECHNOLOGY

Copy Constructor
#include<iostream>

using namespace std;

class Point

{

intx,vy;
public:
Point(int x1, int y1)
{
X =X1;
y=yl;
}

/I Copy constructor
Point(Point&p)

{
X = p.X;
y=pYy;
¥
int getX()
{
return X;
¥
int getY()
{
return y;
¥
o
int main()
{

Point p1(10, 15); // Normal constructor is called here
Point p2 = p1,

I/ or Point p2(pl); Copy constructor is called here

Il Let us access values assigned by constructors

cout<< "pl.x =" << pl.getX() << ", pl.y =" << pl.getY();
cout<< "\np2.x =" << p2.getX() << ", p2.y =" << p2.getY();
return O;

} Source diginotes.in

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE; CAMBRIDGE INSHTUTE OF TECHNOLOGY

Rules of Destructor.

¢ Should start with a tilde(~) and same name of the class.
e Destructors do not have parameters and return type.
e Destructors are called automatically and cannot be called from a programmanually.

Destructor usage

o Releasing memory of the objects.
o Releasing memory of the pointer variables.
o Closing files and resources.

Class class_name

{
public:

~ class_name() //Destructor

{
}
};

Source diginotes.in

RAJESH KUMAR S . ASSISTANT PROFESSOR. DEPT. OF CSE; CAMBRIDGE INSHTUTE OF TECHNOLOGY

2nd Module (Java Complete Reference:Herbert Schield)

Module 2:

1.History of Java

2. Evolution of java,
3.DataTypes,Variables and Arrays.
4.Operators.

5.Control statements.

Java is an object-oriented programming language developed by Sun Microsystems, a company
best known for its high-end Unix workstations.

« Java is modeled after C++

« Java language was designed to be small, simple, and portable across platforms and operating
systems, both at the source and at the binary level

+ Java also provides for portable programming with applets. Applets appear in a

Web page much in the same way as images do, but unlike images, applets are

dynamic and interactive.

The C# Connection
e Java’s innovative features, constructs, and concepts have become baseline for any new
language.
e C#is closely related to Java.Created by Microsoft to support the .NET Framework.

e Both languages share the same general syntax, support distributed programming, and
utilize the same object model.

e There are differences between Java and C#, but the overall “look and feel” of these
languages is very similar.

How Java Changed the Internet
e Applet changed the way the content can be rendered online.
e Javaalso addressed issues associated with the Internet: portability and security

Java Applets

e An applet is a special kind of Java program that is designed to be transmitted over
Internet and automatically executed by a Java-compatible web browser.

e If the user clicks a link that contains an applet, the applet will be automatically
downloaded and run in the browser.

e Applets are typically used to display data provided by the server, handle user input, or
provide simple functions, such as a loan calculator, that can execute locally, rather than
on the server.

e The applet allows some functionality to be moved from the server to the client.

e Inaweb page majorly two types of content is rendered.
= 1% passive information (reading e-mail,is viewing passive data)
= dynamic, active program(the program’s code execution)

Applet is a dynamic, self-executing program on the client computer, yet it is initiated by

the server.

Mangala KB, Dept of CSE,CiTech Page 1

2nd Module (Java Complete Reference:Herbert Schield)

e Dynamic, networked programs are serious problems in the areas of security and
portability. As program that downloads and executes automatically on the client
computer must be prevented from doing harm.

e |t must also be able to run in a variety of different environments and under different
operating systems.

e Java solved these problems in an effective and elegant way.

Security
e the code we download might contain virus, Trojan horse, or other harmful code that can
gain unauthorized access to system resources.
e For example, a virus program might gather private information, such as credit card
numbers, bank account balances, and passwords, by searching the contents of computer.
e Java achieved protection by confining an applet to the Java execution environment and
not allowing it access to other parts of the computer.

Portability

different types of computers and operating systems connected to internet
Java program must be able to run on any computer connected to the Internet,
The same applet must be able to be downloaded and executed by the wide variety of
CPUs, operating systems, and browsers connected to the Internet.

It is not practical to have different versions of the applet for different computers. The
same code must work on all computers.
Therefore, some means of generating portable executable code was needed. The same
mechanism which ensure security also helps in portability.

Java’s Magic: The Bytecode
e The key that allows Java to solve both the security and the portability problems is that the

output of a Java compiler is not executable code. Rather, it is bytecode.

Bytecode is a highly optimized set of instructions designed to be executed by the Java
run-time system, which is called the Java Virtual Machine (JVM).

modern programming languages are designed to be compiled into executable code
because of performance concerns
Translating a Java program into bytecode makes it much easier to run a program in a
wide variety of environments because only the JVM needs to be implemented for each
platform.

Once the run-time package exists for a given system, any Java program can run on it.
the JVM will differ from platform to platform, all understand the same Java bytecode.
If a Java program were compiled to native code, then different versions of the same
program would have to exist for each type of CPU connected to the Internet. This is, of
course, not a feasible solution.

Thus, the execution of bytecode by the JVM is the easiest way to create truly portable
programs.

Mangala KB, Dept of CSE,CiTech Page 2

2nd Module (Java Complete Reference:Herbert Schield)

Java Code (.java)

v

JAVAC
compiler

l

Byte Code (.class)

I
' v v

JVIM JVM JVIM
! J !
Windows ‘ Linux ‘ Mac ‘

e The fact that a Java program is executed by the JVM also helps to make it secure.

e Because the JVM is in control, it can contain the program and prevent it from generating
side effects outside of the system.

e bytecode has been highly optimized, the use of bytecode enables the JVM to execute
programs much faster

Servlets: Java on the Server Side

e Aservlet is a small program that executes on the server.

e Just as applets dynamically extend the functionality of a web browser, servlets
dynamically extend the functionality of a web server.

e Servlets are used to create dynamically generated content that is then served to the client.

e For example, an online store might use a servlet to look up the price for an item in a
database. The price information is then used to dynamically generate a web page that is
sent to the browser.

e Servlets increases performance.

e Because servlets (like all Java programs) are compiled into bytecode and executed by the
JVM, they are highly portable. Thus, the same servlet can be used in a variety of different
server environments.

The Java Buzzwords

Simple
e Java was designed to be easy for the professional programmer to learn and use
effectively.
e As Java inherits the C/C++ syntax and many of the object-oriented features of C++, its
easy to learn.
Object-Oriented
e The object model in Java is simple and easy to extend, while primitive types, such as
integers, are kept as high-performance nonobjects.

Mangala KB, Dept of CSE,CiTech Page 3

2nd Module (Java Complete Reference:Herbert Schield)

Robust
e the program must execute reliably in a variety of systems. To gain reliability, Java
restricts us to find mistakes early in program development.

e AsJava is a strictly typed language, it checks code at compile time. also checks code at
run time.

e Java programmes behave in a predictable way under diverse conditions is a key feature of
Java.

e Programs fail in 2 conditions, memory management mistakes and mishandled exceptional
conditio.

e Java virtually eliminates memory management problems by managing memory allocation
and deallocation automatically.

e Exceptional conditions(run time errors) in Java is handled well by providing object-
oriented exception handling

Multithreaded

e Java programs can do many things simultaneously.

e The Java run-time system supports multiprocess synchronization that enables to
construct smoothly running interactive systems.

e Java’s easy-to-use approach to multithreading allows to work on specific behavior of the
program, not the multitasking subsystem.

Architecture-Neutral

e A central issue for the Java design was that of code longevity and portability.

e As Operating system upgrades, processor upgrades, and changes in core system resources
can all combine to make a program malfunction. (same program will not execute in
different platforms)

e Java Virtual Machine in an attempt to alter this situation. The goal is “write once; run
anywhere, any time, forever.”

Interpreted and High Performance

e Java enables the creation of cross-platform programs by compiling into an intermediate
representation called Java bytecode. This code can be executed on any system that
implements the Java Virtual Machine.

e the Java bytecode was carefully designed so that it would be easy to translate directly
into native machine code for very high performance by using a just-in-time compiler.

Distributed

e Java is designed for the distributed environment of the Internet because it handles TCP/IP
protocols.

e Java supports Remote Method Invocation (RMI). This feature enables a program to
invoke methods across a network.

Mangala KB, Dept of CSE,CiTech Page 4

2nd Module (Java Complete Reference:Herbert Schield)

Dynamic

Java programs carry run-time type information that is used to verify and resolve accesses
to objects at run time.

This makes it possible to dynamically link code in a safe manner.

This is crucial to the robustness of the Java environment, in which small fragments of
bytecode may be dynamically updated on a running system.

A First Simple Program

[* "Example.java”. */
class Example

{

¥

public static void main(String args|])

{

System.out.printIn("This is a simple Java program.");

¥

Compiling the Program in jdk

the name of the source file should be Example.java.

To compile the Example program, execute the compiler, javac, specifying the name of
the source file on the command line, as shown here:

C:\>javac Example.java

The javac compiler creates a file called Example.class that contains the bytecode version
of the program.

the Java bytecode is the intermediate representation of program that contains instructions
the Java Virtual Machine will execute.

Thus, the output of javac is not code that can be directly executed.

To run the program, you must use the Java application launcher, called java.

C:\>java Example

When the program is run, the following output is displayed:

This is a simple Java program.

Explaination

class Example {

This line uses the keyword class to declare that a new class is being defined.

Example is an identifier that is the name of the class.

The entire class definition, including all of its members, will be between the opening
curly brace ({) and the closing curly brace (}).

public static void main(String args[]) {

This line begins the main() method. This is the line at which the program will begin
executing. All Java applications begin execution by calling main().

The public keyword is an access specifier, which allows the programmer to control the
visibility of class members.

Mangala KB, Dept of CSE,CiTech Page 5

2nd Module (Java Complete Reference:Herbert Schield)

When a class member is preceded by public, then that member may be accessed by code
outside the class in which it is declared.

main() must be declared as public, since it must be called by code outside of its class
when the program is started.

The keyword static allows main(') to be called without having to instantiate a particular
instance of the class. This is necessary since main() is called by the Java Virtual
Machine before any objects are made.

The keyword void tells the compiler that main(') does not return a value.

String args[] declares a parameter named args, which is an array of instances of the
class String.

args receives any command-line arguments present when the program is executed.
System.out.printIn("This is a simple Java program.”);

Output is actually accomplished by the built-in printin() method, printin() displays the
string which is passed to it.

System is a predefined class that provides access to the system, and out is the output
stream that is connected to the console.

2. Variables and Data Types

Variables are locations in memory in which values can be stored. They have a
name, a type, and a value.

Java has three kinds of variables: instance variables, class variables, and

local variables.

Instance variables, are used to define attributes or the state for a particular object.
Class variables are similar to instance variables, except their values apply

to all that class's instances (and to the class itself) rather than having different
values for each object.

Local variables are declared and used inside method(function) definitions,
Variable declarations consist of a type and a variable name:

Examples :int myAge; String myName; boolean value;

The Primitive Types

Java defines eight primitive types of data: byte, short, int, long, char, float, double, and
boolean.

2.1 Integer types.

Type Size Range

byte 8 bits —128to 127

short 16 bits —32,768 to 32,767

int 32 hits —2,147,483,648 to 2,147,483,647

long 64bits —9223372036854775808 to 9223372036854775807

/[l Compute distance light travels using long variables.

Mangala KB, Dept of CSE,CiTech Page 6

2nd Module (Java Complete Reference:Herbert Schield)

class Light
{

public static void main(String args[])
{

int lightspeed;

long days;

long seconds;

long distance;

lightspeed = 186000;

days = 1000; // specify number of days here
seconds = days * 24 * 60 * 60; // convert to seconds
distance = lightspeed * seconds; // compute distance
System.out.print("In " + days);
System.out.print(" days light will travel about ™);
System.out.printin(distance + " miles.");
}
}
output:

In 1000 days light will travel about 16070400000000 miles.
Clearly, the result could not have been held in an int variable.

2.2 Floating-point
e This is used for numbers with a decimal part.
e There are two floating-point types:
float (32 bits, single-precision) and double (64bits, double-precision).

class Area
{
public static void main(String args[])
{
double pi, r, &;
r =10.8; // radius of circle
pi = 3.1416; // pi, approximately
a=pi*r*r;// compute area
System.out.printin("Area of circle is " + a);
}
}
Output:

Area of circle is 366.24
2.3 Char
e The char type is used for individual characters. Because Java uses the Unicode
character set, the char type has 16 bits of precision, unsigned.

class CharDemo

Mangala KB, Dept of CSE,CiTech Page 7

2nd Module (Java Complete Reference:Herbert Schield)

{
public static void main(String args[])
{
char chl, ch2;
chl = 88; // code for X
ch2 ="Y";
System.out.print(*chl and ch2: ");
System.out.printin(chl + " " + ch2);
}
}
output:

chlandch2: XY

/I char variables behave like integers.
class CharDemo?2

{
public static void main(String args[])
{
char chl;
chl =X}
System.out.printin("chl contains " + chl);
chl++;// increment chl
System.out.printin("chl is now " + chl);
}
}
output:
chl contains X
chlis now Y
2.4 Boolean

e The boolean type can have one of two values, true or false.

class BoolTest

{

public static void main(String args[])
{
boolean b;
b = false;
System.out.printin("b is " + b);
b = true;
System.out.printin("b is " + b);
if(b)
System.out.printIn("This is executed.");
b = false;
if(b)

Mangala KB, Dept of CSE,CiTech Page 8

2nd Module (Java Complete Reference:Herbert Schield)

System.out.printIn("This is not executed.");
System.out.printin("10 > 9 is " + (10 > 9));

ky

output:

b is false

b is true

This is executed.
10 > 9 is true

2.5 Literals
e Literals are used to indicate simple values in Java programs.
e Number Literals
e There are several integer literals.Ex: 4, is a decimal integer literal of type int
e Floating-point literals usually have two parts: the integer part and the decimal part—
Ex: 5.677777.
Boolean Literals:Boolean literals consist of the keywords true and false.
e These keywords can be used anywhere needed a test or as the only possible values for
Boolean variables.

2.6 Character Literals
e Character literals are expressed by a single character surrounded by single quotes: ‘a’, '#',
'3', and so on. Characters are stored as 16-bit Unicode characters.

The Java Class Libraries
e printin() and print(). these methods are members of the System class, which is a class
predefined by Java that is automatically included in your programs.
e the Java environment relies on several built-in class libraries that contain many built-in
methods that provide support for such things as I/O, string handling, networking, and
graphics.

Dynamic Initialization of variables.
e Java allows variables to be initialized dynamically, using any expression valid at the time
the variable is declared.
e For example, here is a short program that computes the length of the hypotenuse of a
right triangle given the lengths of its two opposing sides:

class DynlInit

{

public static void main(String args[])

{
double a=3.0,b=4.0;
/I ¢ is dynamically initialized
double ¢ = Math.sgrt(a* a+ b * b);

Mangala KB, Dept of CSE,CiTech Page 9

2nd Module (Java Complete Reference:Herbert Schield)

System.out.printin("Hypotenuse is " + c);

}
e sqrt(), is a built in method of the Math class.

The Scope and Lifetime of VVariables
Java allows variables to be declared within any block.

a block is begun with an opening curly brace and ended by a closing curly brace.
A block defines a scope. Thus, each time we start a new block, we are creating a new
scope.

A scope determines what objects are visible to other parts of program.

It also determines the lifetime of those objects.

In Java, the two major scopes are those defined by a class and those defined by a method.
In nested scopes objects declared in the outer scope will be visible to code within the
inner scope. However, the reverse is not true. Objects declared within the inner scope will
not be visible outside it.

e To understand the effect of nested scopes, consider the following program:
/I Demonstrate block scope.

class Scope
{
public static void main(String args[])
{
int x; // known to all code within main
X =10;

if(x == 10)

{

int y = 20; // known only to this block
/I x and y both known here.
System.out.printin("xand y: "+ x+" " +vy);
X=y*2;
}
/l'y = 100; // Error! y not known here
/I x is still known here.
System.out.printin("x is " + X);
}
}
e avariable declared within a block will lose its value when the block is left. Thus, the
lifetime of a variable is confined to its scope.
e |favariable declaration includes an initializer, then that variable will be reinitialized each
time the block in which it is declared is entered.
e For example, consider the next program.

class LifeTime

{

public static void main(String args[])

{

Mangala KB, Dept of CSE,CiTech Page 10

2nd Module (Java Complete Reference:Herbert Schield)

int X;
for(x = 0; X < 3; x++)
{
inty =-1; // y is initialized each time block is entered
System.out.printIn("y is: " + y); // this always prints -1
y = 100;
System.out.printIn(*"y is now: " +y);
¥
¥
¥
output:
yis: -1
y is now: 100
yis: -1
y is now: 100
yis: -1
y is now: 100

Type Conversion and Casting

Java’s

Mangala KB, Dept of CSE,CiTech

To assign a value of one type to a variable of another type. If the two types are
compatible, then Java will perform the conversion automatically.

For example, it is always possible to assign an int value to a long variable.

However, not all types are compatible, and thus, not all type conversions are implicitly
allowed.

there is no automatic conversion defined from double to byte.

It is still possible to obtain a conversion between incompatible types. We must use a
cast, which performs an explicit conversion between incompatible types.

Automatic Conversions

When one type of data is assigned to another type of variable, an automatic type
conversion will take place if the following two conditions are met:

* The two types are compatible.

« The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place.

Ex, the int type is always large enough to hold all valid byte values, so no explicit cast
statement is required.

the numeric types, including integer and floating-point types, are compatible with each
other.

there are no automatic conversions from the numeric types to char or boolean. Also,
char and boolean are not compatible with each other.

Page 11

2nd Module (Java Complete Reference:Herbert Schield)

Casting Incompatible Types

if we want to assign an int value to a byte variable, This conversion will not be
performed automatically, because a byte is smaller than an int(narrowing conversion).
To create a conversion between two incompatible types, we must use a cast.

A cast is simply an explicit type conversion.

It has this general form:

(target-type) value

int a;

byte b;
...

b = (byte) a;
A different type of conversion will occur when a floating-point value is assigned to an
integer type: truncation.

Integers do not have fractional components. Thus, when a floating-point value is assigned
to an integer type, the fractional component is lost.

Ex:if the value 1.23 is assigned to an integer, the resulting value will be 1.

/I Demonstrate casts.
class Conversion

{
public static void main(String args[])
{
byte b;
int i = 257,
double d = 323.142;
System.out.printIn(*\nConversion of int to byte.");
b = (byte) i;
System.out.printin(*iand b " +i+" " + b);
System.out.printin("\nConversion of double to int.");
i =(int) d;
System.out.printin("dand i " +d +" " +i);
System.out.printin("\nConversion of double to byte.");
b = (byte) d;
System.out.printin("dand b " +d +" " + b);
}
}
Output:
Conversion of int to byte.
iand b 257 1

Conversion of double to int.
dand i 323.142 323
Conversion of double to byte.

Mangala KB, Dept of CSE,CiTech Page 12

2nd Module (Java Complete Reference:Herbert Schield)

d and b 323.142 67
Automatic Type Promotion in Expressions

e In the following expression:

byte a = 40;
byte b = 50;
byte ¢ = 100;
intd=a*b/c;

e The result of the intermediate term a * b easily exceeds the range of either of its byte
operands. To handle this kind of problem, Java automatically promotes each byte, short,
or char operand to int when evaluating an expression. This means that the subexpression
a * b is performed using integers—not bytes.

e For example, this seemingly correct code causes a problem:
byte b = 50;

b =b* 2; // Error! Cannot assign an int to a byte!
e Insuch cases we should use an explicit cast, such as
byte b = 50;
b = (byte)(b * 2);
which yields the correct value of 100.

The Type Promotion Rules

e First,all byte, short, and char values are promoted to int, as just described. Then, if one
operand is a long, the whole expression is promoted to long. If one operand is a float, the
entire expression is promoted to float. If any of the operands is double, the result is
double.

e The following program demonstrates how each value in the expression gets promoted to
match the second argument to each binary operator:

class Promote

{

public static void main(String args[])
{
byte b = 42;
charc="a
short s = 1024;
int i = 50000;
float f = 5.67f;
double d = .1234;
double result = (f* b) + (i/c) - (d *s);
System.out.printin((f*b) + "+ "+ (i/c) +" - "+ (d *s));
System.out.printin("result =" + result);

Mangala KB, Dept of CSE,CiTech Page 13

2nd Module (Java Complete Reference:Herbert Schield)

e Here,doubleresult=(f*b)+ (i/c)-(d*ys);

e Inthe first subexpression, f* b, b is promoted to a float and the result of the
subexpression is float. Next, in the subexpression i / ¢, ¢ is promoted to int, and the result
is of type int.

e Then, ind *s, the value of s is promoted to double, and the type of the subexpression is
double.

e three intermediate values, float, int, and double, are considered. The outcome of float
plus an int is a float. Then the resultant float minus the last double is promoted to
double, which is the type for the final result of the expression.

Arrays

e Anarray is a group of like-typed variables that are referred to by a common name.
e Aspecific element in an array is accessed by its index.
e Arrays offer a convenient means of grouping related information.

One-Dimensional Arrays
e Aone-dimensional array is, essentially, a list of like-typed variables.
e The general form of a one-dimensional array declaration is
type array-var = new type[size];

e Here, type specifies the type of data being allocated, size specifies the number of

elements in the array,

array-var is the array variable that is linked to the array.

The elements in the array allocated by new will automatically be initialized to zero.

using new ,allocate the memory that will hold the array

This example allocates a 12-element array of integers and links them to month_days.
int month_days = new int[12];

/l Demonstrate a one-dimensional array.

class Array

{

public static void main(String args[])
{

int month_days[];
month_days = new int[12];
month_days[0] = 31;
month_days[1] = 28;
month_days[2] = 31;
month_days[3] = 30;
month_days[4] = 31;
month_days[5] = 30;
month_days[6] = 31;
month_days[7] = 31;
month_days[8] = 30;
month_days[9] = 31,
month_days[10] = 30;

Mangala KB, Dept of CSE,CiTech Page 14

2nd Module (Java Complete Reference:Herbert Schield)

month_days[11] = 31,
System.out.printin("April has " + month_days[3] + " days.");
}

}

/I An improved version of the previous program.
class AutoArray

{
public static void main(String args[])
{
int month_days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31,30, 31 };
System.out.printIn("April has " + month_days[3] + " days.");
}
}

Output: April has 30 days.
Example prog that uses a one-dimensional array to find the average of a set of numbers.

class Average
{
public static void main(String args[]) {
double nums[] ={10.1, 11.2, 12.3, 13.4, 14.5};
double result = 0;
int i;
Chapter3:DataTypes,Variables,andArraysbl
for(i=0; i<5; i++)
result = result + numsli];
System.out.printIn("Average is " + result / 5);
}
}
Multidimensional Arrays

e To declare a multidimensional array variable, specify each additional index using another
set of square brackets.
e For example, the following declares a twodimensional array variable called twoD.
int twoD[][] = new int[4][5];
// Demonstrate a two-dimensional array.

class TwoDArray

{

public static void main(String args[])
{
int twoD[][]= new int[4][5];
inti, j,k=0;
for(i=0; i<4; i++)
for(j=0; j<5; j++) {

Mangala KB, Dept of CSE,CiTech Page 15

2nd Module (Java Complete Reference:Herbert Schield)

twoD[i][j] = k;
k++;

}

for(i=0; i<4; i++)

{
for(j=0; j<5; j++)
System.out.print(twoD[i][j] + " ");
System.out.printin();

}

}

¥

This program generates the following output:
o 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19

e thefollowing code allocates memory for the first dimension of twoD when it is declared.
It allocates the second dimension manually.
/I Manually allocate differing size second dimensions.

class TwoDAgain

{

public static void main(String args[])
{
int twoD[][] = new int[4][];
twoD[0] = new int[1];
twoD[1] = new int[2];
twoD[2] = new int[3];
twoD[3] = new int[4];
inti, j k=0;

for(i=0; i<4; i++)
for(j=0; j<i+1; j++)

twoD[i][j] = k;
k++;

¥

for(i=0; i<4; i++)
for(j=0; j<i+1; j++)
{
System.out.print(twoD[i][j] + " ");
System.out.printIn();

Mangala KB, Dept of CSE,CiTech Page 16

2nd Module (Java Complete Reference:Herbert Schield)

ky

This program generates the following output:
0

12

345

6789

/I Demonstrate a three-dimensional array.

class ThreeDMatrix

{
public static void main(String argsf])
{
int threeD[][][] = new int[3][4][5];
inti, j, k;
for(i=0; i<3; i++)
for(j=0; j<4; j++)
for(k=0; k<5; k++)
threeD[i][jl[k] =i *j * k;
for(i=0; I<3; i++)
{
for(j=0; j<4; j++)
{
for(k=0; k<5; k++){
System.out.print(threeD[i][j1[K] + " *);
System.out.printin();
}
System.out.printin();
}
}
}
This program generates the following output:
00000
00000
00000
00000
00000
01234
02468
036912
00000

Mangala KB, Dept of CSE,CiTech Page 17

2nd Module (Java Complete Reference:Herbert Schield)

02468
0481216
06121824
3.0perators

Arithmetic Operators

Arithmetic operators are used in mathematical expressions in the same way that they are
used in algebra. The following table lists the arithmetic operators:

Operator Result

+ Addition

— Subtraction (also unary minus)
* Multiplication

/ Division

% Modulus

++ Increment

+= Addition assignment

—= Subtraction assignment
*= Multiplication assignment
= Division assignment

%= Modulus assignment

—— Decrement

The operands of the arithmetic operators must be of a numeric type. we cannot use
them on boolean types, but we can use them on char types, since the char type in Java is,
essentially, a subset of int.

/I Demonstrate the basic arithmetic operators.

class BasicMath

{

public static void main(String args[])

{

/[arithmetic using integers
System.out.printIn("Integer Arithmetic");

inta=1+1;
intb=a*3;
intc=b/4;
intd=c-a;
inte =-d;

System.out.printin("a =" + a);
System.out.printin("b =" + b);
System.out.printin("c =" + c);
System.out.printin("d =" + d);
System.out.printin("e =" + e);

¥

Mangala KB, Dept of CSE,CiTech Page 18

2nd Module (Java Complete Reference:Herbert Schield)

ks

When you run this program, you will see the following output:
Integer Arithmetic

a=2

b=6

c=1

d=-1

e=1

The Modulus Operator

The modulus operator(%6), returns the remainder of a division operation. It can be applied to
floating-point types as well as integer types. The following example program demonstrates
the %:

/I Demonstrate the % operator.

class Modulus

{
public static void main(String args[])
{
int x = 42;
double y = 42.25;
System.out.printin(*x mod 10 =" + x % 10);
System.out.printin("y mod 10 =" + vy % 10);
}
}
output:
xmod 10 =2
y mod 10 = 2.25

Arithmetic Compound Assignment Operators

Operation Equivalent Operation
a=a+4, a+=4;
a=a%?2; a %= 2,

e the %= obtains the remainder of a/2 and puts that result back into a.

class OpEquals

{
public static void main(String args[])
{
inta=1;
intb=2;
intc=3;

Mangala KB, Dept of CSE,CiTech Page 19

2nd Module (Java Complete Reference:Herbert Schield)

a+=75;
b *= 4,
c+t=a*b;
¢ %= 6;
System.out.printin("a =" + a);
System.out.printin("b =" + b);
System.out.printin("c =" + c);
}
}
The output of this program is shown here:
a==6
b
C

8
3
Increment and Decrement

The ++ and the — — are Java’s increment and decrement operators.
The statement: x = x + 1; can be written as x++;
The statement x = x - 1; is equivalent to x--;
These operators are unique where they can appear both in postfix form and prefix form.
In the prefix form, the operand is incremented or decremented before the value is
obtained for use in the expression.
e In postfix form, the previous value is obtained for use in the expression, and then the
operand is modified.
e For example:
X =42;
y = ++X;
In this case, y Is set to 43 because the increment occurs before x is assigned to y.
e Thus, the line y = ++Xx; Is the equivalent of these two statements:

X=xX+1;
y=X
e Here,
X=42;
y = X++;
e the value of x is obtained before the increment operator is executed, so the value of y is
42.
e Here, the line y = x++; is the equivalent of these two statements:
y=X
X=X+1;
class IncDec
{
public static void main(String args[])
{
inta=1;
inth=2;

Mangala KB, Dept of CSE,CiTech Page 20

2nd Module (Java Complete Reference:Herbert Schield)

int c;

intd;

C = ++b;

d =a++;

c++;

System.out.printin("a ="+ a);
System.out.printin("b =" + b);
System.out.printin("c =" + c);
System.out.printin("d =" + d);

The output of this program follows:

}

a=2
b=3
c=4
d=1

The Bitwise Operators
Java defines several bitwise operators that can be applied to the integer types, long, int, short,
char, and byte.

Operator Result
~ Bitwise unary NOT
& Bitwise AND
| Bitwise OR
A Bitwise exclusive OR
>> Shift right
>>> Shift right zero fill
<< Shift left
= Bitwise AND assighment
= Bitwise OR assignment
N= Bitwise exclusive OR assignment
>>= Shift right assignment
>>>= Shift right zero fill assignment
<<= Shift left assignment

Since the bitwise operators manipulate the bits within an integer,

Ex:, the byte value for 42 in binary is 00101010,

All of the integer types (except char) are signed integers. This means that they can
represent negative values as well as positive ones.

Java uses an encoding known as two’s complement, which means that negative numbers
are represented by inverting (changing 1’s to 0’s and vice versa) all of the bits in a value,
then adding 1 to the result.

Mangala KB, Dept of CSE,CiTech Page 21

2nd Module (Java Complete Reference:Herbert Schield)

e For example, —42 is represented as
00101010
11010101, then adding 1, which results in
11010110, or —42.

e a byte value, zero is represented by 00000000.
Inverting, its 11111111 adding 1 results in 200000000.
where —0 is the same as 0,

e 11111111 is the encoding for —1.

The Bitwise Logical Operators

e The bitwise logical operators are &, |, ”*, and ~.
e the bitwise operators are applied to each individual bit within each operand.

e A B A|B A&B A"™B ~A
0 0 0 0 0 1
1 0 1 0 1 0
0 1 1 0 1 1
1 1 1 1 0 0

The Bitwise NOT

e Also called the bitwise complement, the unary NOT operator, ~, inverts all of the bits of
its operand.
e For example:
00101010 (42)
11010101 after the NOT operator is applied.

The Bitwise AND

e The AND operator, &, produces a 1 bit if both operands are also 1. A zero is produced in
all other cases.

e EX:
00101010 42
& 00001111 15
00001010 10

The Bitwise OR

The OR operator, |, combines bits such that if either of the bits in the operands is a 1, then
the resultant bit is a 1, as shown here:

00101010 42
| 00001111 15
00101111 47

Mangala KB, Dept of CSE,CiTech Page 22

2nd Module (Java Complete Reference:Herbert Schield)

The Bitwise XOR

The XOR operator, ~, combines bits such that if exactly one operand is 1, then the result is 1.
Otherwise, the result is zero.

00101010 42
~ 00001111 15
00100101 37

Using the Bitwise Logical Operators
The following program demonstrates the bitwise logical operators:

class BitLogic

{

public static void main(String args[])

{
String binary[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111",
"1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};

inta=3; // 0011 in binary
int b =6; // 0110 in binary
intc=al|b;

intd=a&b;

inte=a”b;

intf=(~a&b)|(a&~h);

int g = ~a & 0x0f;

System.out.printin(" a =" + binary[a]);
System.out.printin(" b =" + binary[b]);

System.out.printin(" alb =" + binary|c]);
System.out.printin(" a&b =" + binary[d]);
System.out.printin(" a”b =" + binary[e]);
System.out.printin("~a&bla&~b =" + binary[f]);
System.out.printin(" ~a =" + binary[qg]);

}

}

Here is the output from this program:
a=0011

b =0110

alb =0111

a&b = 0010

a"b =0101

~a&bla&~b = 0101

Mangala KB, Dept of CSE,CiTech Page 23

2nd Module (Java Complete Reference:Herbert Schield)

~a =1100
The Left Shift
e The left shift operator, <<, shifts all of the bits in a value to the left a specified number of
times.
e It has this general form: value << num

e Here, num specifies the number of positions to left-shift the value in value.

e That is, the <<moves all of the bits in the specified value to the left by the number of bit
positions specified by num.

e For each shift left, the high-order bit is shifted out (and lost), and a zero is brought in on
the right.

e This means that when a left shift is applied to an int operand, bits are lost once they are
shifted past bit position 31.

e Ifthe operand is a long, then bits are lost after bit position 63.

e Java’s automatic type promotions produce unexpected results when you are shifting byte
and short values.

e byte and short values are promoted to int when an expression is evaluated. The result of
such an expression is also an int. This means that the outcome of a left shift on a byte or
short value will be an int,

class ByteShift

{
public static void main(String args[])
{
byte a = 64, b;
int i;
iza<<?;
b = (byte) (a << 2);
System.out.printin("Original value of a: " + a);
System.out.printin("i and b: " +i+ " " + b);
}
}

The output generated by this program is shown here:
Original value of a: 64
iand b: 256 0

e Since a is promoted to int for the purposes of evaluation, left-shifting the value 64
(0100 0000) twice results in i containing the value 256 (1 0000 0000). However, the value
in b contains 0 because after the shift, the low-order byte is now zero. Its only 1 bit has
been shifted out.

/I Left shifting as a quick way to multiply by 2.
class MultByTwo

{

public static void main(String args[])

{

Mangala KB, Dept of CSE,CiTech Page 24

2nd Module (Java Complete Reference:Herbert Schield)

inti;

int num = OXFFFFFFE;
for(i=0; i<4; i++)

{

num = num << 1;
System.out.printin(num);

}

}
}
The program generates the following output:
536870908
1073741816
2147483632
-32
The starting value was carefully chosen so that after being shifted left 4 bit positions, it
would produce —32. As you can see, when a 1 bit is shifted into bit 31, the number is interpreted
as negative.

The Right Shift
e The right shift operator, >>, shifts all of the bits in a value to the right a specified number
of times.
e lts general form is shown here: value >> num
e Here, num specifies the number of positions to right-shift the value in value. That is, the
>> moves all of the bits in the specified value to the right the number of bit positions
specified by num.
e inta=232;
a=a>>2;// anow contains 8
e When a value has bits that are “shifted off,” those bits are lost.
e For example, the value 35 is shifted to the right two positions, which causes the two low-
order bits to be lost, resulting again in a being set to 8.
int a = 35;
a=a>>2;// astill contains 8
e Looking at the same operation in binary shows more clearly how this happens:

00100011 35
>> 2
00001000 8

e When we are shifting right, the top (leftmost) bits exposed by the right shift are filled in
with the previous contents of the top bit. This is called sign extension and serves to preserve
the sign of negative numbers when we shift them right.

e For example,

11111000 -8

>>1

11111100 -4
class HexByte

Mangala KB, Dept of CSE,CiTech Page 25

2nd Module (Java Complete Reference:Herbert Schield)

{
Public static void main(String args[])
{
byte a=-8;
byte b = (byte) (a>>1);
System.out.println("Right shift value is” +b);
}

}

Here is the output of this program:

b=-4

The Unsigned Right Shift

e the >> operator automatically fills the high-order bit with its previous contents each time
a shift occurs. This preserves the sign of the value.

e Java’s unsigned, shift-right operator, >>>, which always shifts zeros into the high-order
bit.

e The following code fragment demonstrates the >>>.

e Here, aissetto —1, which sets all 32 bits to 1 in binary. This value is then shifted right 24
bits, filling the top 24 bits with zeros, ignoring normal sign extension. This sets a to 255.

inta=-1;
a=a>>>24;
Here is the same operation in binary form :
11111111 111122111 1221112211 111111112 -1
>>>)4
00000000 00000000 00000000 11111111 255

Bitwise Operator Compound Assignments

e All of the binary bitwise operators have a compound form similar to that of the algebraic
operators, which combines the assignment with the bitwise operation.
a=a>>4,
a>>=4;
e Likewise, the following two statements are equivalent:
a=aljb;
al=b;

class OpBitEquals
{
public static void main(String args[])
{
inta=1;
intb=2;
intc=3;
al=4;
b>>=1,;

Mangala KB, Dept of CSE,CiTech Page 26

2nd Module (Java Complete Reference:Herbert Schield)

¥

c<<=1,

a’=c;

System.out.printin("a =" + a);
System.out.printin("b =" + b);
System.out.printin("c =" + c);

¥

The output of this program is shown here:

a=3

b
c

1
6

Relational Operators

The relational operators determine the relationship that one operand has to the other.

Operator Result

== Equal to

I= Not equal to

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

The outcome of these operations is a boolean value.

only integer, floating-point, and character operands may be compared to see which is
greater or less than the other.

inta =4,

intb=1;

booleanc =a <b;

In this case, the result of a<b (which is false) is stored in c.

Boolean Logical Operators

The Boolean logical operators operate only on boolean operands. All of the binary
logical operators combine two boolean values to form a resultant boolean value.

Operator Result
& Logical AND
| Logical OR
A Logical XOR (exclusive OR)
| Short-circuit OR
&& Short-circuit AND
! Logical unary NOT
&= AND assignment
= OR assignment
A= XOR assignment

Mangala KB, Dept of CSE,CiTech Page 27

2nd Module (Java Complete Reference:Herbert Schield)

== Equal to

I= Not equal to

?: Ternary if-then-else
A B A|B A&B A"NB 1A
False False False False False True
True False True False True False
False True True False True True
True True True True False False

class BoolLogic

{
public static void main(String argsf])
{
boolean a = true;
boolean b = false;
booleanc = a | b;
booleand =a & b;
booleane =a”"b;
boolean f = ('a & b) | (a & 'h);
boolean g = a;
System.out.printin(" a =" + a);
System.out.printin(" b =" + b);
System.out.printin(" alb =" + ¢);
System.out.printin(" a&b =" + d);
System.out.printin(" a”b =" + e);
System.out.printin("!a&bla&!b =" + f);
System.out.printIn(* 'a =" + g);
}
}
a=true
b = false
alb = true
a&b = false
ab = true
a&bla&!b = true
la = false

Short-Circuit Logical Operators
e There are secondary versions of the Boolean AND and OR operators, and are known as
short-circuit logical operators.
e the OR operator results in true when A is true, no matter what B is.
e Similarly, the AND operator results in false when A is false, no matter what B
is.(therefore there is no need to evaluate the second operand.)
e Short circuit logical operators are the || and && f

Mangala KB, Dept of CSE,CiTech Page 28

2nd Module (Java Complete Reference:Herbert Schield)

The Assignment Operator
e The assignment operator is the single equal sign, =.
e It has this general form:
var = expression;
e Here, the type of var must be compatible with the type of expression.
e intxvy,z
x=y=2z=100; /] set x, y, and z to 100
e This fragment sets the variables x, y, and z to 100 using a single statement.

The ? Operator

e Java provides ternary (three-way) operator that can replace certain types of if-then-else
statements.
e The ? has this general form:
expressionl ? expression2 : expression3
e Here, expressionl can be any expression that evaluates to a boolean value. If expressionl
is true, then expression2 is evaluated; otherwise, expression3 is evaluated.

class Ternary

{
public static void main(String args[])
{
int a=5,b=10;
int c= a>b? a: b;
System.out.println(*“bigger number is ““ +c);
}
}
output :

bigger number is 10.

Operator Precedence

Highest

0 [1.
++

* / %

+ —

>> >>> <<

> >= < <=

&

AN

&&

Mangala KB, Dept of CSE,CiTech Page 29

2nd Module (Java Complete Reference:Herbert Schield)

2

:. op=

Lowest

Control Statements

e A programming language uses control statements to cause the flow of execution to
advance and branch into different part of a program.

e Java’s program control statements can be put into the following categories:

= gselection,
= jteration, and
= jump.

e Selection statements allow program to choose different paths of execution based
upon the outcome of an expression or the state of a variable.

e lteration statements enable program execution to repeat one or more statements.

e Jump statements allow program to execute in a nonlinear fashion.

Java’s Selection Statements

e Java supports two selection statements: if and switch.
e These statements allow us to control the flow of program’s execution based upon
conditions known only during run time.

e if statement is Java’s conditional branch statement.

e General form of if statement:
if (condition) statement1;
else statement2;

e Here, each statement may be a single statement or a compound statement enclosed in
curly braces (that is, a block).

e The condition is any expression that returns a boolean value.

e The else clause is optional.

e |f the condition is true, then statementl is executed. Otherwise, statement2 (if it exists) is
executed. In no case will both statements be executed.

For example, :

inta, b;
...
if(a<b)
a=0;
else
b=0;

Nested ifs
e Anested if is an if statement that is the target of another if or else.

e an else statement always refers to the nearest if statement that is within the same block as
the else and that is not already associated with an else.

Mangala KB, Dept of CSE,CiTech Page 30

2nd Module (Java Complete Reference:Herbert Schield)

e Here is an example:

if(i == 10)
{
if(j <20) a=b;
if(k >100) //thisifis
c=d,
else
a=gc; / associated with this else
}
else
a=d; /] this else refers to if(i == 10)

e As the comments indicate, the final else is not associated with if(j<20) because it is not in
the same block (even though it is the nearest if without an else)
e . The inner else refers to if(k>100) because it is the closest if within the same block.

The if-else-if Ladder

e A common programming construct that is based upon a sequence of nested ifs is the if-
else-if ladder.
e General form:
if(condition)
statement;
else if(condition)
statement;
else if(condition)
statement;
else
statement;
e The if statements are executed from the top down.
e Assoon as one of the conditions controlling the if is true, the statement associated with
that if is executed, and the rest of the ladder is bypassed.
e If none of the conditions is true, then the final else statement will be executed.
e The final else acts as a default condition; that is, if all other conditional tests fail, then the
last else statement is performed.
e If there is no final else and all other conditions are false, then no action will take place.

class IfElse

{

public static void main(String args[])

{
int month = 4; // April
String season;

if(month == 12 || month == 1 || month == 2)

Mangala KB, Dept of CSE,CiTech Page 31

2nd Module (Java Complete Reference:Herbert Schield)

season = "Winter";

else if(month == 3 || month == 4 || month == 5)
season = "Spring";

else if(month == 6 || month == 7 || month == 8)
season = "Summer";

else if(month == 9 || month == 10 || month == 11)
season = "Autumn";

else

season = "Bogus Month";

System.out.printIn("April is in the " + season + ".");

by

output:
April is in the Spring.

switch
e The switch statement is Java’s multiway branch statement.
e |t provides an easy way to dispatch execution to different parts of code based on the
value of an expression.
e It provides a better alternative than a large series of if-else-if statements.
e Here is the general form of a switch statement:
switch (expression) {
case valuel:
/I statement sequence
break;
case value2:
/I statement sequence
break;

case valueN:

/[statement sequence

break;

default:

/I default statement sequence
}

e The expression must be of type byte, short, int, or char; each of the values specified in
the case statements must be of a type compatible with the expression.

e Each case value must be a unique literal (that is, it must be a constant, not a variable).

e Duplicate case values are not allowed.

e The value of the expression is compared with each of the literal values in the case
statements. If a match is found, the code sequence following that case statement is
executed.

e If none of the constants matches the value of the expression, then the default statement is
executed.

e However, the default statement is optional. If no case matches and no default is present,
then no further action is taken.

Mangala KB, Dept of CSE,CiTech Page 32

2nd Module (Java Complete Reference:Herbert Schield)

The break statement is used inside the switch to terminate a statement sequence.

class SampleSwitch

{

public static void main(String args[])

{

output:

for(int i=0; i<6; i++)

switch(i)

{

case 0:

System.out.printIn("i is zero.");
break;

case 1:

System.out.printin("i is one.");
break;

case 2:

System.out.printIn(*i is two.");
break;

case 3:

System.out.printin("i is three.");
break;

default:

System.out.printin("i is greater than 3.");

¥

i is zero.

i is one.

i is two.

i is three.

i is greater than 3.
i is greater than 3.

The break statement is optional. If we omit the break, execution will continue on into
the next case. It is sometimes desirable to have multiple cases without break statements
between them.

class MissingBreak

{

public static void main(String args[])

{

for(int i=0; i<12; i++)
switch(i)

{

case 0O:

Mangala KB, Dept of CSE,CiTech

Page 33

2nd Module (Java Complete Reference:Herbert Schield)

¥

output:

i is less than 5
i is less than 5
i is less than 5
i is less than 5
i is less than 5

case 1:

case 2:

case 3:

case 4.

System.out.printIn("i is less than 5");
break;

case 5:

case 6:

case 7:

case 8:

case 9:

System.out.printIn("i is less than 10");
break;

default:

System.out.printIn("i is 10 or more™);

¥

i is less than 10
i is less than 10
i is less than 10
i is less than 10
i is less than 10

i is 10 or more
i is 10 or more

class Switch

{

public static void main(String args[])

{

int month = 4;
String season;
switch (month)

{

case 12:

case 1:

case 2:

season = "Winter";
break;

case 3:

Mangala KB, Dept of CSE,CiTech

Page 34

2nd Module (Java Complete Reference:Herbert Schield)

¥

case 4.

case 5:

season = "Spring";
break;

case 6:

case 7:

case 8:

season = "Summer";
break;

case 9:

case 10:

case 11:

season = "Autumn";
break;

default:

season = "Bogus Month";

by

System.out.printIn("April is in the " + season + ".");

Nested switch Statements

switch(count)

{

case 1:

case 2:

switch can be used as part of an outer switch. This is called a nested switch.
Since a switch statement defines its own block, no conflicts arise between the case
constants in the inner switch and those in the outer switch.

...

switch(target)
Il nested switch
case 0:
System.out.printin(“target is zero");
break;

case 1: // no conflicts with outer switch
System.out.printin("target is one™);
break;

}
break;

Here, the case 1: statement in the inner switch does not conflict with the case 1:
statement in the outer switch.

The count variable is only compared with the list of cases at the outer level.

If count is 1, then target is compared with the inner list cases.

Mangala KB, Dept of CSE,CiTech Page 35

2nd Module (Java Complete Reference:Herbert Schield)

In summary, there are three important features of the switch statement to note:

* The switch differs from the if in that switch can only test for equality, whereas if
can evaluate any type of Boolean expression.

 No two case constants in the same switch can have identical values. Of course, a
switch statement and an enclosing outer switch can have case constants in common.
* A switch statement is usually more efficient than a set of nested ifs.

Iteration Statements

e Java’s iteration statements are for, while, and do-while. These statements create what we
commonly call loops.

e aloop repeatedly executes the same set of instructions until a termination condition is
met.

e The while loop is Java’s most fundamental loop statement. It repeats a statement or block
while its controlling expression is true.
e Here is its general form:
while(condition) {
// body of loop
}
e The condition can be any Boolean expression. The body of the loop will be executed as
long as the conditional expression is true.
e When condition becomes false, control passes to the next line of code immediately
following the loop.

class While
{
public static void main(String args[])
{
intn=>5;
while(n > 0)
{
System.out.printin(tick " + n);
n--;
}
}
}
When you run this program, it will “tick” five times:
tick 5
tick 4
tick 3
tick 2
tick 1

Mangala KB, Dept of CSE,CiTech Page 36

2nd Module (Java Complete Reference:Herbert Schield)

e Since the while loop evaluates its conditional expression at the top of the loop, the body
of the loop will not execute even once if the condition is false to begin with.
e For example, in the following fragment, the call to printin() is never executed:
inta =10, b=20;
while(a > b)
System.out.printIn("This will not be displayed");
e The body of the while (or any other of Java’s loops) can be empty. This is because a null
Statement is syntactically valid in Java.
e For example,
class NoBody

{
public static void main(String args[])
t
inti, j;
i =100;
j = 200;
/I find midpoint between i and j
while(++i < --j) ; // no body in this loop
System.out.printin("Midpoint is " + i);
}
}
This program finds the midpoint between i and j.
output: Midpoint is 150
do-while
e if the conditional expression controlling a while loop is initially false, then the body of
the loop will not be executed at all.
e sometimes it is desirable to execute the body of a loop at least once, even if the
conditional expression is false to begin with.
e In other words, there are times when you would like to test the termination expression at
the end of the loop rather than at the beginning.
e Java supplies a loop that does just that: the do-while.
e The do-while loop always executes its body at least once, because its conditional
expression is at the bottom of the loop. Its general form is
do {
/I body of loop
} while (condition);
e Each iteration of the do-while loop first executes the body of the loop and then evaluates
the conditional expression.
e If this expression is true, the loop will repeat. Otherwise, the loop terminates.
class DoWhile
{

public static void main(String args[])

{

intn=>5;

Mangala KB, Dept of CSE,CiTech Page 37

2nd Module (Java Complete Reference:Herbert Schield)

do {
System.out.printin("tick " + n);
n--;
} while(n > 0);
}
}
class Menu
{
public static void main(String args[]) throws java.io.lOException
{
char choice;
do
{
System.out.printin(“Help on:");
System.out.printin(" 1. good");
System.out.printIn(** 2. better™);
System.out.printin(" 3. best™);
System.out.println(“4. Excellent”);
System.out.printin("Choose one:");
choice = (char) System.in.read();
} while(choice < '1' || choice > '4);
System.out.printin(*\n");
switch(choice)
{
case 1" System.out.printin("Good");
break;
case 2" System.out.printin("better");
break;
case ‘3" System.out.printIn("best™);
break;
case ‘4" System.out.printIin("Excellent™);
break;
}
}
}
Here is a sample run produced by this program:
Help on:
1. good
2. better
3. best
4. Excellent
Choose one:
4
Excellent.

Mangala KB, Dept of CSE,CiTech Page 38

2nd Module (Java Complete Reference:Herbert Schield)

for
there are two forms of the for loop.
The first is the traditional form that has been in use since the original version of Java.
The second is the new “for-each” form.
general form of the traditional for statement:
for(initialization; condition; iteration) {

// body
}
class ForTick
{
public static void main(String args[])
t
int n;
for(n=10; n>0; n--)
System.out.printIn(tick " + n);
}
}

Declaring Loop Control Variables Inside the for Loop

e Often the variable that controls a for loop is only needed for the purposes of the loop and
is not used elsewhere.

e When this is the case, it is possible to declare the variable inside the initialization portion
of the for.

e For example,the loop control variable n is declared as an int inside the for:

class ForTick

{
public static void main(String args|])
{
for(int n=10; n>0; n--)
System.out.printIin("tick " + n);
}
}
class FindPrime
{
public static void main(String args[])
{
int num;
boolean isPrime = true;
num = 14;

for(int i=2; i <= num/i; i++)

if((num % i) == 0)
{

isPrime = false;

Mangala KB, Dept of CSE,CiTech Page 39

2nd Module (Java Complete Reference:Herbert Schield)

break;

¥
¥
if(isPrime)
System.out.printIn("Prime");

else
System.out.printIn(*Not Prime");

ks

Using the Comma

e There will be times when you will want to include more than one statement in the
initialization and iteration portions of the for loop.

e For example, consider the loop in the following program:

class Comma
{
public static void main(String args[])
{
int a, b;
for(a=1, b=4; a<b; a++, b--)
{
System.out.printin("a =" + a);
System.out.printin("b =" + b);
}
}

e the initialization portion sets the values of both a and b. The two comma separated
statements in the iteration portion are executed each time the loop repeats.
e output:

a
b
a

o
NN

b=3
Some for Loop Variations

e The for loop supports a number of variations that increase its power and applicability.
class ForVar

{
public static void main(String args[])
t
int i;
boolean done = false;
i=0;
for(; 'done;)
{

Mangala KB, Dept of CSE,CiTech Page 40

2nd Module (Java Complete Reference:Herbert Schield)

System.out.printin("i is " + i);
if(i == 10) done = true;
i++;

}
}
e Here, the initialization and iteration expressions have been moved out of the for. Thus,
parts of the for are empty.

The For-Each Version of the for Loop

e The advantage of this approach is that no new keyword is required, and no preexisting
code is broken.

e The for-each style of for is also referred to as the enhanced for loop.

e The general form for-each version of the for is shown here:

for(type itr-var : collection) statement-block

e Here, type specifies the type

e itr-var specifies the name of an iteration variable that will receive the elements from a
collection, one at a time, from beginning to end.

e The collection being cycled through is specified by collection.

e There are various types of collections that can be used with the for, but the only type
used here is the array..

class ForEach

{
public static void main(String args[])
{
intnums[] ={1,2,3,4,5,6,7,8,9,10 };
int sum = 0;
for(int x : nums)
{
System.out.printin(*Value is: " + X);
sum += x;
}
System.out.printin("Summation: " + sum);
}
The output from the program is shown here.
Value is: 1
Value is: 2
Value is: 3
Value is: 4
Value is: 5
Value is: 6

Mangala KB, Dept of CSE,CiTech Page 41

2nd Module (Java Complete Reference:Herbert Schield)

Value is: 7
Value is: 8
Value is: 9
Value is: 10
Summation: 55

e the for-each for loop iterates until all elements in an array have been examined, it is
possible to terminate the loop early by using a break statement.

class ForEach2

{

public static void main(String args[])
{
int sum=0;
intnums[] ={1,2 3,4,5,6,7,8,9,10 };

for(int x : nums)
{

System.out.printIn(*Value is: " + x);

sum += x;

if(x == 5) break; // stop the loop when 5 is obtained
¥

System.out.printin("Summation of first 5 elements: " + sum);

¥

output :
Value is:
Value is:
Value is:
Value is:
Value is:
Summation of first 5 elements: 15

Nested Loops

g~ wMN -

e Java allows loops to be nested. That is, one loop may be inside another.

class Nested

{
public static void main(String args[])
t
inti, j;
for(i=0; i<10; i++)
{

for(j=i; j<10; j++)
{

Mangala KB, Dept of CSE,CiTech Page 42

2nd Module (Java Complete Reference:Herbert Schield)

System.out.print(".");
System.out.printin();

}
}
The output produced by this program is shown here:

Jump Statements

e Java supports three jump statements: break, continue, and return.
e These statements transfer control to another part of your program..

Using break
e InJava, the break statement has three uses.
e First, as you have seen, it terminates a statement sequence in a switch statement.
e Second, it can be used to exit a loop.
e Third, it can be used as a “civilized” form of goto.

Using break to Exit a Loop
e By using break, we can force immediate termination of a loop, bypassing the conditional
expression and any remaining code in the body of the loop.
e When a break statement is encountered inside a loop, the loop is terminated and program
control resumes at the next statement following the loop.

class BreakLoop

{ public static void main(String args[])
¢ for(int i=0; i<100; i++)
if(i == 10) break; // terminate loop if i is 10
System.out.printIn("i: " + i);
, éystem.out.println("Loop complete.");

Mangala KB, Dept of CSE,CiTech Page 43

2nd Module (Java Complete Reference:Herbert Schield)

ky

This program generates the following output:

coONOOIT R~ WNEF O

:9
Loop complete.
e We can Use break to exit a while loop.

e When used inside a set of nested loops, the break statement will only break out of the
innermost loop.
class BreakLoop3

¢ public static void main(String args[])
¢ for(int i=0; i<3; i++)
¢ System.out.print("Pass " + i+ " ");
for(int j=0; j<100; j++)
if(j == 10) break; // terminate loop if j is 10
System.out.print(j + " ");
System.out.prin}tln();
System.out.printin("Loops complete.”);
¥

This program generates the following output:
Pass0:0123456789
Pass1:0123456789
Pass2:0123456789

Loops complete.

Using break as a Form of Goto

e the break statement can also be employed by itself to provide a “civilized” form of the
goto statement.

Mangala KB, Dept of CSE,CiTech Page 44

2nd Module (Java Complete Reference:Herbert Schield)

e Java does not have a goto statement because it provides a way to branch in an arbitrary
and unstructured manner.
e The general form of the labeled break statement is shown here:
break label;
e Most often, label is the name of a label that identifies a block of code. When this form of
break executes, control is transferred out of the named block.

class Break
{
public static void main(String args[])
{
boolean t = true;
first: {
second: {
third: {
System.out.printin("Before the break.");
if(t) break second; // break out of second block
System.out.printIn(*"This won't execute™);
System.out.printIn("This won't execute™);
¥
System.out.printIn("This is after second block.™);
}
}
}
output:

Before the break.
This is after second block.

e One of the most common uses for a labeled break statement is to exit from nested loops.

class BreakLoop4

{

public static void main(String args[])

{
outer: for(int i=0; i<3; i++)
{
System.out.print("Pass " + i+ ": ");
for(int j=0; j<100; j++)

if(j == 10) break outer; // exit both loops
System.out.print(j + " ");

¥

System.out.printIn(*This will not print");

Mangala KB, Dept of CSE,CiTech Page 45

2nd Module (Java Complete Reference:Herbert Schield)

¥

System.out.printIn("Loops complete.");
}
}
This program generates the following output:
Pass 0: 0123456789 Loops complete.

Using continue

e Here the loop will skip the execution of a particular iteration upen certain condition and
continue to execute further iteration.

class Continue

{
public static void main(String args[])
{
for(int i=0; i<10; i++)
{
if (i == 2) continue;
System.out.print(i + " *);
}
}
}
output :
013456789
class ContinueLabel
{
public static void main(String args[])
{
outer: for (int i=0; i<10; i++)
{
for(int j=0; j<10; j++)
if(j > i)
{
System.out.printin();
continue outer;
}
System.out.print(" " + (i * J));
}
System.out.printin();
}
}

The continue statement in this example terminates the loop counting j and continues with

Mangala KB, Dept of CSE,CiTech Page 46

2nd Module (Java Complete Reference:Herbert Schield)

the next iteration of the loop counting i. Here is the output of this program:
0

01

024

0369

0481216

0510152025
061218243036
07142128354249
0816 24 32 40 48 56 64
091827 364554637281

return

e The last control statement is return. The return statement is used to explicitly return
from a method. That is, it causes program control to transfer back to the caller of the
method.

e Here, return causes execution to return to the Java run-time system, since it is the run-
time system that calls main().

class Return

{
public static void main(String args[])
{
boolean t = true;
System.out.printin("Before the return.");
if(t) return; // return to caller
System.out.printin("This won't execute.™);
}
}
output:

Before the return.

e Asyou can see, the final println() statement is not executed. As soon as return is
executed, control passes back to the caller.

Mangala KB, Dept of CSE,CiTech Page 47

3rd Module (Java Complete Reference:Herbert Schield)

Introducing Classes
e C(lass defines the shape and nature of an object.
e class forms the basis for object-oriented programming in Java.
e Any concept can be implemented in a Java program must be encapsulated within a class.

Class Fundamentals

e aclass defines a new data type. Once defined, this new type can be used to create objects
of that type.

e Thus, a class is a template for an object, and an object is an instance of a class.
The General Form of a Class

e class specifies the data that it contains and the code that operates on that data.
e While very simple classes may contain only code or only data, most real-world classes
contain both.
e A class is declared by use of the class keyword.
e A simplified general form of a class definition is shown here:
class classname

{

type instance-variablel,

type instance-variable?2,;
/...
type instance-variableN,

type methodnamel (parameter-list) {
// body of method

}

type methodname2(parameter-list) {
// body of method

h
/..

type methodnameN(parameter-list) {
// body of method

}

e The data, or variables, defined within a class are called instance variables.

e The code is contained within methods.

e Collectively, the methods and variables defined within a class are called members of the
class.

e Thus the methods that determine how a class’ data can be used.

e cach object of the class contains its own copy of these variables.

Thus, the data for one object is separate and unique from the data for another.

Mangala KB, Dept of CSE,CiTech Page 1

3rd Module (Java Complete Reference:Herbert Schield)

A Simple Class
e Here is a class called Box that defines three instance variables: width, height, and depth.
class Box
{
double width;
double height;
double depth;
}
class BoxDemo?2
{
public static void main(String args||)
{
Box mybox1 = new Box();
Box mybox2 = new Box();
double vol;
mybox1.width = 10;
mybox1.height = 20;
mybox1.depth = 15;
mybox2.width = 3;
mybox2.height = 6;
mybox2.depth =9;
/I compute volume of first box
vol = mybox1.width * mybox1.height * mybox1.depth;
System.out.println("Volume is " + vol);
// compute volume of second box
vol = mybox2.width * mybox2.height * mybox2.depth;
System.out.printIn("Volume is " + vol);
b
}
output:
Volume is 3000.0
Volume is 162.0
e mybox1’s data is completely separate from the data contained in mybox2.
Declaring Objects

e when a class is created , we are creating a new data type.
e We can use this type to declare objects of that type.
e However, obtaining objects of a class is a two-step process.

Mangala KB, Dept of CSE,CiTech Page 2

3rd Module (Java Complete Reference:Herbert Schield)

e First, we must declare a variable of the class type. This variable does not define an object.
Instead, it is simply a variable that can refer to an object.
e Second, we must acquire an actual, physical copy of the object and assign it to that
variable by using the new operator.
e The new operator dynamically allocates (that is, allocates at run time) memory for an
object and returns a reference to it
¢ Box mybox = new Box();
This statement combines the two steps just described. It can be rewritten like this to show
each step more clearly:
Box mybox; // declare reference to object
mybox = new Box(); // allocate a Box object

Assigning Object Reference Variables

Box bl = new Box();
Box b2 =bl;

e bl and b2 will both refer to the same object.
e The assignment of b1 to b2 did not allocate any memory or copy any part of the original
object. It simply makes b2 refer to the same object as does b1.
e Thus, any changes made to the object through b2 will affect the object to which b1 is
referring, since they are the same object.
e Although b1 and b2 both refer to the same object, they are not linked in any other way.
e For example, a subsequent assignment to b1 will simply unhook b1 from the original
object without affecting the object or aftfecting b2.
For example:
Box bl = new Box();

Box b2 =bl;
/...
bl =null;

Here, b1 has been set to null, but b2 still points to the original object.
Introducing Methods

o classes usually consist of two things: instance variables and methods.
e This is the general form of a method:
type name(parameter-list) {

// body of method

b
e Here, #ype specifies the type of data returned by the method. This can be any valid type,

including class types that we create.
e Ifthe method does not return a value, its return type must be void.
e The name of the method is specified by name.
o . The parameter-list is a sequence of type and identifier pairs separated by commas.

Mangala KB, Dept of CSE,CiTech Page 3

3rd Module (Java Complete Reference:Herbert Schield)

class Box
{
double width;
double height;
double depth;
/!
void volume()
{
System.out.print("Volume is ");
System.out.println(width * height * depth);
h
}
class BoxDemo3
{
public static void main(String args[])
{
Box mybox1 = new Box();
Box mybox2 = new Box();
mybox1.width = 10;
mybox1.height = 20;
mybox1.depth = 15;
mybox2.width = 3;
mybox2.height = 6;
mybox2.depth =9;
// display volume of first box
mybox1.volume();
// display volume of second box
mybox2.volume();
b
}

This program generates the following output, which is the same as the previous version.

Volume is 3000.0
Volume is 162.0

Returning a Value

class Box
{
double width;
double height;
double depth;

Mangala KB, Dept of CSE,CiTech

Page 4

3rd Module (Java Complete Reference:Herbert Schield)

/I compute and return volume
double volume()
{
return width * height * depth;
}

¥

class BoxDemo4

{

public static void main(String args[])
{
Box mybox1 = new Box();
Box mybox2 = new Box();
double vol;

mybox1.width = 10;
mybox1.height = 20;
mybox1.depth = 15;

mybox2.width = 3;
mybox2.height = 6;
mybox2.depth =9;

// get volume of first box
vol = mybox1.volume();
System.out.println("Volume is " + vol);

// get volume of second box
vol = mybox2.volume();
System.out.printIln("Volume is " + vol);

h
h

Adding a Method That Takes Parameters
e Parameters allow a method to be generalized.
e That is, a parameterized method can operate on a variety of data and/or be used in a
number of slightly different situations.
e Here is a method that returns the square of the number 10:
int square()

{

return 10 * 10;

}

e While this method does, indeed, return the value of 10 squared, its use is very limited.
e However, if we modify the method so that it takes a parameter, as shown next, then we
can make square() much more useful.

Mangala KB, Dept of CSE,CiTech Page 5

3rd Module (Java Complete Reference:Herbert Schield)

int square(int 1)

{

return i * 1;

}

e Now, square() will return the square of whatever value it is called with. That is, square(
) is now a general-purpose method that can compute the square of any integer value,

rather than just 10.
// This program uses a parameterized method.

class Box
{
double width;
double height;
double depth;

double volume()

{
h

void setDim(double w, double h, double d)
{

width = w;

height = h;

depth=d;

b

return width * height * depth;

}

class BoxDemo5

{

public static void main(String args|])
{
Box mybox1 = new Box();
Box mybox2 = new Box();
double vol;

mybox1.setDim(10, 20, 15);
mybox2.setDim(3, 6, 9);

// get volume of first box
vol = mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box
vol = mybox2.volume();

Mangala KB, Dept of CSE,CiTech

Page 6

3rd Module (Java Complete Reference:Herbert Schield)

System.out.println("Volume is " + vol);

b

Constructors

e It can be tedious to initialize all of the variables in a class each time an instance is
created.

e Thus automatic initialization is performed through the use of a constructor.

e A constructor initializes an object immediately upon creation.

e It has the same name as the class in which it resides and is syntactically similar to a
method.

e the constructor is automatically called immediately after the object is created, before the
new operator completes.

e Constructors have no return type, not even void. This is because the implicit return type
of'a class’ constructor is the class type itself.

class Box
{
double width;
double height;
double depth;

Box()
{

System.out.println("Constructing Box");
width = 10;
height = 10;
depth = 10;
b

double volume()

{
b

return width * height * depth;

}

class BoxDemo6

{

public static void main(String args[])
{
Box mybox1 = new Box();
Box mybox2 = new Box();
double vol;

// get volume of first box
vol = mybox1.volume();

Mangala KB, Dept of CSE,CiTech Page 7

3rd Module (Java Complete Reference:Herbert Schield)

System.out.println("Volume is " + vol);

/I get volume of second box
vol = mybox2.volume();
System.out.printIn("Volume is " + vol);

Output:
Constructing Box
Constructing Box
Volume is 1000.0
Volume is 1000.0

e both mybox1 and mybox2 were initialized by the Box() constructor when they were
created.

¢ Since the constructor gives all boxes the same dimensions, 10 by 10 by 10, both mybox1
and mybox2 will have the same volume.

Parameterized Constructors
e While the Box() constructor in the preceding example initializes with value 10.all boxes

have the same dimensions.
e Box objects of various dimensions can be assigned by using parameterized constructor.

class Box
{
double width;
double height;
double depth;
Box(double w, double h, double d)
{
width = w;
height = h;
depth=d;
}
double volume()
{
return width * height * depth;
}
§
class BoxDemo7
{

public static void main(String args[])

{

Mangala KB, Dept of CSE,CiTech Page 8

3rd Module (Java Complete Reference:Herbert Schield)

Box mybox1 = new Box(10, 20, 15);
Box mybox2 = new Box(3, 6, 9);
double vol;

// get volume of first box
vol = mybox1.volume();
System.out.println("Volume is " + vol);

/I get volume of second box
vol = mybox2.volume();
System.out.println("Volume is " + vol);

§
}
output :
Volume is 3000.0
Volume is 162.0
The this Keyword

e this can be used inside any method to refer to the current object.
e That is, this is always a reference to the object on which the method was invoked.

/I' A redundant use of this.
Box(double w, double h, double d)

{
this.width = w;
this.height = h;
this.depth = d;
b

Instance Variable Hiding

e it isillegal in Java to declare two local variables with the same name inside the same or
enclosing scopes.

e However, when a local variable has the same name as an instance variable, the local
variable hides the instance variable.

//'Use this to resolve name-space collisions.
Box(double width, double height, double depth)

{
this.width = width;
this.height = height;
this.depth = depth;
}

Mangala KB, Dept of CSE,CiTech Page 9

3rd Module (Java Complete Reference:Herbert Schield)

Garbage Collection

Since objects are dynamically allocated by using the new operator, how such objects are
destroyed and their memory released for later reallocation.

In some languages, such as C++, dynamically allocated objects must be manually
released by use of a delete operator.

Java handles deallocation automatically.

The technique that accomplishes this is called garbage collection.

when no references to an object exist, that object is assumed to be no longer needed, and
the memory occupied by the object can be reclaimed.

Garbage collection only occurs sporadically (if at all) during the execution of program.

The finalize() Method

an object will need to perform some action when it is destroyed.

if an object is holding some non-Java resource such as a file handle or character font,
then we might want to make sure these resources are freed before an object is destroyed.
To handle such situations, Java provides a mechanism called finalization.

By using finalization, we can define specific actions that will occur when an object is
just about to be reclaimed by the garbage collector.

To add a finalizer to a class, simply define the finalize() method.

The Java run time calls that method whenever it is about to recycle an object of that
class.

Inside the finalize() method, you will specify those actions that must be performed
before an object is destroyed.

The finalize() method has this general form:

protected void finalize()

{

// finalization code here
b
Here, the keyword protected is a specifier that prevents access to finalize() by code
defined outside its class.
finalize() is only called just prior to garbage collection.
It is not called when an object goes out-of-scope

A Stack Class
e Stacks are controlled through two operations traditionally called push and pop.
e To put an item on top of the stack, we will use push.
e To take an item off the stack, we will use pop.
e Here is a class called Stack that implements a stack for integers:

class Stack

{

int stck[] =new int[10];
mnt tos;

Mangala KB, Dept of CSE,CiTech Page 10

3rd Module (Java Complete Reference:Herbert Schield)

Stack()
{

}

tos = -1;

void push(int item)
{
if(tos==9)
System.out.println("Stack is full.");
else
stck[++tos] = item;

}

int pop()
{
if(tos < 0)
{
System.out.println("Stack underflow.");
return O;
h
else
return stck|tos--];
H
h
class TestStack

{

public static void main(String args|[])
{
Stack mystack] = new Stack();
Stack mystack2 = new Stack();

for(int i=0; i<10; i++) mystack1.push(i);
for(int i=10; 1<20; i++) mystack2.push(i);

System.out.println("Stack in mystack1:");
for(int i=0; i<10; i++)
System.out.println(mystack1.pop());
System.out.println("Stack in mystack2:");
for(int i=0; i<10; i++)
System.out.println(mystack2.pop());
H

}

This program generates the following output:
Stack in mystackl:

9

8

Mangala KB, Dept of CSE,CiTech Page 11

3rd Module (Java Complete Reference:Herbert Schield)

— N Wk 0O

0
Stack in mystack?2:
19
18
17
16
15
14
13
12
11
10

Mangala KB, Dept of CSE,CiTech Page 12

3rd Module (Java Complete Reference:Herbert Schield)

Inheritance
e One class can acquire the properties of another class.
e aclass that is inherited is called a superclass.
e The class that does the inheriting is called a subclass. Therefore, a subclass is a
specialized version of a superclass. It inherits all of the instance variables and methods
defined by the superclass and adds its own, unique elements.

Inheritance Basics
e To inherit a class, simply incorporate the definition of one class into another by using the
extends keyword.
e The following program creates a superclass called A and a subclass called B.the

keyword extends is used to create a subclass of A.

// Create a superclass.

class A
mt 1, J;
void showij()
{ System.out.println("iand j: "+ 1+ " " +j);
b
b

// Create a subclass by extending class A.
class B extends A

{
it k;
void showk()
{
System.out.printin("k: " + k);
b
void sum()
{
System.out.printin("i+j+k: " + (it+j+k));
b
}

class Simplelnheritance

{

public static void main(String args[])
{
A superOb = new A();
B subOb = new B();
// ' The superclass may be used by itself.

Mangala KB, Dept of CSE,CiTech Page 13

3rd Module (Java Complete Reference:Herbert Schield)

superOb.i = 10;

superOb.j = 20;
System.out.println("Contents of superOb: ");
superOb.showij();

System.out.println();

/* The subclass has access to all public members of its superclass. */
subOb.i=7;
subOb.j = §;
subOb.k =9;

System.out.println("Contents of subOb: ");
subOb.showij();

subOb.showk();

System.out.printin();

System.out.printIn("Sum of 1, j and k in subOb:");
subOb.sum();

}

output:
Contents of superOb:
tand j: 10 20
Contents of subOb:
tand j: 7 8
k: 9
Sum of'i, j and k in subOb:
itjtk: 24

e the subclass B includes all of the members of its superclass, A. This is why subOb can
access i and j and call showij(). Also, inside sum(), i and j can be referred to directly, as
if they were part of B.

e Even though A is a superclass for B, it is also a completely independent, stand-alone
class. Being a superclass for a subclass does not mean that the superclass cannot be used
by itself.

e asubclass can be a superclass for another subclass.

e The general form of a class declaration that inherits a superclass is shown here:
class subclass-name extends superclass-name

{
}

// body of class

e Java does not support the inheritance of multiple superclasses into a single subclass.
e But a subclass can become a superclass of another subclass.
e However, no class can be a superclass of itself.

Mangala KB, Dept of CSE,CiTech Page 14

3rd Module (Java Complete Reference:Herbert Schield)

Member Access and Inheritance
e Although a subclass includes all of the members of its superclass, it cannot access those
members of the superclass that have been declared as private.

/I Create a superclass.

class A

{
int i; // public by default

private int j; // private to A
void setij(int x, int y)
{
1=X;
=y
b

/I'A's j is not accessible here.

class B extends A

{
int total;
void sum()
{
total =1+ j; / ERROR, j is not accessible here
b
}
class Access
{
public static void main(String args[])
{
B subOb = new B();
subOb.setij(10, 12);
subOb.sum();
System.out.println("Total is " + subOb.total);
b
}

e This program will not compile because the reference to j inside the sum() method of B
causes an access violation. Since j is declared as private, it is only accessible by other
members of its own class. Subclasses have no access to it.

Mangala KB, Dept of CSE,CiTech Page 15

3rd Module (Java Complete Reference:Herbert Schield)

A More Practical Example

¢ the Box class developed will be extended to include a fourth component called weight.
e Thus, the new class will contain a box’s width, height, depth, and weight.

// This program uses inheritance to extend Box.

class Box

{
double width;
double height;
double depth;

// construct clone of an object

Box(Box ob)

{ // pass object to constructor
width = ob.width;
height = ob.height;
depth = ob.depth;

b

/I constructor used when all dimensions specified
Box(double w, double h, double d)

{ width = w;
height = h;
depth=d;
h
// constructor used when no dimensions specified
Box()
{

width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box

}

// constructor used when cube is created
Box(double len)

{
}

width = height = depth = len;

// compute and return volume
double volume()

{

Mangala KB, Dept of CSE,CiTech Page 16

3rd Module (Java Complete Reference:Herbert Schield)

return width * height * depth;

b
}

// Here, Box is extended to include weight.
class BoxWeight extends Box

{
double weight; // weight of box

// constructor for BoxWeight
BoxWeight(double w, double h, double d, double m) {
width = w;
height = h;
depth=d;
weight = m;
b
}

class DemoBoxWeight
{

public static void main(String args|[])

{
BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);
BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);
double vol;

vol = mybox1.volume();

System.out.printIn("Volume of mybox1 is " + vol);
System.out.println("Weight of mybox1 is " + mybox1.weight);
System.out.println();

vol = mybox2.volume();
System.out.printIn("Volume of mybox2 is " + vol);
System.out.println("Weight of mybox2 is " + mybox2.weight);

output:
Volume of mybox1 is 3000.0
Weight of mybox1 is 34.3
Volume of mybox2 is 24.0
Weight of mybox2 is 0.076

Mangala KB, Dept of CSE,CiTech Page 17

3rd Module (Java Complete Reference:Herbert Schield)

e the following class inherits Box and adds a color attribute:

// Here, Box is extended to include color.
class ColorBox extends Box

{
it color; // color of box
ColorBox(double w, double h, double d, int c)
{
width = w;
height = h;
depth=d;
color =c;
§
}

A Superclass Variable Can Reference a Subclass Object

e A reference variable of a superclass can be assigned a reference to any subclass derived
from that superclass.

class RefDemo

{
public static void main(String args|])
{

BoxWeight weightbox = new BoxWeight(3, 5, 7, 8.37);
Box plainbox = new Box();
double vol;
vol = weightbox.volume();
System.out.printIn("Volume of weightbox is " + vol);
System.out.println("Weight of weightbox is " + weightbox.weight);
System.out.printin();
// assign BoxWeight reference to Box reference
plainbox = weightbox;
vol = plainbox.volume(); // OK, volume() defined in Box
System.out.println("Volume of plainbox is " + vol);
/* The following statement is invalid because plainbox does not define a weight
member. */
// System.out.println("Weight of plainbox is " + plainbox.weight);
b

}

e Here, weightbox is a reference to BoxWeight objects, and plainbox is a reference to Box
objects.

Mangala KB, Dept of CSE,CiTech Page 18

3rd Module (Java Complete Reference:Herbert Schield)

e Since BoxWeight is a subclass of Box, it is permissible to assign plainbox a reference to
the weightbox object.

Using super

e Whenever a subclass needs to refer to its immediate superclass, it can do so by use of the
keyword super.
e super has two general forms.
o The first calls the superclass’ constructor.
o The second is used to access a member of the superclass that has been hidden by
a member of a subclass.

Using super to Call Superclass Constructors

e Asubclass can call a constructor defined by its superclass by use of the following form of
super:
super(arg-list);
e Here, arg-list specifies any arguments needed by the constructor in the superclass.
e super() must always be the first statement executed inside a subclass’ constructor.

// BoxWeight now uses super to initialize its Box attributes.

class BoxWeight extends Box

{
double weight;

BoxWeight(double w, double h, double d, double m)
{

super(w, h, d); // call superclass constructor
weight = m;

}

e Here, BoxWeight() calls super() with the arguments w, h, and d. This causes the Box()
constructor to be called, which initializes width, height, and depth using these values.

class Box

{

private double width;
private double height;
private double depth;

// construct clone of an object
Box(Box ob)

{
width = ob.width;

Mangala KB, Dept of CSE,CiTech Page 19

3rd Module (Java Complete Reference:Herbert Schield)

height = ob.height;
depth = ob.depth;
}

// constructor used when all dimensions specified
Box(double w, double h, double d)

{
width = w;
height = h;
depth =d;

§

// constructor used when no dimensions specified

Box()

{

width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box

}

// constructor used when cube is created
Box(double len)

{
h

width = height = depth = len;

/I compute and return volume
double volume()

{
h

return width * height * depth;

}

// BoxWeight now fully implements all constructors.

class BoxWeight extends Box

{
double weight;
BoxWeight(BoxWeight ob)
{
super(ob);
weight = ob.weight;
}

// constructor when all parameters are specified

Mangala KB, Dept of CSE,CiTech Page 20

3rd Module (Java Complete Reference:Herbert Schield)

BoxWeight(double w, double h, double d, double m)

{
super(w, h, d); // call superclass constructor
weight = m;
§
// default constructor
BoxWeight()
{
super();
weight = -1;
h

// constructor used when cube is created
BoxWeight(double len, double m)

{
super(len);
weight = m;
§
§
class DemoSuper
{

public static void main(String args|])
{

BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);
BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);
BoxWeight mybox3 = new BoxWeight(); // default
BoxWeight mycube = new BoxWeight(3, 2);
BoxWeight myclone = new BoxWeight(mybox1);
double vol;

vol = mybox1.volume();

System.out.printIn("Volume of mybox1 is " + vol);
System.out.println("Weight of mybox1 is " + mybox1.weight);
System.out.printin();

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);
System.out.println("Weight of mybox2 is " + mybox2.weight);
System.out.println();

vol = mybox3.volume();

System.out.println("Volume of mybox3 is " + vol);
System.out.println("Weight of mybox3 is " + mybox3.weight);
System.out.println();

Mangala KB, Dept of CSE,CiTech Page 21

3rd Module (Java Complete Reference:Herbert Schield)

vol = myclone.volume();

System.out.println("Volume of myclone is " + vol);
System.out.println("Weight of myclone is " + myclone.weight);
System.out.println();

vol = mycube.volume();

System.out.println("Volume of mycube is " + vol);
System.out.println("Weight of mycube is " + mycube.weight);
System.out.println();

}

output:
Volume of mybox1 is 3000.0
Weight of mybox1 is 34.3
Volume of mybox2 is 24.0
Weight of mybox2 is 0.076
Volume of mybox3 is -1.0
Weight of mybox3 is -1.0
Volume of myclone 1s 3000.0
Weight of myclone is 34.3
Volume of mycube is 27.0
Weight of mycube is 2.0

A Second Use for super

e super is most applicable to situations in which member names of a subclass hide
members by the same name in the superclass.

// Using super to overcome name hiding.

class A

{
}

mnt i;

/I Create a subclass by extending class A.

class B extends A

{
int 1; // this 1 hides the i in A

B(int a, int b)

{
super.i=a;//iin A
i=b;/1iinB

Mangala KB, Dept of CSE,CiTech Page 22

3rd Module (Java Complete Reference:Herbert Schield)

}
void show()
{
System.out.println("i in superclass: " + super.i);
System.out.printIn("i in subclass: " + 1);
b
§
class UseSuper
{
public static void main(String args|[])
{
B subOb = new B(1, 2);
subOb.show();
b
j

This program displays the following:
11n superclass: 1
11n subclass: 2

Creating a Multilevel Hierarchy

e given three classes called A, B, and C, C can be a subclass of B, which is a subclass of A.
When this type of situation occurs, each subclass inherits all of the traits found in all of
its superclasses. In this case, C inherits all aspects of B and A.

e Init, the subclass BoxWeight is used as a superclass to create the subclass called
Shipment. Shipment inherits all of the traits of BoxWeight and Box, and adds a field
called cost, which holds the cost of shipping such a parcel.

class Box

{
private double width;
private double height;
private double depth;

// construct clone of an object
Box(Box ob)
{
width = ob.width;
height = ob.height;
depth = ob.depth;
}

Box(double w, double h, double d) {
width = w;
height = h;

Mangala KB, Dept of CSE,CiTech Page 23

3rd Module (Java Complete Reference:Herbert Schield)

depth =d;
}

// constructor used when no dimensions specified
Box()

{
width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box

}

Box(double len)
{

}

width = height = depth = len;

double volume()

{
h

return width * height * depth;

}

// Add weight.

class BoxWeight extends Box

{
double weight;

BoxWeight(BoxWeight ob)

{

super(ob);

weight = ob.weight;
b

BoxWeight(double w, double h, double d, double m)

{
super(w, h, d);
weight = m;

}

BoxWeight()

{
super();
weight = -1;

Mangala KB, Dept of CSE,CiTech Page 24

3rd Module (Java Complete Reference:Herbert Schield)

BoxWeight(double len, double m)

{
super(len);
weight = m;
}
}
/I Add shipping costs.
class Shipment extends BoxWeight
{
double cost;
Shipment(Shipment ob)
{
super(ob);
cost = ob.cost;
b
Shipment(double w, double h, double d,double m, double c)
{
super(w, h, d, m); // call superclass constructor
cost =c¢;
b
Shipment()
{
super();
cost =-1;
b
Shipment(double len, double m, double ¢)
{
super(len, m);
cost = c;
b
h
class DemoShipment
{

public static void main(String args[])

{
Shipment shipment1 = new Shipment(10, 20, 15, 10, 3.41);

Shipment shipment2 = new Shipment(2, 3, 4, 0.76, 1.28);
double vol;

vol = shipment1.volume();
System.out.println("Volume of shipment1 is " + vol);

Mangala KB, Dept of CSE,CiTech Page 25

3rd Module (Java Complete Reference:Herbert Schield)

System.out.println("Weight of shipment1 is " + shipment1.weight);
System.out.printIn("Shipping cost: $" + shipment1.cost);
System.out.println();

vol = shipment2.volume();

System.out.println("Volume of shipment2 is " + vol);
System.out.printIn("Weight of shipment2 is " + shipment2.weight);
System.out.println("Shipping cost: $" + shipment2.cost);

h
j

output :

Volume of shipment1 is 3000.0
Weight of shipment1 is 10.0
Shipping cost: $3.41

Volume of shipment?2 is 24.0
Weight of shipment?2 is 0.76
Shipping cost: $1.28

When Constructors Are Called

e given a subclass called B and a superclass called A, is A’s constructor called before B’s,
or vice versa? The answer is that in a class hierarchy, constructors are called in order of
derivation, from superclass to subclass.

e Further, since super() must be the first statement executed in a subclass’ constructor,
this order is the same whether or not super() is used.

class A

{
AQ {

}

System.out.println("Inside A's constructor.");

}

class B extends A

{
B() {

}

System.out.println("Inside B's constructor.");

}

class C extends B

{
CO {

System.out.println("Inside C's constructor.");

Mangala KB, Dept of CSE,CiTech Page 26

3rd Module (Java Complete Reference:Herbert Schield)

}
b
class CallingCons
{
public static void main(String args[])
{
C c=new C();
b
§
output :
Inside A’s constructor
Inside B’s constructor
Inside C’s constructor
Method Overriding
e when a method in a subclass has the same name and type signature as a method in its
superclass, then the method in the subclass is said to override the method in the
superclass.
class A
{
nt 1, j;
A(int a, int b)
{
1=a;
j=b;
}
// display 1 and j
void show()
{
System.out.println("iand j: "+ 1+ " " +j);
}
§
class B extends A
{
mnt k;
B(int a, int b, int ¢)
{
super(a, b);
k=c;
}

Mangala KB, Dept of CSE,CiTech Page 27

3rd Module (Java Complete Reference:Herbert Schield)

void show()

{
System.out.println("k: " + k);

}

§

class Override

{
public static void main(String args[])
{
B subOb = new B(1, 2, 3);
subOb.show(); // this calls show() in B
b

h

output:

k:3

e the version of show() inside B overrides the version declared in A.
e to access the superclass version of an overridden method can be called using super.

class B extends A

{
mnt k;

B(int a, int b, int ¢)
{
super(a, b);
k=c;
}

void show()

{
super.show(); // this calls A's show()
System.out.printIn("k: " + k);

}

output:
itandj: 12
k:3
Here, super.show() calls the superclass version of show().

Mangala KB, Dept of CSE,CiTech Page 28

3rd Module (Java Complete Reference:Herbert Schield)

e Method overriding occurs only when the names and the type signatures of the two
methods are identical. If they are not, then the two methods are simply overloaded.

class A

{

int 1, j;

A(int a, int b)
{ .
i=a;
j=b
b

// display 1 and j
void show()

{
h

System.out.println("i and j: "+ 1+ " " +j);
}
/I Create a subclass by extending class A.

class B extends A

{
it k;
B(int a, int b, int ¢)
{
super(a, b);
k=c;
b
// overload show()
void show(String msg)
{
System.out.println(msg + k);
b
}
class Override
{

public static void main(String args[])

{
B subOb = new B(1, 2, 3);
subOb.show("This is k: "); // this calls show() in B

Mangala KB, Dept of CSE,CiTech Page 29

3rd Module (Java Complete Reference:Herbert Schield)

subOb.show(); // this calls show() in A

}
}
The output produced by this program is shown here:
This is k: 3
iandj: 12

Packages and Interfaces

e Packages are containers for classes that are used to keep the class name space
compartmentalized.

e Through the use of the interface keyword, Java allows to fully abstract the interface from
its implementation.

e Using interface, we can specify a set of methods that can be implemented by one or
more classes.

e The interface, itself, does not actually define any implementation.

e A class can implement more than one interface.

Packages

e Java provides a mechanism for partitioning the class name space into more manageable
chunks. This mechanism is the package.

e The package is both a naming and a visibility control mechanism.
e [t is possible to define classes inside a package that are not accessible by code outside

that package.
e We can define class members that are only exposed to other members of the same
package.
Defining a Package

e To create a package ,simply include a package command as the first statement in a Java
source file.

e Any classes declared within that file will belong to the specified package.
e The package statement defines a name space in which classes are stored.

e If we skip the package statement, the class names are put into the default package, which
has no name.
e The general form of the package statement:
package pkg;
e Here, pkg is the name of the package.
e For example, the following statement creates a package called MyPackage.
package MyPackage;
e The general form of a multileveled package statement is shown here:
package pkgl[.pkg2[.pkg3]];

Mangala KB, Dept of CSE,CiTech Page 30

3rd Module (Java Complete Reference:Herbert Schield)

Finding Packages and CLASSPATH
e How does the Java run-time system know where to look for packages that we create?
e The answer has three parts.
e First, by default, the Java run-time system uses the current working directory as its

starting

e Second, we can specify a directory path or paths by setting the CLASSPATH

point.

environmental variable.
e Third, we can use the -classpath option with java and javac to specify the path to our

classes.

A Short Package Example

package MyPack;

class Balance

{

String name;

bal;

Balance(String n, double b)

name = n;
bal = b;

if(bal<0)
System.out.print("-->");
System.out.println(name + ": $" + bal);

public static void main(String args[])

Balance current[] = new Balance[3];

current[0] = new Balance("K. J. Fielding", 123.23);
current[1] = new Balance("Will Tell", 157.02);
current[2] = new Balance("Tom Jackson", -12.33);

for(int i=0; i<3; i++)
current[i].show();

double
{
}
void show()
{
}
¥
class AccountBalance
{
{
}
}

Mangala KB, Dept of CSE,CiTech

Page 31

3rd Module (Java Complete Reference:Herbert Schield)

Call this file AccountBalance.java and put it in a directory called MyPack.

Access Protection

Packages add another dimension to access control.
Classes and packages are both means of encapsulating and containing the name space and
scope of variables and methods.
Packages act as containers for classes and other subordinate packages.
Classes act as containers for data and code.
Java addresses four categories of visibility for class members:
* Subclasses in the same package
* Non-subclasses in the same package
* Subclasses in different packages
* Classes that are neither in the same package nor subclasses
The three access specifiers, private, public, and protected, provide a variety of ways to
produce the many levels of access required by these categories.
Anything declared public can be accessed from anywhere.
Anything declared private cannot be seen outside of its class.
When a member does not have an explicit access specification, it is visible to subclasses
as well as to other classes in the same package. This is the default access.
If we want to allow an element to be seen outside our current package, but only to classes
that subclass our class directly, then declare that element protected.

Private No Modifier Protected Public
Same class yes yes yes yes
Same
package No Yes Yes Yes
subclass
Same
package No Yes Yes Yes
non-subclass
Different
package No No Yes Yes
subclass
Different
package No No No Yes
non-subclass

Mangala KB, Dept of CSE,CiTech Page 32

3rd Module (Java Complete Reference:Herbert Schield)

An Access Example

This has two packages and five classes.

Remember that the classes for the two different packages need to be stored in directories

named after their respective packages—in this case, p1 and p2.

This is file Protection.java:

package pl;

public class Protection

{

}

mtn=1;

private int n_pri=2;
protected int n_pro = 3;
public int n_pub = 4;

public Protection()
{
System.out.println("base constructor");
System.out.println("n =" + n);
System.out.println("n_pri ="+ n_pri);
System.out.println("n_pro =" +n_pro);
System.out.println("n_pub ="+ n_pub);

This is file Derived.java:

package pl;

class Derived extends Protection

{

Derived()
{

System.out.printIn("derived constructor");
System.out.println("n ="+ n);

// System.out.printIn("n_pri="4 +n_pri);
System.out.printIn("n_pro ="+ n_pro);

System.out.println("n_pub =" + n_pub);
}

Mangala KB, Dept of CSE,CiTech

Page 33

3rd Module (Java Complete Reference:Herbert Schield)

This is file SamePackage.java:

package pl;

class SamePackage

{

SamePackage()

{
Protection p = new Protection();
System.out.println("same package constructor");
System.out.println("n =" + p.n);

/I System.out.println("n_pri="+ p.n_pri);

System.out.println("n_pro ="+ p.n_pro);
System.out.println("n_pub ="+ p.n_pub);

Following is the source code for the other package, p2.

The first class, Protection2, is a subclass of p1.Protection. This grants access to all of
pl.Protection’s variables except for n_pri (because it is private) and n, the variable
declared with the default protection.

the default only allows access from within the class or the package, not extra-package
subclasses.

the class OtherPackage has access to only one variable, n_pub, which was declared
public.

This is file Protection2.java:

package p2;

class Protection2 extends p1.Protection

{

Protection2()
{

System.out.printIn("derived other package constructor");
// System.out.println("n =" + n);

// System.out.println("n_pri="+n_pri);
System.out.printIn("n_pro ="+ n_pro);

System.out.println("n_pub ="+ n_pub);
}

Mangala KB, Dept of CSE,CiTech Page 34

3rd Module (Java Complete Reference:Herbert Schield)

}
This is file OtherPackage.java:
package p2;
class OtherPackage
{
OtherPackage()
{
pl.Protection p = new pl.Protection();
System.out.println("other package constructor");
// System.out.println("n =" + p.n);
/I System.out.println("n_pri ="+ p.n_pri);
// System.out.println("n_pro ="+ p.n_pro);
System.out.println("n_pub =" + p.n_pub);
b
b
package pl;

// Instantiate the various classes in p1.

public class Demo

{

public static void main(String args|[])

{

Protection obl = new Protection();
Derived ob2 = new Derived();
SamePackage ob3 = new SamePackage();

/I Demo package p2.
package p2;

public class Demo

{

Mangala KB, Dept of CSE,CiTech Page 35

3rd Module (Java Complete Reference:Herbert Schield)

public static void main(String args[])

{
Protection2 obl = new Protection2();
OtherPackage ob2 = new OtherPackage();
b
}
Importing Packages

the import statement is used to bring certain classes, or entire packages, into visibility.
import statements occur immediately following the package statement (if it exists) and
before any class definitions.
This is the general form of the import statement:

import pkgl[.pkg?].(classnamel|™);
Here, pkgl is the name of a top-level package, and pkg?2 is the name of a subordinate

package inside the outer package separated by a dot (.).

This code fragment shows both forms in use:
import java.util.Date;
import java.io.*;.

All of the standard Java classes included with Java are stored in a package called java.
The basic language functions are stored in a package inside of the java package called
java.lang.

import java.lang.*;

import java.util.*;

class MyDate extends Date
{

b

class MyDate extends java.util. Date

{
h

if you want the Balance class of the package MyPack shown earlier to be available as a
stand-alone class for general use outside of MyPack,

public class Balance

{

String name;
double bal;

public Balance(String n, double b)
{

name = n;

Mangala KB, Dept of CSE,CiTech Page 36

3rd Module (Java Complete Reference:Herbert Schield)

bal = b;
b
public void show()
{
if(bal<0)
System.out.print("-->");
System.out.println(name + ": $" + bal);

e the Balance class is now public. Also, its constructor and its show() method are public,
too. This means that they can be accessed by any type of code outside the MyPack
package.

e TestBalance imports MyPack and is then able to make use of the Balance class:

import MyPack.*;

class TestBalance

{

public static void main(String args||)
{
class and call its constructor. */
Balance test = new Balance("J. J. Jaspers", 99.88);
test.show(); // you may also call show()

}

e Using the keyword interface, you can fully abstract a class’ interface from its
implementation.

e Once interface is defined, any number of classes can implement an interface.

e Also, one class can implement any number of interfaces.

e To implement an interface, a class must create the complete set of methods defined by the
interface.

Defining an Interface
An interface is defined much like a class. This is the general form of an interface:

access interface name
{

return-type method-namel(parameter-list),
return-type method-name2(parameter-list),
type final-varnamel = value;

type final-varname2 = value;

...

return-type method-nameN(parameter-list),
type final-varnameN = value;

Mangala KB, Dept of CSE,CiTech Page 37

3rd Module (Java Complete Reference:Herbert Schield)

When no access specifier is included, then default access results, and the interface is only
available to other members of the package in which it is declared.

When it is declared as public, the interface can be used by any other code.

the methods that are declared have no bodies. They end with a semicolon after the
parameter list.

They are abstract methods; there can be no default implementation of any method
specified within an interface.

Each class that includes an interface must implement all of the methods.

Variables can be declared inside of interface declarations. They are implicitly final and
static, meaning they cannot be changed by the implementing class. They must also be
initialized.

All methods and variables are implicitly public.

Here is an example of a simple interface that contains one method called callback() that
takes a single integer parameter.

interface Callback

{
h

void callback(int param);

Implementing Interfaces

Once an interface has been defined, one or more classes can implement that interface.
To implement an interface, include the implements clause in a class definition, and then
create the methods defined by the interface.

The general form of a class that includes the implements clause:

class classname [extends superclass] [implements interface |,interface...||

{
}

// class-body

If a class implements more than one interface, the interfaces are separated with a comma.
If a class implements two interfaces that declare the same method, then the same method
will be used by clients of either interface.

The methods that implement an interface must be declared public.

the type signature of the implementing method must match exactly the type signature
specified in the interface definition.

Here is a small example class that implements the Callback interface shown earlier.

class Client implements Callback

{

// Tmplement Callback's interface

Mangala KB, Dept of CSE,CiTech Page 38

3rd Module (Java Complete Reference:Herbert Schield)

public void callback(int p)
{

}

System.out.println("callback called with " + p);

e Notice that callback() is declared using the public access specifier.

e [t is both permissible and common for classes that implement interfaces to define
additional members of their own.

e For example, the following version of Client implements callback() and adds the
method nonlfaceMeth():

class Client implements Callback
{

/I Tmplement Callback's interface

public void callback(int p)

{
System.out.println("callback called with " + p);

b

void nonlfaceMeth()

{

System.out.println("Classes that implement interfaces " + "may also define other
members, t00.");

b

}

Accessing Implementations Through Interface References

e we can declare variables as object references that use an interface rather than a class
type.

e Any instance of any class that implements the declared interface can be referred to by
such a variable.

e When we call a method through one of these references, the correct version will be
called based on the actual instance of the interface being referred to

The following example calls the callback() method via an interface reference variable:

class Testlface

{
public static void main(String args[])
{
Callback ¢ = new Client();
c.callback(42);
¥
}

Mangala KB, Dept of CSE,CiTech Page 39

3rd Module (Java Complete Reference:Herbert Schield)

output :
callback called with 42
e variable c is declared to be of the interface type Callback, yet it was assigned an instance
of Client.
e Although ¢ can be used to access the callback() method, it cannot access any other
members of the Client class.
e ¢ could not be used to access nonlfaceMeth() since it is defined by Client but not

Callback.
the second implementation of Callback, shown here to show the polymorphic behavior:

// Another implementation of Callback.

class AnotherClient implements Callback

{
public void callback(int p)
{
System.out.println(" Another version of callback");
System.out.println("p squared is " + (p*p));
¥
¥

class Testlface2

{
public static void main(String args||)
{
Callback ¢ = new Client();
AnotherClient ob = new AnotherClient();
c.callback(42);
¢ = ob; // ¢ now refers to AnotherClient object
c.callback(42);
b
}
output:
callback called with 42

Another version of callback
p squared is 1764

the version of callback() that is called is determined by the type of object that ¢ refers to at run
time.

Mangala KB, Dept of CSE,CiTech Page 40

3rd Module (Java Complete Reference:Herbert Schield)

Partial Implementations

e Ifa class includes an interface but does not fully implement the methods defined by that
mterface, then that class must be declared as abstract.
e For example:
abstract class Incomplete implements Callback
{
it a, b;
void show()

{

j
/...

h
e the class Incomplete does not implement callback() and must be declared as abstract.

e Any class that inherits Incomplete must implement callback() or be declared abstract
itself.

System.out.println(a +" " + b);

Nested Interfaces

e An interface can be declared a member of a class or another interface. Such an interface
is called a member interface or a nested interface.

e A nested interface can be declared as public, private, or protected. This differs from a
top-level interface, which must either be declared as public or use the default access
level,

class A

{

// this 18 a nested interface
public interface NestedIF

{
boolean isNotNegative(int X);
}
}
class B implements A.NestedIF
{
public boolean isNotNegative(int x)
{
return x < 0 ? false : true;
}
§
class NestedI[FDemo
{

public static void main(String args[])

Mangala KB, Dept of CSE,CiTech Page 41

3rd Module (Java Complete Reference:Herbert Schield)

A.NestedIF nif = new B();

if(nif.isNotNegative(10))
System.out.println("10 is not negative");
if(nif.isNotNegative(-12))
System.out.printIn("this won't be displayed");

}
}
e A defines a member interface called NestedIF and that it is declared public.
e B implements the nested interface by specifying implements A.NestedIF
Applying Interfaces

e aclass called Stack that implemented a simple fixed-size stack.

e the methods push() and pop() define the interface to the stack independently of the
details of the implementation.

e First, here is the interface that defines an integer stack. Put this in a file called
IntStack.java.

This interface will be used by both stack implementations.

interface IntStack

{

void push(int item);
int pop();
b

e The following program creates a class called FixedStack that implements a fixed-length
version of an integer stack:

//' An implementation of IntStack that uses fixed storage.

class FixedStack implements IntStack

{

private int stck[];
private int tos;

FixedStack(int size)

{
stck = new int[size];
tos =-1;

}

public void push(int item)

{

Mangala KB, Dept of CSE,CiTech Page 42

3rd Module (Java Complete Reference:Herbert Schield)

if(tos==stck.length-1) // use length member
System.out.println("Stack is full.");

else

stck[++tos] = item;

b
public int pop()
{
if(tos < 0)
{
System.out.println("Stack underflow.");
return 0;
h
else
return stck|[tos--];
h
b
class IFTest
{
public static void main(String args||)
{
FixedStack mystack1 = new FixedStack(5);
FixedStack mystack2 = new FixedStack(8);
for(int i=0; 1<5; i++)
mystack1.push(i);
for(int i=0; 1<8; i++)
mystack2.push(i);
System.out.println("Stack in mystackl:");
for(int i=0; 1<5; i++)
System.out.println(mystack1.pop());
System.out.println("Stack in mystack2:");
for(int i=0; i<8; i++)
System.out.println(mystack2.pop());
b
}

e another implementation of IntStack that creates a dynamic stack by use of the same
interface definition.

class DynStack implements IntStack
{

Mangala KB, Dept of CSE,CiTech Page 43

3rd Module (Java Complete Reference:Herbert Schield)

private int stck[];
private int tos;

DynStack(int size)
{
stck = new int[size];
tos =-1;
§
// Push an item onto the stack
public void push(int item)

{
if(tos==stck.length-1)
{
int temp[] = new int[stck.length * 2];
// double size
for(int i=0; i<stck.length; i++)
temp[i] = stck][i];
stck = temp;
stck[++tos] = item;
b
else
stck[++tos] = item;
}
public int pop()
{
if(tos < 0)
{
System.out.println("Stack underflow.");
return 0;
}
else
return stck([tos--];
}
§
class IFTest2
{

public static void main(String args[])

{
DynStack mystackl = new DynStack(5);

DynStack mystack2 = new DynStack(8);

for(int i=0; i<12; i++) mystack1.push(i);
for(int i=0; 1<20; i++) mystack2.push(i);

Mangala KB, Dept of CSE,CiTech

Page 44

3rd Module (Java Complete Reference:Herbert Schield)

System.out.println("Stack in mystack1:");
for(int i=0; i<12; i++)
System.out.println(mystack1.pop());

System.out.printIn("Stack in mystack2:");
for(int i=0; 1<20; i++)
System.out.println(mystack2.pop());

h

The following class uses both the FixedStack and DynStack implementations. It does so
through an interface reference. This means that calls to push() and pop() are resolved at
run time rather than at compile time.

class IFTest3

{

public static void main(String args[])

{

IntStack mystack; // create an interface reference variable
DynStack ds = new DynStack(5);
FixedStack fs = new FixedStack(8);

mystack = ds; // load dynamic stack

// push some numbers onto the stack
for(int i=0; 1<12; i++) mystack.push(i);
mystack = fs; // load fixed stack

for(int i=0; i<8; i++) mystack.push(i);
mystack = ds;
System.out.println("Values in dynamic stack:");

for(int i=0; 1<12; i++)
System.out.println(mystack.pop());

mystack = fs;
System.out.println("Values in fixed stack:");

for(int i=0; 1<8; i++)
System.out.printIn(mystack.pop());
b

mystack is a reference to the IntStack interface. Thus, when it refers to ds, it uses the
versions of push() and pop() defined by the DynStack implementation.

When it refers to fs, it uses the versions of push() and pop() defined by FixedStack.
Accessing multiple implementations of an interface through an interface reference
variable is the most powerful way that Java achieves run-time polymorphism.

Mangala KB, Dept of CSE,CiTech Page 45

3rd Module (Java Complete Reference:Herbert Schield)

Variables in Interfaces

e we can use interfaces to import shared constants into multiple classes by simply declaring
an interface that contains variables that are initialized to the desired values.

import java.util. Random,;

interface SharedConstants
{
int NO = 0;
mt YES =1;
mnt MAYBE = 2;
it LATER = 3;
mt SOON = 4;
int NEVER = 5;
}
class Question implements Shared Constants
{
Random rand = new Random();
int ask()

{
int prob = (int) (100 * rand.nextDouble());

if (prob < 30)
return NO;

else if (prob < 60)
return YES;

else if (prob < 75)
return LATER;
else if (prob < 98)
return SOON;
else

return NEVER;

h
}

class AskMe implements SharedConstants

{

static void answer(int result)

{

switch(result)
{
case NO:
System.out.println("No");
break;
case YES:
System.out.println("Yes");

Mangala KB, Dept of CSE,CiTech Page 46

3rd Module (Java Complete Reference:Herbert Schield)

break;
case MAYBE:
System.out.println("Maybe");
break;
case LATER:
System.out.printIn("Later");
break;
case SOON:
System.out.printIn("Soon");
break;
case NEVER:
System.out.println("Never");
break;
b
}
public static void main(String args[])
{
Question q = new Question();
answer(q.ask());
answer(q.ask());
answer(q.ask());
answer(q.ask());
}
}
Note that the results are different each time it is run.
Later
Soon
No
Yes

Interfaces Can Be Extended

e One interface can inherit another by use of the keyword extends.
e The syntax is the same as for inheriting classes

interface A

{
void methl1();

void meth2();
}

interface B extends A

{
void meth3();

Mangala KB, Dept of CSE,CiTech Page 47

3rd Module (Java Complete Reference:Herbert Schield)

}

class MyClass implements B

{
public void meth1()

{
j

System.out.printIn("Implement meth1().");

public void meth2()
{

h
public void meth3()

{

¥
¥
class IFExtend
{

System.out.println("Implement meth2().");

System.out.printIn("Implement meth3().");

public static void main(String arg[])
{
MyClass ob = new MyClass();
ob.methl1();
ob.meth2();
ob.meth3();

}

e any class that implements an interface must implement all methods defined by that
interface, including any that are inherited from other interfaces.

Mangala KB, Dept of CSE,CiTech Page 48

3rd Module (Java Complete Reference:Herbert Schield)

Exception Handling

e an exception is a run-time error.

e languages that do not support exception handling, errors must be checked and handled
manually—typically through the use of error codes, and so on.

e Java’s exception handling avoids handling problems manually and, in the process, brings
run-time error management into the object toriented world.

Exception-Handling Fundamentals

e A Java exception is an object that describes an exceptional (that is, error) condition that
has occurred in a piece of code.

e When an exceptional condition arises, an object representing that exception is created

and thrown in the method that caused the error.

That method may choose to handle the exception itself, or pass it on.

Either way, at some point, the exception is caught and processed.

Exceptions can be generated by the Java run-time system,

or they can be manually generated by your code.

Java exception handling is managed via five keywords: try, catch, throw, throws, and

finally.

e Briefly, here is how they work. Program statements that create exceptions are contained
within a try block.

e [fan exception occurs within the try block, it is thrown.we can catch this exception
(using catch) and handle it .

e System-generated exceptions are automatically thrown by the Java run-time system.

e To manually throw an exception, use the keyword throw.

e Any exception that is thrown out of a method must be specified as such by a throws
clause.

e Any code that absolutely must be executed after a try block completes is put in a finally
block.

This is the general form of an exception-handling block:

try {
// block of code to monitor for errors

}

catch (ExceptionTypel exOb) {

/I exception handler for ExceptionTypel

}

catch (ExceptionType2 exOb) {

// exception handler for ExceptionType?2

b

...

finally {

// block of code to be executed after try block ends

Mangala KB, Dept of CSE,CiTech Page 49

3rd Module (Java Complete Reference:Herbert Schield)

e Here, ExceptionType is the type of exception that has occurred.
Exception Types

e All exception types are subclasses of the built-in class Throwable. Thus, Throwable is
at the top of the exception class hierarchy.

e Immediately below Throwable are two subclasses that partition exceptions into two
distinct branches.

e One branch is headed by Exception. This class is used for exceptional conditions that
user programs should catch.

e There is an important subclass of Exception, called RuntimeException. Exceptions of
this type are automatically defined for the programs that you write and include things
such as division by zero and invalid array indexing.

e The other branch is topped by Error, which defines exceptions that are not expected to
be caught under normal circumstances by your program.

e Exceptions of type Error are used by the Java run-time system to indicate errors having
to do with the run-time environment, itself. Stack overflow is an example of such an error

Uncaught Exceptions

. This program includes an expression that intentionally causes a divide-by-zero error:
class Exc0

{
public static void main(String args|])
{
mtd=0;
mta=42/d;
h
}

e When the Java run-time system detects the attempt to divide by zero, it constructs a
new exception object and then throws this exception.
e This causes the execution of Exc0 to stop, because once an exception has been thrown, it
must be caught by an exception handler and dealt with immediately.
e Here we don’t have any exception handlers of our own, so the exception is caught by
the default handler provided by the Java run-time system.

e Any exception that is not caught by our program will ultimately be processed by the
default handler.
e The default handler displays a string describing the exception, prints a stack trace from
the point at which the exception occurred, and terminates the program.
e Here is the exception generated when this example is executed:
java.lang.ArithmeticException: / by zero at Exc0.main(Exc0.java:4)

Using try and catch

e Although the default exception handler provided by the Java run-time system is useful for

Mangala KB, Dept of CSE,CiTech Page 50

3rd Module (Java Complete Reference:Herbert Schield)

debugging,we should handle an exception ourself.
¢ Doing so provides two benefits.
First, it allows you to fix the error.
Second, it prevents the program from automatically terminating.
To handle a run-time error, simply enclose the code inside a try block.
Immediately following the try block, include a catch clause that specifies the exception
type to catch

class Exc2

{

public static void main(String args[|)

{

mt d, a;

try
{
d=0;
a=42/d;
System.out.printIn("This will not be printed.");

}

catch (ArithmeticException e)

{
;

System.out.println("After catch statement.");

System.out.printIn("Division by zero.");

h
;

This program generates the following output:
Division by zero.
After catch statement.

e A try and its catch statement form a unit.

e The scope of the catch clause is restricted to those statements specified by the
immediately preceding try statement.

e A catch statement cannot catch an exception thrown by another try statement.

class HandleError

{

public static void main(String args[])

{
mt a=0, b=0, ¢c=0;
Random r = new Random();

for(int i=0; i<32000; i++)
{
try

Mangala KB, Dept of CSE,CiTech Page 51

3rd Module (Java Complete Reference:Herbert Schield)

{
b = r.nextInt();
¢ = r.nextInt();
a= 12345/ (b/c);
b
catch (ArithmeticException e)
{
System.out.println("Division by zero.");
a=0;// set ato zero and continue
b
System.out.println("a: " + a);

h
j

Multiple catch Clauses

e more than one exception could be raised by a single piece of code.

e To handle this type of situation, we can specify two or more catch clauses, each catching
a different type of exception.

e When an exception is thrown, each catch statement is inspected in order, and the first
one whose type matches that of the exception is executed.

The following example traps two different exception types:

// Demonstrate multiple catch statements.

class MultiCatch
{
public static void main(String args|[])
{
try
{
int a = args.length;
System.out.println("a =" + a);
mtb=42/a;
intc[]={1};
c[42]=99;
b
catch(ArithmeticException e)
{
System.out.println("Divide by 0: " + e);
b
catch(ArraylndexOutOfBoundsException e)
{

System.out.println("Array index oob: " + e);

Mangala KB, Dept of CSE,CiTech Page 52

3rd Module (Java Complete Reference:Herbert Schield)

}
System.out.println("After try/catch blocks.");

b

output:
C:\>java MultiCatch
a=0
Divide by 0: java.lang. ArithmeticException: / by zero
After try/catch blocks.
C:\>java MultiCatch TestArg
a=1
Array index oob: java.lang. ArraylndexOutOfBoundsException:42
After try/catch blocks.

class SuperSubCatch
{

public static void main(String args||)
{
try
{
inta=0;
intb=42/a;
b

catch(Exception e)

{
h

System.out.printIn("Generic Exception catch.");

catch(ArithmeticException e)

{
h

System.out.println("This is never reached.");

}

e Ifthis program is compiled , we will receive an error message stating that the second
catch statement is unreachable because the exception has already been caught.

e Since ArithmeticException is a subclass of Exception, the first catch statement will
handle all Exception-based errors, including ArithmeticException.

e This means that the second catch statement will never execute. To fix the problem,
reverse the order of the catch statements.

Nested try Statements

e The try statement can be nested. That is, a try statement can be inside the block of
another try.

Mangala KB, Dept of CSE,CiTech Page 53

3rd Module (Java Complete Reference:Herbert Schield)

class NestTry
{
public static void main(String args[])
{
try
{
int a = args.length;
mb=42/a;
System.out.println("a =" + a);
try
{
ifla==1) a = a/(a-a);
ifla==2)
{
mtc[]={1};
c[42] =99; // generate an out-of-bounds exception
§
b
catch(ArraylndexOutOfBoundsException e)
{
System.out.println("Array index out-of-bounds: " + ¢);
b
}
catch(ArithmeticException e)
{
System.out.println("Divide by 0: " + ¢);
}
}

e When we execute the program with no command-line arguments, a divide-by-zero
exception is generated by the outer try block.
e Execution of the program with one command-line argument generates a divide-by-zero
exception from within the nested try block.
¢ Since the inner block does not catch this exception, it is passed on to the outer try block,
where it is handled.
e If we execute the program with two command-line arguments, an array boundary
exception is generated from within the inner try block.
C:\>java NestTry
Divide by 0: java.lang. ArithmeticException: / by zero
C:\>java NestTry One
a=1
Divide by 0: java.lang. ArithmeticException: / by zero
C:\>java NestTry One Two
a=2
Array index out-of-bounds:

Mangala KB, Dept of CSE,CiTech Page 54

3rd Module (Java Complete Reference:Herbert Schield)

java.lang.ArraylndexOutOfBoundsException:42
throw

e it is possible for your program to throw an exception explicitly, using the throw
statement.

e The general form of throw is shown here:
throw Throwablelnstance;

e Here, Throwablelnstance must be an object of type Throwable or a subclass of
Throwable.

e Primitive types, such as int or char, as well as non-Throwable classes, such as String
and Object, cannot be used as exceptions.

class ThrowDemo

{
static void demoproc()
{
try
{
throw new NullPointerException("demo");
b
catch(NullPointerException e)
{
System.out.printIn("Caught inside demoproc.");
throw e; // rethrow the exception
b
b
public static void main(String args[])
{
try
{
demoproc();
b
catch(NullPointerException ¢)
{
System.out.printIn("Recaught: " + e);
b
b

e First, main() sets up an exception context and then calls demoproc().

e The demoproc() method then sets up another exceptionhandling context and
immediately throws a new instance of NullPointerException, which is caught on the
next line.

e The exception is then rethrown.

e Here is the resulting output:

Caught inside demoproc.

Mangala KB, Dept of CSE,CiTech Page 55

3rd Module (Java Complete Reference:Herbert Schield)

Recaught: java.lang.NullPointerException: demo
throws

e Ifa method is capable of causing an exception that it does not handle, it must specify this
behavior so that callers of the method can guard themselves against that exception.

e We can do this by including a throws clause in the method’s declaration.

e A throws clause lists the types of exceptions that a method might throw

e This is the general form of a method declaration that includes a throws clause:
type method-name(parameter-list) throws exception-list

{
// body of method
b
class ThrowsDemo
{
static void throwOne() throws IllegalAccessException
{
System.out.println("Inside throwOne.");
throw new Illegal AccessException("demo");
b
public static void main(String args||)
{
try
{
throwOne();
b
catch (IllegalAccessException e)
{
System.out.printin("Caught " + ¢);
b
b
}

Here is the output generated by running this example program:
inside throwOne
caught java.lang.IllegalAccessException: demo

finally
o finally creates a block of code that will be executed after a try/catch block has
completed and before the code following the try/catch block.
e The finally block will execute whether or not an exception is thrown.
e [fan exception is thrown, the finally block will execute even if no catch statement
matches the exception

class FinallyDemo

{

static void procA()

Mangala KB, Dept of CSE,CiTech Page 56

3rd Module (Java Complete Reference:Herbert Schield)

try {
System.out.println("inside procA");
throw new RuntimeException("demo");

b
Finally

{
h

System.out.println("procA's finally");

}

static void procB()

{
try {
System.out.printin("inside procB");
return;

h
finally {

System.out.printIn("procB's finally");
}
}

static void procC()

{
try
{

}
Finally
{

}

System.out.println("inside procC");

System.out.println("procC's finally");

b
public static void main(String args|])
{
try
{
procA();

}

catch (Exception e)

{

System.out.println("Exception caught");
}

procB();

procC();

}

Mangala KB, Dept of CSE,CiTech Page 57

3rd Module (Java Complete Reference:Herbert Schield)

b

e Here is the output generated by the preceding program:

inside procA
procA’s finally
Exception caught
inside procB
procB’s finally
inside procC
procC’s finally

Java’s Built-in Exceptions

¢ Inside the standard package java.lang, Java defines several exception classes.
e The most general of these exceptions are subclasses of the standard type

RuntimeException

e ifthe method can generate one of these exceptions and does not handle it itself. These are

called checked exceptions.

Java’s Unchecked RuntimeException Subclasses Defined in java.lang

Exception Meaning

Exception

ArithmeticException
ArraylndexOutOfBoundsException
ArrayStoreException

ClassCastException
EnumConstantNotPresentException

I[llegalArgumentException
IllegalMonitorStateException

IllegalStateException

NullPointerException

Meaning
Arithmetic error, such as divide-by-zero.
Array index is out-of-bounds.
Assignment to an array element of an
incompatible type.
Invalid cast.
An attempt is made to use an undefined
enumeration value.
Illegal argument used to invoke a method.
Illegal monitor operation, such as waiting on
an unlocked thread.
Environment or application is in incorrect
state.
Invalid use of a null reference.

e Java’s Checked Exceptions Defined in java.lang

ClassNotFoundException
CloneNotSupportedException

IllegalAccessException
InstantiationException

Class not found.
Attempt to clone an object that does not
implement the Cloneable interface.
Access to a class is denied.
Attempt to create an object of an abstract
class or interface.

Mangala KB, Dept of CSE,CiTech

Page 58

3rd Module (Java Complete Reference:Herbert Schield)

InterruptedException One thread has been interrupted by another
thread.

NoSuchFieldException A requested field does not exist.

NoSuchMethodException A requested method does not exist.

Creating Your Own Exception Subclasses

e [tis possible to create to create our own exception types to handle situations specific to
your applications.

e just define a subclass of Exception

e Your subclasses don’t need to actually implement anything—it is their existence in the
type system that allows you to use them as exceptions.

e The Exception class does not define any methods of its own. It does, of course, inherit
those methods provided by Throwable.

e Thus, all exceptions, including those that we create, have the methods defined by
Throwable available to them.

Method Description

Throwable filllnStackTrace() Returns a Throwable object that contains a
completed stack trace

Throwable getCause() Returns the exception that underlies the current

exception. If there is no underlying exception, null
is returned.

String getLocalizedMessage() Returns a localized description of the exception.
String getMessage() Returns a description of the exception.
StackTraceElement| | getStackTrace() Returns an array that contains the stack trace, one

element at a time, as an array of
Chained Exceptions

e The chained exception feature allows you to associate another exception with an
exception.
e This second exception describes the cause of the first exception.
e For example, imagine a situation in which a method throws an ArithmeticException
because of an attempt to divide by zero.
e However, the actual cause of the problem was that an I/O error occurred, which caused
the divisor to be set improperly.
e To allow chained exceptions, two constructors and two methods were added to
Throwable.
The constructors are shown here:
Throwable(Throwable causeExc)
Throwable(String msg, Throwable causeExc)
e These two constructors have also been added to the Error, Exception, and
RuntimeException classes.
e The chained exception methods added to Throwable are getCause() and initCause().
e These methods are shown

Mangala KB, Dept of CSE,CiTech Page 59

3rd Module (Java Complete Reference:Herbert Schield)

Throwable getCause()
Throwable initCause(Throwable causeExc)
e The getCause() method returns the exception that underlies the current exception. If
there is no underlying exception, null is returned.
e The initCause() method associates causeExc with the invoking exception and returns a
reference to the exception.

class ChainExcDemo

{

static void demoproc()

{
/ create an exception
NullPointerException e =
new NullPointerException("top layer");
// add a cause
e.initCause(new ArithmeticException("cause"));
throw e;

§

public static void main(String args|])

{

try

{
demoproc();

h

catch(NullPointerException e)

{

// display top level exception
System.out.println("Caught: " + ¢);
// display cause exception
System.out.printIn("Original cause: " +
e.getCause());

h

h

}

The output from the program is shown here:
Caught: java.lang.NullPointerException: top layer
Original cause: java.lang. ArithmeticException: cause
¢ In this example, the top-level exception is NullPointerException.
e To it is added a cause exception, ArithmeticException. When the exception is thrown
out of demoproc(), it is caught by main().
e There, the top-level exception is displayed, followed by the underlying exception, which
is obtained by calling getCause().

Mangala KB, Dept of CSE,CiTech Page 60

MUW’H’WQOJGA P’*O?qufaj Ugaac @
Un it i |
N Tava 17*0\;;40, buitt ~in Su??ov)(r?tw MUlm\mmJen‘ Y‘ij 'nw*f:j.
A wﬂ%#h@ Ml [?Yo?q;n CMJ(Q;M, J(b.%(:) 0y mave QMLQ-L Qﬂif
% tad, [)Q“r)r 0}; Gy @ P"O?%w |
-'\\WMA J«%m Qa Sermh l?qnn éf i’f&‘@‘ff"ﬁ'r

';S. CQMACQ a Q\'L’Y(o\cl? anl a b

¥) Theve e —lwo cli's)r;-mlr)!‘“w) G,f mul; }(tvlfi'ﬂ‘j f _0(%1__ @
and ‘Hﬂ'(&c‘«\ow&“ }

?D A [JYOCLM i< , in Wl | @ onfp Chy ‘HﬂQJrII'S Qwa(ukfvj .%/
PYOQLUJLQIR& MU\M_Q}){CM‘) 0 'he ,%Q‘\@,%L Ck“m:(f/g” EY?L‘q(ﬁmFuﬂ;{“

fvontus rranl WM BECLL)

%) Fov QKQMF&, wau,lacud MU\L“LQ%lC;ﬂj ehably, ks Yun A
Java (w‘ﬁlu ot Mo Squwa that we au W';’lj & Ao QJ;J%

DT protu batd molbbasliag S a0 Pop om s de Shpadl b oay
bg [pQL(,\'Ll\lr (an L Al‘SP\J‘\l"(LL Ly 1 S(Z\QJ&[@{

——_\\s

X) Ih,O\ J(LVMJ \Mlu!\ MU\\-:-*Q»\((.qi Qn\;wonrwm“ . fﬂ‘* "(L‘VH& (s

He, quﬁh{,»\ uat} o£ Aisva\-LchLh (odg . Thic means Jhat o

g\m%[PO?QM Cen '\?g_y_*o’\pm f\‘wﬁ oV mévg »\-OJ)IC! S{MUH'Q‘?LOMI74

Ad
*) Fov 1than ’CL ,\ﬁq_l;)(w Can p(ovhn z:,'\- *&u.\ Q«} ’\' L.z Camg ‘LVM

Ak iy is kg, 00 o oo M e ks au bing

Pugevwi Ly ’\“’0 S’L\"‘hﬂi—l ’H’WU‘JS-

Noke " Y'Yow - baud
) och POCML
e Rath \WQ&M &\\ocﬁﬁa Suimk mmov'); LR .
Lutijl'r‘\’ ,

e von adbrs Iy

%) T |

,f) sk j& Qomf-nllm\(ﬁt‘\" b
(ctikching from o prece b
@wlh? L \cm\ina M\'AMW””"M/

&wm

el Bl

\ﬂ Troveads chave A Same o Jdves ng,Q |

‘ﬂ’ﬂ\\md " \:gwfu"ijl"}
(--)(\’WLN&S {0““\:\“ Yo Hrolm g\”a‘\“’»)f{‘ Sammg G\Ag\/!ﬂ g",q(()
CODL\ S(L\L;m,tlﬁh SC\K‘W ' OSY()GDH&./, Q, (ommw.z):(q))/,_q

b)‘\‘YU‘L s low ga)) s \;SM Udj‘qr\--

*)’TL\L 'j‘%\lﬁk Y ih f\v‘hu Sys\lm Al'gmo,b) i\mﬁoﬂ .-{Zov
MQ/I\/)(L: n% / Qnol a;ll ,}(L Q_\q$5 l;Lﬂrewfq GLr clu\;‘qu J
Lotk Mu\shj(\zm\l:nj i VGIES I

“;9 Tn ,?,q_(jk) TJava Uk -“(\'\Wac\,\,g)(0 Qn al;((r"(Q &HL“VQ

Qhu;yothA f'O »27{ QS\/nCL‘ronau&.

% S'\hg{l)f\r\'Y‘LG\AO_A S\/gkms e Qh O\P\‘)YD&QL. ('am({ Cln
Q\’_;;M‘\' 100‘7 Lo”\r\ Pou‘mj.

IS qgr_gflm Qy At O\M o deade whak b Jo o)

,‘)a \)o\\;a(}}
- Sul‘um w;)r\ﬂ r Sc\y Q :P"(_Q ¥ WCTJ,V

Ohig Vhis \m\\;acj M M‘,\mm&
Stv Le_quc&,f\'\«w Mo (_\iq,q.lllﬁe(: A'.SF%L(LM conly o I }{{
Jf;wq}dw Q\fﬁnl' lnomﬂ«, ‘

olliq
Qiﬂfsr\/lancﬂu) CSI‘E)& Q,ULHM> Q\ok lgoP m h
) ok Q\-N.ﬁ]’lqa.hc(\@(Jakurs ;“"LL;"J i L'ﬁﬂm " }osw,,‘,’:
Tho warke CRU Xime .

% when o Mmrml Llocly Yecown W 1 Lathy .ﬁw S Yo

A Qn\;w v\m%ﬁ\ e SJrch Y‘kmhinj,

r@—ﬂ(\l LQM$,} 04 Taval's MU\t-l’LW_ch\l—\j 4 ']lwaj" 7 Pn\\;nj
R Y e T K o~

MochOms m i Q\lh;h&g~
e ~— T T}

\’\YU\& Can chuu t,,n“wul: Slfv!)\)fj
o, Mo e B vedd when q
ov alh g”bv Ly 1!\7 Ce,

P ohe ¥ ¥ ke of

(VN YVBC‘C};\QM (4(“, O‘“QH‘Y
"\\’Wu& ‘Yuch Ae}rﬂ Yvom a, M{u
LQ \ﬂ}\\p@(& &owto\rwk dbe

Toveeds ewisk v Sevuad Shaken

DA Haveed ca, be '"YLU’M;NJ .
%) A "Tunnﬁnj »HAY(:;A Can LQ SWFMO& d
w‘) A ‘Iu,s‘vancﬂuﬂ /H’Wt&ol Can Ahesr be Jwumag

%) A Moead can be block d
‘f) A -"'L‘VU\A (an é(l ftU"h:nJ("r!
'*) A "}L‘Ymcl Cen Le M‘«”ﬂlaﬂ ‘

—3 'T\'\Yﬂ_o\cl Py OY;-h 78

30 TJauva (Uv\;jng h Lach .JS‘LVQQ(Q.] \”)*Yfmff} y Hhat c]LJrum:'.w
how -'\’L.edf A’LYL"\A S\nou\.ci, L Hres bd [*J‘:’H" Smftti ko

phou

&) The ,{\mrm:_l‘s ?‘viw]
jF{OM oha "\rLLhn: né ?}\\W’UAQ\ ’h)

’}\/ iS \/UXC;\ rl('O AQCi.Q\{ \d\’la.r] LT) ‘g“—:l‘([”
,\\\1 f\b&,'ﬂﬂ;s ool 4 &

Cﬂnkmlr gw;,lfc\,_
hn Q C()/ls(i'k-)r Sk ch A

X) T vl Ahat dehuming

?\Q& 00w Sn‘\w,{la’.

— A Ahveed Can VMLM‘ Ths 15 J0v
'\::y Mgliti-lf\j \{“t\i’\ngjsmvina ov \g\ot\cinj on chiln%"i/o‘_
1, \is Stanano, ol oW Hviads W Rtk and ¥

\/\;9\,\ er f\’)\rzov:.fk\/ J{\/N%& 4\'\(& ‘rS Y%J\/ Lo Yun "S j?uan k((}7U

3() A (H«T%e& Can L& \'WL Lm‘)\(cl \0\/ o) l":jl"u "'FY;O”"JI)(’}LW‘C{,
Tn ‘Hu,s Ccu&, 0 [owu - PV:O\’;)I}’ -—}L\'VUJ 'H'\Qﬂ' cjoq Vla.r
\/M& »H& on&)ﬁw[S 53“‘]")’ PYLUW]?}(J ;

£) 10 Casy wheye dwo Hroaads oith He Same PY"""DF)’ u
COMYQ\,'M} ,Fm, QFU deﬁ)' ’H& .S:)fquhw 5 Q Joif}* (GM])):(QtoQ,
Fov Orﬂiﬂ\t’\j gya\img SutL Q) LJ:”'QIO(“LL5) ’\'LWC‘CL C/{ (]uﬁl ?Vrlﬁvi%

Qg %W -Shitd autqu,'mliy £ yound - Yolin *F@L'q""‘ _,

(ﬁ %QC(UJJ&/L W\\J\\j\)(\'ﬁfgc‘c\‘\nj t\h\iocluu-% v W

M fo Ow, Vvogvo\m_ﬁ‘, Yaave W\ujs)r Le a wo\\/ b
va,%wm S'ync\/\von:(;:-\r\/ \n\n&n \/ou Mﬁ& .

A we -)fL”Ymés N Cﬁmmunfcaffc

%) Fov anample r\% O baat
V Al L, a]tﬁ'n\(&ﬂl lr's}/

aad shav & Cw\')\lto\\ul dedo ghyt ok v, Su
M«c«l' ’“"ly Joﬂll [Dn,ﬂf(} chf}L;

\{_m ned Seme w\y\k LSV .
b an Hoed Pom Wik debe

Q"\(\'\ 0-)f\’\ﬂ—l : \Q wae sk b¥iven
TN IS LRI @ o S0 Q(&“YMCL;’\;;

¥) Fov Wi ‘)mvmé):}&\lo\ im\yhm(,,\,s . Q'deml - ®
onon agn-old mod] of imtupros Sychveizibon t Abe
on 4 oy

) A .mod)fmr isQ '\fcu\/ Umall box Ahak ca, Lald 0”“} o
Nvead . ante @ Al endun mondov ol ol v o
wik wak vall dhak Hved Odl A mont Fov

Lo Uud A YYG’M X a &L»Cﬂfuﬁ

_*) Tn)(\rwg wo\\/’ 1\ Maf\:\'o\r an
«\Law O~ ALW‘%A “‘f—lf

OSSL)(g‘“’“ \)o:\hj Manrivu\o\\'lrl io\/ mave

o Nme

%) Joua P‘vc\i*yc\t\ N clean |"\OM‘ |
MOoYe)fLY-mlS bo AallC ‘rg Lach othar , V14
| ok OL’J{J& bt

YV’(!Q_Q;N& W\Q’\AOAS Mok
Q /\\rﬂf(qcl \'ﬂ Q”'J"'{ Q

/\,LU’ wa } (unly,(

-’\'DJO sV

ﬁtog)r Uv'ﬂ\\/ ,tov
Calls o

allow
oljich , 0ad
hom‘fu) bo lome ok,

"h/j‘g‘\w\\-‘ WO%MB S')(‘ﬂ(m
S\)acLVa-wTu& ke d 07 %7
| Sore oY f\\n\‘m& f{v\\i)\a&'\\'\\/

T, Thviad Class and A Runnall 'I""\“-'i"\(‘-

% 'jO\\IQ MU\\‘V\M:;AQﬁ S\/S!Km ;5 b\),\—)(UYOV) fHML /r\f\ylff'\cﬂ
Clags, % mekhods)Qunn abls, .

*)/W Trve d Class d\tg;wu Sevy o MQ-)rLﬂﬁﬂJ&)rhql \"i)f

““M&%L Meveads

Mt’\i\og N&h|\n3 ;

%L\\\\QW& oLtas a Ahovead’s namg .

(39} %Q‘Q\:‘)ﬁ/ 0\:»)(Q:\N a)(\n’v Q&&‘S j‘t(m-h/

T\5 P\\?\UQ Do}gum;m lﬁg a Bf\f\w‘\ (s SLf\‘l 'Ylmm’njv)
Jow \uo;\)r gcv o)f\nvmd ! ey
Yun EhL{D VG;A ,?W As /Hfo/feﬁco | |
glﬂl\\? ‘Sw;{)tn& [N fHNYLi‘;L -Fg\f‘ a [7‘”“"*1 0* }‘.M{ |

g’\@-k;\ a0 /\L\'vt,qcl tc'y C“-ﬂ["”j \’)ﬁ Y

Sk’%l \L A
My 8.

Tﬁ;ml FY;OYII)Y;U);

§) Thovead Wiovi\%u . Wi d Ly JIM v schedulan
+o cltd:\z when 2ach Abvead thodd be allowed b Yusg
j_"n)(l,‘ww/ | \mj\,u th:bvi\\/ Moven L Wy move (P e Ahers
lbwcu . {)v\mv‘, h/ ,](me\cb ;

X)Tn)(\/\U*Vy; ’H'\Y@\JS ?Jl, quqi [?‘f;av{n\— Vi should 3(4 Q?UGQ

Al b A CYU., Rux \10*« ek PegliBe (’Qh_‘F-Rl . [amemsH)
. ‘C[Q \"c’&.qﬁ,{ 61 Qth/O hm(n’J_
L olihal iy

Yoo 0lans |
@TO Ced & f\lf\f@c\,:\‘s ?\f3ov}¥-\/) Wl amy K\Jwﬁ}y () mithod
Ll}\’\‘rC\A TN mqmgu 69 ’“q\,@“._l
sl form Plack Void Seltview

@(ﬂ'\c\ VCLQJ-‘-Q 0%{ LUULI Mws} LL m;)l’w:n ’kﬂ \/Cl,,)/(
MIN— PRIORIT Y & MAY . PRIOKT Y . Cevyend| Y, Haw
Vol o | Oad 10 amyg_..};my ,

10 Ya.);\&\/r) O\ /lexo(b (\Q,yw“‘d’— t”‘} °"r’¥y) -Srm‘,fr}/

3 L\;([" < CVWO”’“ S F
NoR M - PRIy y W note34ﬁ’ee.|n

by (V\'\’ M>

Thae F*‘r)n()v‘i)f:u QUL A“Jg);ﬂtcl as ,fffm(Vajalls within %Q"L& .
/[Demanslvak %7’%4 PY;OVf'LrL&_

S\q&& ¢l les {m?hwnk Runnalsle

'MX(C\igk;'{))
Thvead e

PW;\M& \/0\6\“[& JoOQLMn 'Y\mr\;nﬁ o (C'Vufiq
P\kla\;(le(\(M (;n-)r FP)

{
k W ’nn"mzf«o(['}L‘—\) /
EL (f«gijr\?\f:“v;)r‘/ (PD/

Pu.’:\:’q Uo;cl Yun()

*EU'ML (Y"\"H’\ fnj)

I C“(l(ﬂ—,’
9

P:E\ < Vo SLF ()

‘y”YUmm'm) % /ﬁ‘&k .

e

notes4free.in

public verd shad ()

k. Shon ¥ Q)
)
)

class Wilotr
{

PUJJ\,'(skakic vord ma (slffnﬁ Q\jgtj)
;

’]L,mci . Cq\mq»,rhhvucl (). SGJ}']7’?3'0")«{} y
C\fc\(m h - N w C\;QKu (ﬂ%

meORﬂ})’)‘
C\iIQl(L\ L Ny (lttdﬁq ("ﬂnv(

O g, o
od . Nop -PRlotyry)7

IO\, Uk), -

;o .
k S‘\—Q-i}-()/ (o\l((l.)('_[ﬂkwur}cl((nl?)q‘o’? Q)
{vnj d

. LN — AN biote] ¢
3 Thveed. &mr (]00003; Y J SE.

S’O ' ("LQLa.- }Iuv,r.'» 1 1
{CQL(L (Iﬁl(W“FJfQJWG]’L'M ¢) / F : + lge U cie)

%S}SL&M "OLA' ,])’\/}:5)! }"} (V Hd:n ’}lfﬂ’(d(",—)J’kWu].‘?L!J 'ZU
’O,SL,F()/’ &5,0,‘) (OLI‘}L,F\,;&\,,'})/ e Y

sk , Fhiadide)
// luﬂi;} ,Fo'v QL;IG‘ “rﬁret,cié]‘b '\'val.-,dr A D/. ! o
H‘H | plov ponk 5 4y osin

lmek;jo;n{); U P I (o
y e b flghny notes4frél I :sriesey

|

mempwﬂﬁi o x tends Thicad | @
(J -

L PM erel BUAL™

% N ~ " Thiead . (ienisTo
b5 & B W3+ Nowne (Y-
s Gt :

S-ophn (746 priewy jﬂ'-f-mwﬁ,umw

B

4 ol 4 N TWMMP@J\HM?
Tw&:\\’\uﬁﬂpuﬁﬂbj’l- ™M (tﬁ_u)' wﬂ\,\m@m L

= m ' o B2 k
b, {Y\’)_ a MP)\&%

mﬁ. ’b)cujl)l LSJ
" Skank O,

b
b

o ey Hven & s b

3 Prievidy is e
Yunai 4 Abrad dvel]
b priseity ic 40

notes4free.in

*)O wher Awo o move Jer,qJ; med aQcay s] SLm“l Yoowbs
"H«ty hed Somc Wayy AD et Vhek the Yoou@ il be wed by
Oﬂ\ym%\ﬂf&g ok a thm CTha ?vo(m L'\/ \UL:LL f\\m 'S
QCLluqc\ 1o Callad Q\/nchon'lzc\Lﬂow,

) oy by S\/m\wm:zo\l;.,,, s e Lonteph o P momhy o A
moikor 15 an objuk M is bug 0y g mutealy eduive
ok ov_tvkar oy o Woead Cor Glon @ #ei by oY &
‘j{w)r;hru)

D) Whan o Mves d chuiw a \GU() 1 Bl \ b bhave e

H moakov. A Worcedy akompifag o skt A lodud

\ b SMQM&A Akl A ,’riwk /\LWA ks 1

iy ov w1\

Mgk OY

[l T regrem s ot S\Jm\wzzd,
class callme

Vord call (staj ms9g)

{ ’
SB\S\&H’] ouk. \"'\‘l‘n)f C {[‘i' + M‘Sj) J’

v
g notes4free.in

’\(kro,c\cl ’ Slﬂ? (]00&3 i

; Caxch ("lnhvahdw&rfm e)

! - .
Syl o o (Lkomapled).

Sw&m . pet ,Yv;’ o} (ir i i');
J

J
C\agg CO\HQSH l.‘hq‘)lkhqmlcﬁ K‘mhafaﬁ

Ching msg
Callmg)(Cuf}dr |
TLWL@A &

gubh‘q Calle, (Caikw Jrouj ;SL“'-’IC} Q

’}Owgﬁ' 7Jra31‘j)
mSqG = S;
b 2 new Thvesd (Hhdy) ;
. - S)ra,x.lr()/’
Pullic vordyunt) (Peblic vaid oy
d. k /)-g S)/o()'wuy,; &
Il | ‘U\f}ﬂ*, CqﬁkCMSﬁ)/ iS\/n (Lvan‘;u&umy,ﬁ) ’

g T -l () -

Y
v

C\o\é.s ; _gy nch

% ' 5 ! g .

public shakic Void wain (Shing @gs1))

{
Callvg.)(tuc},& = nw caﬂw 1
(il 04 = hes Cllus (Aaiged “helty),
calloy 1317 s Calb uq"j"}} ”g}’wcLyan&d 1),
Callyy, 0b2 = hew Calley (h*ﬂij'; {(wovldn) .
/z \)\Jo\‘\x— %0\(A\aYQ&(_ﬂJ 113 E‘wl’

by
HGL\,\C . J01n Q) - :
oba. k. JoinQ)) 0 'Y [Mo T gyﬂQL\,.;\n,jg(i

) 6b2. L. jo.fﬂ(); mov\&]j]
Caych (Tm—\m vy A Euﬁz\')“ﬂn Q)

i .
\ Qs 0 P (w;jn)mwp\{d :,);
"
v
X) 10 Y({u A e Vvaﬁlfn) rwzy G, WL muy Qemalie. Ay

Yo calley . Thod 15, W muk Yol K aley ko oaly on¢

’HnYo,c\ci 0\)(Q\';W ,
1) To Jo Ahiy W &;’”Y\)’ hud (M(x de el Ja Ll iz
it Mo Qoo d 8y hytetsdifre ghirn b

class Callng

4
g)/q(‘ﬂrm;’(gd VO':cl Cm(5l’l;n? MSj)

J

0/ [Hallo]
CS)/*}QL\’OA:’&OLJ
ClubylaLj

‘“QIn’\ﬁ\)(\WMJ Oummu\r:\C O\XDNO "

% {)0\\\,1(3- T U,\U&\\\/ imY(wtnL(l”.\oy O \OOF Hoak ie
wed bo chadc Some Londihon %Peo\lei\zﬁ
A 0his SHE (o bbb\ WL 0 O\W\mpia& achor i dalen,
Tha Wak U{'\k b, ,}o\/ Q;M\M‘)l‘(| (o A Ahe Clatsic
qm,% ‘m\g\m,
-’AU‘J\“M‘Q one thvied 18 wo‘luu’f}j some dabe ond Ansthed
b Tomale the {mk(% move m)(em[{aj) Suppe

Cﬂﬂﬁwﬂ;ﬂ"} '\

ek A produty oy o g 0 Lo finiibed

E%ﬂiﬁﬁ@ﬁ’WWa**“*
1) Tn Vollqu S}/bkmj P Comumy ,oul ol way ke nllalf P

Cpler il ik waiked oy QL GRANGRAG,

class Cadlng

{
gl)/q(\m\’nmn’bd \!o;cl CQM(SLIIG? b’)Sj)

J

D/ [Hallo]
§ SynLLwn?sz
[woy|d]

_gjn’\ﬁwj(\wmc\ Obmlmw:\C O\MO o)
o s T _

_/___w

% ?()\\.\nCJ ig \,\,\UO\\\\/ ;MY(xm{nH\ 19}/) \OOF ’HAQJ(¢

\/U\-L(k*a Q\\kdﬁ Comg Lﬁnllll;ﬂn 511?&0«‘@”3
ﬂ 0 hs kak (%L\nhon Vs LUJL f O\'WVOP"\;}ICJTL OL(L'O/T 1S f\(oxkﬁﬂ.,
Tha waks (u b, | %o“v cuwmyh - (o Ay, Al Nawic

Otm,\% \)\rb\a\Lm)

%w\f\mm OVTQ'l'\‘WQ_gc\ 'S Yw‘lm;ﬂj St A‘q_&\ Owcl dnsot &
/\-0 moale J(\'\K ?Wauﬂh«, W) ovQ m)fQW@,L",]?) 9“[’?““

CﬂﬂSO\Lﬂ;M} \)()

ek A v Mah??ﬂ,)fﬁ(,ﬁ“i”i,rfdf ished

bors 4l e
’f\) TA PD”I'":J S}/b]'(ﬂaj -’H\(CD/\%L«W{ LUOLJO{ U\J(Ml(W\O.n)/ CP\'\

G b it waiked v It gredinn

- ~ @

Ohs Y K)\;odu{;q w Ooh %:nlslﬂwﬂ , F wodd _SXO%JV Pﬂ\myé
wmknj eve CYb\ C\/Q[M waiuﬂ '?’GV Hh .\qugu\% 3‘ j}s"m'&%/
S0 0N »

: \ : vo @ (¢ mmun _L‘,,,
’ﬁ(TB C‘“}D‘;& ?0\\'\/‘3 J/J‘O\VO\ mdmlu an]ﬂ’\@J"VY “ m Ca

\ : ‘ Ly AL O muhd
W thona m VEX S %Y wm%())nelwh[) 6 A nGLJrVPHH uh- &

!) - .- m m!-’s'ﬁ
Y wai k() + Adle A calhing Pvad Ao give vp Y :Ew };
calling thresd Ondkgo . \glgj{ un) Some othay ,U/ﬂ/u\c\ A

9 afuev . ¢ .
Mm“wcﬁ f On‘l’\o\, Cmcq_ [au& nﬁh%j()
1,9 loS[.LY SO\W M :J{'ﬂﬂ(p aﬁhck LUC&JFC"()
onfiLgome. on S iAo monikey (1 - 5){ Mve<d)},\C& C

75 h0¥\¥j [} e \UQ\&}& Ui? | AV
'y 2| Yovea oyt Ak, cedld woif)
Y& C
o a0 ¢ waley up Al Al) o
37 M\\H Bh <0 SQL ol ¥ % \mb\w Q)/

’)I\/W@,o\ Lu;\\ Yuhn B(RYQF) CﬂM
r O a (x (1 g (odwmdd
/(‘\hLGWL(X ‘\WY\iMM)IO\\“ M Dj} \7‘/

Fsdwn N
notes4free.in

S\/n(\fﬁr@ﬂ:u& Vo) d ?u\’\' (lm)f ”‘)
{

’H"Uﬁ ﬂ-—”/

S\J\Qrﬂ Ub\)f ‘7\' n)r\")(VU& i'r}h)

J
Y

_

clase ‘)Wc\u(u\ ‘lmV\ka\A Ktmnaé({

6,9,
{)vodh&(b\ (& OD
L ,
z\\,\u) Ol/ -G, /
‘1 nw Thvead (,H,Wg i 1 PW(\L\W b‘) . &}Cq l-()/

?L\L\fg Vord Yun ()
{ .

\n)r"\:Ojr

Wb Q (Lw(\&l)

{
j A pud (i),

"
:

ClO\SS (0 ASuny ;m‘?lxmank Ruhna‘uf{

4
& %,

Consumey (6)

Ahip
i ,f}j’ s 7 Coue Oge§fft§§e in

!
)

Public Vord vun ()

it ()

: %940
y

¥

3 i
S

lats RC |
iQuL\:L daie void e (817G L))
Vg gomw 0

hw Prodam (@) S
Nlw (6a%umy (ay) 7

Suplem ot priatla (1 vy (onbred - € o S\'v[) 3

)
3

i), A m ” L‘Vc-r\’,' J
.)f-iqoaL{ e (9\ QU Q C « L
x\ - 'Vooh«(;q %Drv’] OV v van, ~ Y j
\'\onulni) S TS ’H‘k ?

| Talst i‘fﬂm (ﬁf\%um;—s ;'(—1 Sahng ‘7%
nov Wil &J'\\i)flﬂﬂ) &L’P }(1 Lurhomity

; ' Juttor Sped & \o*\o()
[valwy willvesy b, o %P
uk L 0
. ad
Yui’) \M'l.l‘/
(1(:)[:, ?uzi
% S &
GeY 1 %Uk,,]

g notes4free.in

gy bl e in Jova i b

watk() and hohy () b Signal in Lob divechon | o

S\aowm

I| B Covwedd \mq ko 01(OL*W & fecsumy

Coy @
L

in>f \ﬂ;
booltan Valuset ;ﬁdﬂ«x/’

S\Zac\-\“ronnuhé\ inY %\” &)

{
(4 Valua)

k\’j{
War ¥y O
Y
(OA—(L) ('\:,q};myu]))&u(a\?l{ﬂn Q)

{ N
Spln. g okl (7 Trdomeph (aughi®).
Y

Sy ok uinbln (76K 7 47

\mﬂm&, o = X'Oﬂ";

ho\,:h () [walls v ke ffm}' Miesd Mok calls lwadd-

5113(n n’ .
g notes4free.in

Syq{l '"%’sat;’L(J\ \JG;A Y\Ak \"n)r %)

U v
{
kji

wayQ))

} .
Cakth (‘in)hwu‘f))¢ leuQ\v\q sn)

{
§.0.p (" Tokopr Qaglbl)
Y
AG-n 2
v oliase) = e
oy (" puks !t) s
th\" U;
57 | |
. Ak
| ool
A ' '\m\k Q“\é Y{
C\Q.§5 VVQ&MM i

{@\01/.'/

S L
hew Avesd UT\N’")

y

qu\g\:\\m;&mm

u Evuc{l}m W) ke O

'\n)f 150:

b notes4free.in
)(j) a\,’QU}(b)f)f\/

C\ass (a18um 1mvt{mm'1 Runaab G
{ ,

S
Loy (@ o)

{
Ai.q -)

\ hw Thves o {st ,, f((GﬂiL&MQ 4) shagd Q) /

PubtiC Vold v ()

4 . ,
\L: b ’V\-Jf ! |
{‘«L e Chew) [F o
ARy puk 21
s V ’ A
9 P'uﬁ’ .8
6@J~13

(ass P Fud V)
d | -.,
PU\L\;(..S)rD\L‘Q vod Main [gerj 0493(;])

: Q 97w QO
e predutey ()
Nw Cotlmy (‘1),

Reg, p ("E'V"“ Feked £ 1 &LDP");

Y
Y

notes4free.in

EVQ’?’} meql\{q @

@An\/ F'Yo?mm thakt Wy a 3‘*‘*[”“" cof tax "'*1&4%&) Sueh @
:)QNQ O\W\fh]{w (”y;nb' ,ﬁov LU}"JOU'(" l s Qlaf ‘l":uﬂﬂ ;

O EVM\S Ay Sy uvl{cl b Qhufgjafh ojf ra,cffbjg , Isv\ducll’,,?
jt\vq,bm jjawa,awk Owcl qua,a.w‘(.&uaq-‘— '

¥) Mok gbgnlj o ohieh Yol r‘\rﬁyw will 'Vﬂérﬂay(ou jwqjﬂfa(
o b W i @ Gt bad prgies

Qﬂ\u(ave Covuql "Fqu D,F eak ;ncluJ t‘aj +Lc;(gﬂmc\l&d é[/

‘“ﬂl mowg ,)f\nl \(*)'LM*C(, ad Vaviony Gui (onkoly JSL«cL a4 q

Y\.u,\v, ‘o\t-‘(\'oﬂ y ovoll bey ov Q.Lud(' b= X '

) T c\eqh "}Qﬁlm ity A BUGY W of Tava's Wi L, handliy
g WMo, Wwamiag Mg m o n Qued Classye ?wot ,};}_g_,, o G We of

b\ AwT Gad. Almoq»Lalq SW\MJ g;cle\mn)mh (0 2y Ay N],'.7‘
\H/Lafmm iy ToOLKIT) provi L Hhe T kefat Jo VT sudhay Lot

""?‘/\‘\40 E\NJ;)(\’\O\ncl\!‘flj HQQ"[QN“SW.

O, Londkd ches g d

.\"\ w\" ,' (_Ll QVQ’}\’S

;)’Yk{ wa\/
o wen e m‘v;):’nd 48y >~ &i ﬁau&(|:o)

.§\G)V\:L{L"m\'\y b

O\f\é\ h’\b(}l\“’\ \'QAS; ot b!, K_)FO\\-{ A ,glr)innl‘-ﬂj L\J;}\q \‘L\)Sf ? ke)

AT -0 madhed of vk haalliy s shusoppord, bl

\x\s nol('Y&Lhmmmc\ L.;(Ew Nt ?Vbjxenq , ’ﬂ\, hnof:\uq qua&v

.\Ejr\u \m\/ }\’l‘\}(Wita SLUM\CL Lq L?an“{i L\/ aﬂ g PVQ? Sy

CU\Q[’“nlM I_S rn\n M{,l-lﬂf’fls l’h\’)\b‘-((cl Ly -?Yov\ S

—7 T Dl\lja\:m WAt 'Ho(l(_l

== v L b
3 R e Gt .
AE&U%N&A Q&;&S\,)

My mou Lothon | Sovelly
\d dudymalrea

S\,n\(T O\A

?> .'_’\‘,& ulu Yu‘.mmg 0"‘Y 9»\\%3(\1\[‘1 L\\L\(Cm} o,
ekt ')(\,\L oL'Ju)r S‘Tov (?-mn& mm)c class s

'Of\(ﬂlh.atl ’

onqtm OKL?"“L Mo Soul e & 'kl LVM-" ijl/\’ \?b‘u\&l/(c‘ ;

bl 143(
_D E\!tnlr 0\:’3&){ lrS g
class.

LD W\@(\'\D& \

)

sviwarded b e Mtjrlwo(DS, nij!‘o‘cu(l Uishioney

¢ oW c}qk ouetaled ond Sk wnd

dCLSS quwq‘(ﬂ«ﬂai Dam 0

Puuh_ghdk dond maia (ching @ T7)

QQ Thay m& L = Thvead - CMWLo)rﬂnYlRJ() ;

Syskem oud - privtle (*eumk doead 2 40
/] change A Mams of A fhvead

. Sednamg (" Hy Thvead ")
Sy o pria bl Afle M0 chang, Jrg)/:
)
v Fou lokur =575 (205 1 -~)

{ o
sysbom -odd ,vam}ff; (4)’

g /ﬂ;m'ﬁﬂ ’ Slﬁi F(iooo');

notes4free.in

r)D whan o Jova TW{}%W Shark oD 0ne Mrvtad L@EM ‘mnn}"nj
{mmdwm{;‘ Thiy 1¢ uﬂauql\g Calad M main Ahvesd a7Q 10
Y“?ﬁw (ﬂm.a S Y oy r'r\/)&-)r Ls U’&LM When \fouﬁ’q Y)“ro}w

lo&gim ‘
%—9""‘ {15 ‘IWJ\?OYA'G/’J(‘ ,?0\(/lrwo YQOSGM?

D) T main Hhvead
v Lo\w"(—\"\ aths @ el tA" Miveads

D Th s dad
Wil be S qum& ‘
2 ofken L\Ymmlr Le Ye \ask Mavee

b :)(u_ﬁ‘mm& \\0*1‘0\{)\ S\ﬁ\a}éodn Qe horY
coun Y g

A b Q{{m‘_;‘a Lice oz

Nl Amed
')W\own }\,,\(MA_ Coh il’- M\OQ Q%LGU;LA);__\/\'\rouﬁ\” o ?_;;ﬁ
\Ncﬁ?&m 3 S}M\(é‘ | Can UJ)S BL}(G“/] 0 "{LLW ")
ok, TOGRERETE S a0

| 0{ o} A ?vocgf\w‘i ‘
% | Yhvead. ',’ﬂmnml Cmc\m > | maia J

} I
C}'kWL’I /\\,\YLO\CX EMJ "T\WVU\J\(T f — nj

APt nome C\«on?a ¥
S

E notes4free.in
\

Nole W oa\)r\vudf Fwoqud wher kN Wwd o oy ®

Ugameak |y Tv:n)r\n(). Ty Ql;sl,lw1 node A hame of

P Hviad e oty and X mane of it Grovp.

A 8y dofuls Mo nan o] dh marts Aisd s main Tk
oty 1y 5, uhich s P defadd Vebeoand mnal s abe

hnane of e grauy of Mook de wbicd i Hvead

Edoqg.

ﬂ The SL“Y(\ W\@r\noot (oy 'H'\k Mavm! %’0"4 L‘JL"“L fler

I QQML& o SU%P@OI Qe Cly by j}w’“’k STLUP%"J 'Vbn!eal o‘ﬁ

h\;\l;gdon(\,ﬂlﬂ "

ot fovm ke veid sleUmj milliseconds ") Havous
j& :rhjf Oy '[nL(iEuGP Lo . |

= Craabeg @ Thead

®§QVQ clmj({r\u 'kwo lUCk'yS {vw uJL,'QL ~Hw Can)
6\((0’” ‘)\:s\m&, |
D We (an ;MFL("Y](ml)flml Ru na q_&({lo-‘lgﬂq& ’

D We Can Qujmn$ ‘rﬁn@’tegélf.ﬁ@efimp t

%’) ’ﬂ“" (UU):U)X' wqy ;o C“m:_-gi q. ’H’YYIU\J l's b C'}’“*QZ o clase

Hhak ;M?(mek Ao w

1) Punabl abchack o unik of raecdable code. We cas
Con g\,m)f O)(L'Ve\c\é 0N flny o]aju s ,U,,(& I‘Mk;((bqu/o R unn <Ll

’ﬂ/\b iwyvhmmﬁf RunnqL&} Qa dcxss Mdacq 0*"\‘}” ;TWP(H’"”W—’"/

C&SI‘WJ(Q Md&m& CQ_QLG& (YU\’?CJ

pL\L[;Q \mfi“funC)

LW ine A Gode Hhad C0 ks Hhe

b%) in.S;AQ_ 'f\,m()/ g Wil

N)(\’\YU\& y

Lunn abl W

o class Kad :\M?\lm(ﬂ\g

&
X) ‘\9()@4 b vwé ... w;}(\”‘a
w) \\ {ng)fqﬁl;ajj an C)L)LLA\- T}x,)Yl;Yl /ﬂ" S‘

/“q& Q_\O\SS .
¥) /“wmé C\"g;"“

USe ¢ S\noum \(\Q)’Q "

| w)/
Sevaal (0"‘-5\'VU L)Tﬂ\b :WWL o)(\/\Dgr WeRSll

| €)
'*)Iﬁ ’\'LAJS COhSL(uCL'O\' /)(L\\’U{i 0‘9 IS Qn llh.S’\'Qr]G uj. a C(CLU

Ahak implimeals A ol et

Hﬂ\i\S Alg{mg \U\'\QVQ ’L:i:j(/;l«\fm O'Y ,}{(/\(L\Ve_«:o\ UJ;“ bﬁ?"f?‘,
/ﬂr\lhg\w\k QE /\—Ll R b J\'L\’YU\J 'e QT@_)'FQO(b\/ ALV{&JMC\”M-

) Mo Hhe nws dhviad 1¢ ook) bWl ok S Yunning
U“k\ \zob\ CQM\ l‘h Qﬂ’- \C,.,l--a\ml- O ‘md-Loi)

\(ord Shast O
) Xl Had s o niw Hoiad 0ad sdatk 1k vumney 7

Clase WeThveal im\;(mc,qk Kunnalle
ﬂ ,ﬂ’\'{U\A h/
Nugthee 4O
P ol AANALD) Hhv g
k= nw ﬂme(f'rlm'g/ "Dy Thna] 1) -
Q\/\slﬂn ok .?v?vr”n [Child Avead ~Hc) ’
q}k, Gat O [chak K Hoves of /

//’ﬂw s /\\'m ﬁnL\/ «PO‘}’J(,Yov r“’\l. St(anoi f“nvecn(ﬁ_ i

?ud:\:c \6yd Yun ()
3

&
! | o
J}ov Gqf\—\:(’} 170 1-«-—-)

»4 | |
oo\ (7 el Mo d 27)

Thved ,sbﬂv(yo)

;
“J

el (Thowphd gl o)
{
‘JS\/g X(m,odt ; T\ufmu 3 (“ (L|H\ Ivr)('»\,ujpl-(0(h)/ﬂ

S\/jjzwm .ou& JYN;O'H’] (Y Qu']l,',,j C\m‘u /“"Vud ”)/,

)
9

Class /df\w\ (M)QM 0
{ ,
PL\L\JL Qa\L’L_ \/oi(l M (&L;qa akj& EJ)

{
New NG Thvead () // (e o b fyr i

) ! ‘
MQ[JTLW’U.LQ P'; AV N&hﬂf'\nﬁdl () ;

by
{
bov (ind 1265 170,)
4
A (“maia Mo d 1 4 1)

"“fﬂ/mcﬂ»hp\ 00¢c |
L 3 Y(l)/

Y
Coih CMWWT)(lophin)
4
&\/SLU’W ,GLJ’T’W"A ‘n (’ W)oa“;,1 J’L’YQ\ ck }q/‘mﬂrur)\of ");
)

£ ygkm, ot . p‘/;""H’? (" Main -ﬂu\h L

J
Y

Nak '. Th%;c\c NeThvee d/s Cbnst%Lﬂ . Qo “Thrca o O‘LJ%;L i

b ")

Credled l°)/ k2 e Thesd (A, ¥ g “)
O)Y . C\m\ct ‘CLW \o(g ’ﬂqw_ack [ﬂ;\mo f“’thol / S—; "hc\r‘qj

mc‘\‘ln /H'\""Qﬁcl :)’- HO»] n A'L“Y(\,(,L ’, 2
C\'\Ill‘l)rLVf\sO(', 3 CL;)OQJFLNU?J f }

QL;lrcl Ahvad 1y Gihy b Ak o d
a4 J—Lvan g L}L Masn r}lwcw‘ .
CL:I:,L '}/L\"LQJ 5 3 -]

J " I
) > L H‘\J") /)L"C‘xﬁk (ML\«j

$e Scond way b
Nw Q\Qg M Ququngg ’(LNM(Q,CMOQ Hhe.. b (yqqﬁ 04 l./asla,,é
o} Hat class

5) The U\VJ(QI)A 09 class mwk OV ande e Y () mefhad

UJL;C\'\ ;S M\l {nl.(\ Y&‘q,L 'Fbvfhu WOJ’LVUJ ‘
Th muwt also Cafb /Sf[(mfl'() bo Le? 19 @q(u\kan Oj M hew J(mel

Creaks G(pfw%f& f‘s[‘D QYMJII Q

// CYULBEQ St(oné '\f\"YQ‘{cl, L\/ “Ukjunjjl.rj IJ\”"E‘\J .

class NewThiga) @deds Thvead
¢

N W'\LVML ()
"1 | Z/ C’YL@& O NeWw) Se(ond fn—\\f«x 4

SV pu (" Demo Thvead ", |
SYskon ok print |- (1chld Yhvead ¥ A dha)

Sy O
I Thin s the anbey poiad for Abe Second thvead
p&a‘wﬂ NUAL)
% e
;go» Und iy 05002 2)

by

d

J,?ov(mjr [:{:} ;70;'"”_)
Syls\("l,oi 'rfv:fHL | (”CLHCQTL’Y@@Q"A l')
’ﬂqvqacﬂ 'SIEQP(S—OCD;

f
s

Gtk suk o Y
‘g \'IS\«U"’] ’}’P\H/\})") ("f Clmlcl l/))r@»yu‘))-fd }‘D,/.

gkj&\((m ’UL‘-L s Yw;’)’\l % ({{ E,D(F{)"I'j (L}:l@q\ ’H"Y((\g(f/) .

y
Y

C l AQY lg\,\){hc{’”ﬂwu\&

PL\L\}C ckalie Vord mays (S’L(:f;j Q98 7)

o NesThecd O Meveahs o hew 4%«‘4
hl;i
R-uv (;n-}- 'l"::f p 370’, - ~)
syl o b o (e it d -y -
: Thrad- Slep(lus)

Y -
) cadch (Lﬁhm\v L&CKQTL'W ¢)
, S\Jb\»(m,ow%.,\'ﬂ:ﬁ} l n(’f Moy ,}‘,\yh)k %meup}\eaf”l'

Sys o 0k pink Lo (0 maie o gy)

7) o

Choes inj 0 /'\Wvom\a

X) o O\VYWO\(s bahyu | e oy 1 e CLJ(}./LU

a\)r Cap Lo o\ﬁuw'ilfq E\/ £ clavfw(!

Stvaal m@r\nacbx Ah
/an‘(Lt Le

dckss JOS()f\uu YY)L}L#’O\ Jdu On\\/ ¢

D\DW\;MM \n YUn ()
'Vth w\"‘w \[Uu ;MV[thn’}'

[

$) Th satre Mebhed Y

ﬂuhho\gh .\ﬁ’lfm\/ Va\'A \)’VO?(G\ Mg
.S\/\Uulél \::'Q, "\vk\(t,. Cﬂ.(ct fm\'\/ Lu'\m;n J(L\/ A)9(,;,»\/) {n

ov moJIL'J v Stme Ay R 'HL.\/(,_\,Lk w Il Net Le
buﬂ*lilcl;') Otn\/ 'DJ(/lL\V»L'-OLX OAL\U mutte Ao,

— Cyeah g T‘\u\ﬁ\') , Thoeadt
k. - | , \,\v@l ‘v
7?\ So%ca e \ane l?@ﬂm wsm(j on\-); A o A <

L;\l /Ha\’E,C\LQ ; M ow s
f\f\\L M ain)hn\/mé Cl/lcl on C ’}LWOAS o m& |
PYD%M-M Can -S?qwn o)

ﬂ T &\0\\0@“‘”3 V“\’OC}/\‘\M

Mam{

Qvgan\)I\nvu QK\HA r\\/WLC\dl:

// C‘\-fq_o;el Mu\\,.'\?(g)s\rwcaqodz

Q\CLS&- NQIJlemoq ;m\?lxmmla RU””AQQ

4
S\«!\n? norms // N ame O,E/H'W{ﬂo(

,ﬂf\'\d'\(l ‘(;

N Quﬂ"ruhcl CS\A 1 ntl /\\r\‘vuch ﬂqw.q)
{

Noamg = Uavzu&h qm/’

k= new Wovead (Ahi | name)

Syshm |, ouY . \w.’nH A (” Ko ,Hﬂ-y“d v ,}_Qf'
k. ShakO2 ldhak A Hvead.

Y
l.,y Y)o}'nX ,}%OV)rL\Wl‘*o(f

//TL\M L)(\ncz Ln
\f)uL\ic vard YunO)

| 4 .
fov (i ¥ =% 7 Lo
{g%x{m '0\&\,. V'\.’;ﬂ}f\f}
’I’lwmol.g(uy(\moﬁl

Y

S ol Ch (‘Kn)(@_\mu?}(ul@u&()\;an ‘Q_)
{
S\/s\m ,’D(-\’\'-rn‘qsr\/? (nam + (’I%vaulwluﬂv)/‘

)
33\[5\‘% o piakln (nam 4 ((zn;L"j “ Y
7

CLC\&S M \,:’TH (D\CJ Demo

{

)

PUL\J‘Q E)(O\L‘Q WIA Mo 0 [&l’nln? oq%gCJ}

{

’m;;{

)

Jua Yo b Dvisds head
%Ymo&.g\uvy ([000 0) -

Cokdh, (iﬁkYLWU\'))r LJQMLL?L'G" L)

\
y

f[?i

MW)f\r\'\(ef\A. /x\'vu,cj (0“2 5 ”“““F”)
N ew Ylviead /\A\ﬂmcﬁ\(’ﬁun < Vmam>

AW /}\«ﬂ(L‘\J\ 'TLWQA o!\ C’T[,\vu & s, ,4)

O o S

7

Two Y

Wwu ¢
bre W Y

/wb L(’

/\n\ru, v

\

Twe
"l\n'\‘u %
Dne

Two

Mva =+ \

\GN i
2

3
VL
p”

|

Ohe .)

{wa', \
Mo, |

@MQ | Qu‘(}'\"‘S

/fWO (73 | L\ “

/\L\V w &k: L:"ﬂ

W Medlvead (mr)/ // kark f‘r\«\vmalS

hw MedThvead (“Tut)}
P)\0@5\\4\/&4\4 C{WWL“Y/

Sk o \’ H(ral s Hvead ey)

Hq;n){L\V EG\A {‘1"1—:«1 ‘

&)
3\Lbkh3 \gA we O) ﬁw& Jow ()

@T\uo walfs Q:m:} }o Cl’\&hnmL ujwc\m Q J(\ﬂ'vlwl hay

) %
/?\ms\u&,fwssr)w& Cay Cdk M@ ,\L,L e bad - Tl

itk 1 s A{g:m(& L\/ Nved . §
C}l"‘“‘& ’?’3““"’ | ,E:mal L)UO(QQ&, ;SP\\:\J(C)/

»ﬁ)’ﬂu 15k\(\.}((MQ)rL{_,C YJ’LLVM L/Lﬂd I,F/\’]'\Q /}’[‘KQOX Urmq
wh b b ic Calhd W g ‘T vd f] i obhaur

0) Whle 1sAlveQ) is otcomonely fud | A method that
Wt koi“ MOVv¢ Comn/.oq(j LU Lo luqi)(,?0\’@\ "L‘Vﬁqcl 10 fln 34
ECQUI& JOM() .

19“"4& vord Join () Hhvous I’*"‘W“’FM@%QPL“M

’})'ﬂu; M{Hnol ol Unl:\ ‘Hu A’LY(‘\QQ 0A lu"u‘c,L s (Qmuf

’\'le;nﬁ\ﬂ.n , ik nowe (onmey ?‘/0”7 /H"{ CDQ(QP"' a,], }Le (a@;:f
Avead wathay vahl speesbid Abvesdd Forsy g

Cjb“" g L)o\:k 5)0\/ 1G u/rYLqDl ks ibm,’,,téj

/[m;naj 30{0() b wou L‘w JgLWalc[@l A”Ogl"?:&\q 1

Clas N twsthve %Vlsmwk Runnalle

4
SLM@ nas
’W\‘Yu\cl 'c/

l\lQuﬁ\qu (_SL(;/IJ }L\re,aanam)

Namg = Mf»\ftaotfl‘wmc ¥

b2 e Toeed (i pame) !

3\/>\(m ,DQ}.Pva'an (“ Mew T d 7 +P)/'
v sk dad O ff dok b Phesd

P‘-&!D\l!(\f()l‘[)(Yun ()

{
by
.
’gm’(‘"" 12y 120, - =)
% 4
-gyé\l‘fh ,U\i-vv:n“n quw ,\, lf g "'l’ ;)/I

,ﬂ’r/k\ol &lu‘r (']oof))/'
)

Cok ch ('Enlrwvu)) ke dewt PL’ m 4)

qz’,y\g\)b\&m oub -?Vi'nL \4 (maﬁu X U ;ﬁjﬂwh}p/d%,

Y

Syskm ok cprint)a (nam g 1 gl)

J
19

tloce DemoTora

i
PL\LU(Sﬁro\h Vord mala (SLinj CuazCJ)

N(WTL)YQ‘\CL OL‘ e Ly HCMJ,JLNU‘ d(B/ ;,)

'\JLL\)TL\VQ‘\OQ bLL - W N{U,TLVU[J [DVJ“LUO)/
ULL«)(YLVU\A ()L\l e o NQK’YL\VU{J ({(TL‘

SY)\&M Duﬁ YYW\ (/IW\MD{ 0re u ,_,‘\ AN U 4 OLI \r ISALLQ(Q‘
57@\(", ouk ?ymﬂn("ﬂah X }uolsﬂ Ve aly Lk isAl;v(())

SYQ\W oud ?\nq“ ('ﬂwu(“m AN) W BA,%U)
t\“jq // LU(M/" gg‘r f“«)’tﬁel l’o f,n L :

Syo\(m ouk ‘YVI‘-'?)"/I Crftd%;l;nj j;\. '}L.nc,\,i')’bifrm’_,l,,f/l.

ob\.L.)61 ~()

Oy ok - o0
0173 k)qu()

J
Qodrth (’in} tva\xJ@ch b {)
)
5)/3\»{%0 Ob?l "qu]n (”H\n JLY(.U{‘T J(W(JP}‘(:4)
‘79
}
AN

ud [B olo)Lr ; ng\.:U{U)/'

i 1+ EDER . Al w Q)
g,k,§5A\:UQ())/’

-\'N;n\"/} (n/\vﬂ.xcl 0 :50\

Ve o it “Thred Joo fse e y

km ok qv;’\”n(h—ﬂ“wad oree sa i

Sys\tm o
| Sys

5\/&

373\(“’“&4} -P‘Y:NH/} M 4y Yavea d {m\l;»j")/'

3 Wﬁ:\r: 1 J‘;w)y\nvz,.ﬂpd.l Ls f},‘ﬁ,‘}tj
e S "% R 1,]4—--7

’fw o Qu 3),,'.,-7

/\LWU ,{‘1;)4‘7*

1 Vln\ol ol 13 %):w

Yol

: ’Ttuo N
/? ﬂrwu, :i/

Mew z\\/\v“ 45 Tvea A (o"{;g jm&,'ﬁ) b ",_r

Ntw H"Y ""LJ "* T]’WL%J (’rLdﬁj § (s () Tl

s ' L, »
N tw ‘\’LV L:“’l 2 ’W‘Yu‘i (’ﬂ"(ﬂ{ ‘5"'\/\‘»1»"1) Vv ’Lr \ tﬁﬁl*wo:‘s ﬁJrLt
. ‘ ¢ foth
. 1‘ ‘Ib‘.! . 1\/0-& 5
ﬂvi‘ Cﬂ 0’;‘1’ f a\) | L"*’ Bing -‘1 \ ’ﬂlwt"!g‘ Hnﬂ{f el""b‘(
we s hV TLJD 18 Ho‘;,} /\'\,WL&A_QX}]“V}

Y _/“.‘JQAIS O l\wq. 'J }\;Wq /‘INK :)

O
—>The Aobionbuert class

,7{) An ACL‘D!}QUM e %UWJIJ wk Q L

L&’k%;' ;

¥ 5tl:cl{0(.
-}f) A(Lioun[n.¥ dQSS CIQ.F;HM J;om ;”Jr%j‘/] (G,}Aaﬂfd ,‘\L(}A" =
be wid bo ;c\enwy &ny mu\;,f{w 0o 61 bed oM QCL"% oot

ALT _ MAC I« , CIRU _Mag) META _1ag),) SHIFT_mp¢

ﬂ Ac\iof\Eum)r \no._b %Luu Xm C@&Lucjfo»&:

A(L'qn,l?wmk (GLjﬂ()f Cve | m«k JIHY(,SL;J')Q 0«:0\)

Achon Cyend (o Ljed gve 1 of b P Slﬂng tmd) moJfF@QD

ove > uunt, b e sbjed ¥k Gl M curry
T4pe - 'che. 0,} e quant

tnd = COmmand &L;oj , \
MOJ;,;;M 2 odi i LoL:c.L Moc}ﬂ,gq ltk\/j (ALT’ CTKL"SM'H9

W [)ou.ud whan @, Wt W ?/"‘“‘Jd '

ﬂ e Can Qlso obkain /Pv\q Cf’;“maﬂck nand, /fw i fn'uolc,’,yj
Ackonf vea bbjeck by Winj Ak Ak, Grmmand (3

B e

”‘Tﬂf\t %}Hoc\'}_ﬂ,:w() MQJ;L:)C\ '\’Q\L,wn, O L/o\lwg ,1.[,,0(‘(|

;\Wl;(olig w\/\llQL Mol}";u \(QL[_[W we TYU/L(ol w\qv) Qy et
hay ?maJrJ .

"”> Fﬂ'& P\A}%xmm)f Q\“mjf Q\O& :

2 fn Aljushwearbued s prasalrd by
Thae .%'avtf\j?u GK(&X)us}fmm)f I
ﬂ’ﬂ\l M)w,kmw\E\l!n’\(Q\st c:\J{\r\u ‘nx"jm Uyu)mnk Mfm& Cor be

wad b UMH Yhom

'f) The. Cmglmn\é M(l ka Mthﬂ% ol | -

Block _ Decperinr —) The We v ded st A Scrall by
)(’D 3((2\@1@)1 (dCQY‘LCUL,(\ ‘\5 \MM'-

Mhe Sl b

o covoll boy

BLock _Tuererent — Th Wo Cided insde

Torct)TO i')b{(&iﬂ K Vaﬂ/‘/ﬁ(
‘ — T shiley was dvoggd .

5 The buhon a Xk wloj(}k cCyoll L
L Q\;Cl((,) o A cvean (4 UJM

— The \L\«ﬂ*n ‘& Jd(‘bﬂ? d{ J(Q soveld Loy
W e Q.Udﬁcllm \.n(uw N’ valeg

Un IT_ DLegeHen) +

UMY — ThneHErT

B Mjhn ety b i Conshuchar K

Mjusbmat vk (Adidbde e i 10 1 a g
ot dods 3o How mo
Hou)

e Qe s qm@m& h he objedd Ahad gﬂwm@d ALu,md}
Noke ", Thy, 1, AILSHENT_VAWE . Wrangen, dal tn dicdor 3o
QCLM%\qQ,\ otand | Lhid s o, iﬁ)m;u Costant
?J*-) 1 Qﬂluql/x AVJugirent _WALVE - (Marscep
EU(-—)JWPE O,F Wik & 0kedakd Jot <
datk

) Qb bl midhed Yhasy b ehjcd ok geraake
’H@&ULA‘%:
1) %Aijmmhu,}w((}, = T9pe o} ke Queak s obdene f

#) %iWaﬂm) '_> O\mawl a+ A%w)’m&n")'4 OL‘}}J\;NG()'

A L
O m oot =

-—)M (om ‘75 n(q—} Euml Q\QSS { | t ‘“\ -
QD COMFG"’JU)(E\{LA fs ?ﬂz\naﬂz& Lulamruv &iZQIFOS:J\‘an
& V”““W %f QO C'Om‘)cmalr s QL)%}(J ,
,,;)M Mrfou,\ ‘b}?u ol Cw‘mwif Ut ls

CGHPONEM’\‘_HlDDEq —) The Lomrmg,ri" wos th&lrjt’? r
Component - Movep — Il (omponsd Lwax o

ConponenT — REIZED > T (ampond wny i
CQHPQI\-‘QW'—"‘SHO“J“ o ()“’V QO/V?]NW:‘ L’E(Q‘ru Ufzgt"sé‘

’)O (OM?G’MS[Q\Fu;‘)f COA;LJuL.er[K
ComYawEv«u#(f%row Sve, 47]7()
D Comporu Evuk G FheSpuchss of (om i Event

Fotuwtvd, gl ok € 110 boEret

) %Com@,\tt)m%od Yehwn H wawqi Yt
%ﬂ/\quﬁg Jf(Q .ij{nl' ,

Com poaes) 9ol Comporent(y

— Tha Coa)m;nuE\!mjr Aass
e

,--""'"—--.._____H____J

7*) K COA}GJM Busal ?mmqﬂfdl l,{)\qm o) CDM?_?_"”%_,_:YL&»r
O*cjolui 1'0 OV Y(mov(d onm q CGn"‘ler\M

) TL?LVL aw /Lbub ’})/Fq o'ﬁ CO”’\'QMM QV(ﬂjj P/L\-l CO“’L‘UMC\&;‘]—
class dfinsy 1k Conbaals ek Go bt b i deality e

ComponenT_ APYCp and Componens _ QeMovED |

A\ . v Ve
& (oY Ay \ N

*7 Cor\?s\w&ov Aaxf-ﬂé Q) ?0\ ‘ | 2 |
CO“"“‘%GUM*(COM oud Sve, m'\V "‘J?i (OmK)or\ar& COMF)

Comf - Ccm?ouﬁk ,\—\na} s QML(Q\ 8V ‘ﬂmm& Pvam %

Con)fq\mm .
Sye = o b Yo (o)

Q) g ld O ekl Yebom npu,,& e (M,F w%%
Lo O C\Aluj \0 oV PY('“"W& E‘/ﬂm ’I’(Q fon 0\1%

(L ok b (4
¥) Wl Can OUf%m o ngwﬂu L@ e (onkalng Al ak Presatrd

Al vk \oy wifny C}(Hof#mm () methe a(] s

Mo\& o COﬂ\Yanm}s \ﬂkhdb\ 'Jlﬂ Lujf)'omk, Fawv(J ﬂwmcﬂnw O

Wit Lom VOM W radd b Fl’%ﬁa Ahem (n fotaing
qu)fc\lﬂ-\ 15 o (0,14\)0,\1,,\}‘. f*lﬁal \noleh ﬂchnano_%; O/H—q
UM{)

The Focus Guenk class :

DA Jotwnwak 1S c{}mm WLM a Lomporadk gain o

laso I _Em%m“i- ‘ (o sk QnkS .
\D—ﬂ,j:kiumk A :..Xxn\:ktot L\/ I M\Ujb\
 Fotus. GANED L Fotus N0V

E\MA b ol La&

%) i et & 4 Subdass 04 JLM
m (oh;,\,(u(_jﬂ)\}é

F (vt (COW’ [ey by, |
e LM,FM\(@?{M i &LP \/}7% ﬁ'w‘ 't ::Jf((

FocuCuat (C"’”‘?W i i
e by W s

%otbu T hed Bl A 1} ke
M fo W kA7 & =
Qkomvtll M::l)hu,u kj;okch“‘k * B L’M 110%
USU\) sy Ime - G y Lagw , .
Aum ovour) \:\jiz) ca\wl m%ovw“\ A _OJDIOL& °N Snl’:(%?m’\t

) i
JD LOOLCLDJI iS'TLMYova l)

STRCE ST
’\Uﬂ?ova-w.

QLaﬂ}Q. s

(Om Do ¥ w vin |

T In \AEVM)I Q\assj o v

'BO Th\)u’((fumk' (s O Sk«LKl%S 34 COM‘)MQ\JMJ
W Th s e SUPMC’[&SS OJf o \%w m?“l Wk o T Subclassey

s LA

UL \(L‘IGVM'} anl, T‘\ous&uujr.

A\ Im?u!dzwlf (e 44;M M Jéailowr.\, &'qL-} ,',)_me
tomkonlts that Can be tid by obYain ‘J;M

e b
an:, mnew} | LU OMOU‘AI& wﬁ_\qﬁ'\[«w (utrr\')

ALT_ HMASIC RUITON 2 _ HMAske META - HASI(

ACT. Caph —FIAck Rurion -HASIC - SHIPTHASIC

Ruiiony _ MAsK el HAslc

;3 P\\l—c"\rﬁp\-,pbwn () \ {5(001‘1'{{90&3 /)(} ; flm&"'\bomq(-)

) 16dlpewnl),
) MUfL\oale Yok ok i I U SUVIA)

L \‘gs\fl}l Nown
’Y\(wd o g b i s b o ?ﬂ»u&ﬁ{_oe ,

pE
fA
O

& ’ix&m o M)T,,,-—(}.\._fi* eyl

A A Thmual i fj;w.mﬂﬁf whin o Q&ﬂgéﬂﬁf Q

\mr ;)(lm " Q\u(\ix_\,* oV UU\'\M& C_L-l(qu/Q it [
" Stlecd OV c\q_&duhﬂ.

'ﬂ% QAL /\uw ’\'y()bl 0/? Hm l\/(nl’l ¢

DE.slzu;_qED 5 The W desdecled 0n Vkem |
SELEC’FE_‘D. — T Wi lickd an thm

’Y) j:j((m{;\ﬂﬂjr AQ,F/\JA Ond ;nl(tja (_o/u,\m_,bé ,"IWEH OTATC.
CHAMSED | Mok Sisnda a C.Loﬂj(of shalt

”h Thmuent \/\&x)(lw [OMLUKJFOY

Thomuent (Thomscledable S, 1nk jr#)pe obj ek MM,

o Sl S

30 SV(—‘)‘Y‘L?%MC& L3 /-H,\((0'\4?0'\(44 "\"\‘KJF ?Lwa\l«o{ '“«g

QUQ/,—\' e .~ ’“”U" WH)L))' ‘l’a A }UJ- ov d“”(f
WarL, . QI(M(,,}

Tope — Type of weeat '
ThSpeaifie 5k Ahet ﬁﬂwi’d 4& ‘&fn wml < Fwﬁ(ﬁw
Qﬁt‘? QhLYL] -

S)fﬂﬁl) UOYM)f S’\cﬂt o,F ,}Q ;),(,r; ‘

A Pk () — d bo 6bkain @ Yune bo e ik
Aok %Aﬂm\kd an eat

ek Selechalode () 5 (o Lo whed ko obk sl avefeuy,,
Yo Mo Timedecrable objedt Ahad Yrsiaby
0 LUtnt

a0 hibed v g L Do

fov Yo tuenk (&dﬂc\@l o not Seleded)

—The Kwa\adfC\ass.
A A \&jQMtnr\; s %ﬁmci. then [&yLoaﬂl ;nYL& 0occutf
A Tt s, Arvee %UY% of Ly vk, whith a1 e *\%14
b\/w ﬂh}”ﬁ“l (w)ﬂlnh, | e vodle f

\(E,kff_?rti;se p, Key RCASE D ¢ KRy MpeD

g™ Q'ws} Yoo 2y ek Ok W&’cﬂ Lok (s ?muel ., d
Yalsesd -

r‘l)’“«t\au}f Qy ey O Ceuls On\\/ L,J\'\Qfl & QLG%\(LH L3 jﬂnuaﬂfé ,

A T o mey ot oty Coudels Aled dofid
Ly lQ\TEvmi. Tov OJ*(C\'MY)Q aites)[Lwo.ﬁg VE_9 an

'_'7% HMQ\J&% e lase ((ao&)

int jdfléx&om

g T‘LJM’J; o V&Q}ML »H\crL W[Wa)\m -
Cauny 1le Luat, The Ydt.uh \/af,u wi)l be O

Comkans ddt{ml L\} M 0 lue € vrg ot

e ol
'57 NaBUAToN = \alue ;mlf(aﬂ& fH']qQ ho Lukth o we VV
ov valaud .

¥) Java S 6 alled Ay m eth

(o 0'7(){,10&(3 09[M Mowg %\&t\ﬂt J(e

Cﬁm\for&& . ’M\/ L
?c"nl’ gd(o hon OnScreen (O

int %LJO(0h§ Y 0O
It Geb{ 07 $0run)

e b ha
) Hare

e

\s o MOwxC et BN olbtain 4

A SOraen 'ﬂth\M 'H"Dm

Vo1a oy uz\' J(L\E(L
) The %Lomkononswo v obhod dows & Point)

(Of\)min$ LO\'\». »\’\u%omcl‘-i [onffl;nqk.

notes4free.in

— The HDUSQIAIA@IEer clase.

’b’ﬂ“‘ M ouse by Lnd Eﬁ&é+ less) s a oub cla ss @,{ ﬁowﬁiﬂt’
Mok all mila Lcmq, tohaalt Mouse whalt ow led_ ,{fov Sw@%%

zD(TLUO iﬂx*tjq tbulﬂ/»dj cl@?\tmeﬂ L
W HEEL - Block _ scroll —7 A YQ?Q..UI) o e dowa SO 2y,

OC-(LL‘TVui .
bun ol

L (h 6wy

(o | Hovethacl@enk ((ompomek s 1ok pe, oy e,
\\ﬂ)(M()c\:.‘ I«i"); :n}(K :.—} Y ; I\"I)f (\: (,(4/ LBDLQCU')]f)’fj)tu(a)v?
J:ﬂ} S(‘w’U How | ;’,},\ (}\n/;on)—i ; ;q,\ (DUA-{)

WheelL - ustt et D A v op o lin

)i el Rodaba 2 ()

T vk A AV b4

GI vokahenal a1 ’YJ(W wdue /'
\‘Q\D}‘ML ""Nb\« \n Covntey oclewise Dl 3L cl
)

“[th.);x

Yo‘:\ \-. (V2

1) X ca&SwsUt Tqu)

T vk Wi U WEEL s [Nk (L ov WHEE (R 5ere(,

notes4free.in

I T Mouselueat Class

’f)% A Sy, ij‘m, 64 hn @ WU JLVU‘K ‘

MOUSE _ U cicep - The usey Clicled A Houx .
MUUS‘E-DQA%ED S The wu dv Jd A HMowde
Mo UsC _gnced — 'ﬂn Mo {4MJ 72N COMFO’UM’}

HGUJQ—QXI’TED —) Moy lel«c[ﬂ,a‘ﬂ 5 [Um[)ﬂ/\ﬂ-ug‘
HMoust _ Howkd Mo way W) v d

Moust PRESED D moule wod prote o
Mous< - Lelmsty 5 “The mou wa vileads

%) Conshu crov | Motseuent (Componak S, 1ok A9, b shen

;Q.X mal'ijlra%} % S ant v ;1*\’\‘ e\da
\DQO\[&!’\ ’k“fki.(g(jtvs ?oi)u ?.)

tndicalg LuLl(.L f’ﬂécj;ﬁyrzq
"”m"mw %Wma”ﬁa« CU%U\MQ/;L \nLcaL

wl\ﬂn O) oW LY ik OCCLLL(J ;

WAL Yvawd |
\)cuu(l nwd 7.

Ay T dL/\MVWOUUs O

; ; £ TR
” M QTAC Copnk 18 'i’auul \n IS

ﬂﬂu‘\fﬁm’?oxu? %l@j whicda U)f\w t’[ﬁl’ (ol 4
\)op,uY PPRTRLS app L bo A | fov oy |

x) %u\\ ¢ jnf}j () mibhe o wid b Sk n M
\ Loovalinalsy o} W Mol ke Mo dlunt y 6y

»Y) %Yo:q}’\) o A\)WHG\KVL\yJ-M MQMf\GCi Cawy &t ULQC(
b O\d\“l\{q %'(Q (@o\ig:noﬂ@ ‘

1) brandlafoind () bndhod chomgas K Lo of ke tecat

" %rd?gk Coonk €) mifhed pbbein Yo numby o} mew dide

Pov Ay wint > %}Q\thuun} O .

ST, Tk v Qass
D That ais %5&8 \0\[

L\)\'\Qa Q\’\Q.\o&«w O SLn)tG/LLo\ w A ?VUC})\M/) ;

Vot (e S, 14 Ay
Lo W, &w,,,ﬁj

X;J\X(_i;(\ﬁ ond Lod aveas

4&) (Ons\'-(uc,srov J,'
re vt 158 efaal b ke abjeck bt s
ALy Ay pe

/‘\/\l%‘j‘(OL){lﬂ Q\VL/}L]l_S SYQQ;LPQ
[ondrant TEXT AUE_CHAR).

) TdrQyent AQP(:IM Hhe r\f*@jm

. @
T Windoduet dass

f@ Theve am Quen ’bpax 0 LM{AADL{) Quan ks e QUnSfLQw&
O‘”DL’HGUV MLO\h;n?JL au S[«Om L\W p

WINDbW A criyxred = The indows Was achuald

]INDold —Clowe b =) Whdw hay Lo, Clow of
D wu 91‘10“-&6\401 ’%’LOA.L" 'KL Ld.:mla 0

| | be ow d
WINDO _ DEACTIVATED 5 (inlew way dtacivald .

WINDsW _TComlFIED = Thtolndetw toas [toaihicd .
Wik Dol ~ OPEMED > vy (oindow wan @qucg |
D) Condesdhov 5 1indowstyent (Window 7, ik Ay pe)

ey 9 15 a 74%& o ¥ objedy Ahad aﬂm‘&d Aot
IS

P Aype d, ek

WINDOW ~ CLosin

”l’) %{\‘L{J{ncﬂpm() MQH"'UOL 'T//\’ S’lljrl&VM ’}/Ll LU;n kau 0)0)’((4[
Aok ‘BMJ«’CJ Ma et

— Cown@s of el

EVent Qo Dm\,:?};o o |
| D Butkon S C]QWQ.B.E% Qd:on Quanla (ULQ,] Mo Lk,

X ?Wusecl .
‘2> C\'\ld(\pm& — CIM{Q.G-:;(;\Uﬂ QUQn\/S UUl\!In ’u’\t d\md({DOQ»(
s Sdeckd ov desdeck d
) ot — Clmuaﬂa Henr st when Y ehoice
s dargd
Lt»> ot —) C‘]Qruuajﬂ achon ks whin an Tk
< double —clided , Qualn Them gtels
when Vw16 Seliced ov dgelede d
) v s km — Guayaly adion Quu)s ke, A ons

em s Solecked %wajn km Qal
whin & C.-LIQ\CQM et 1) S’“ﬂ“‘duﬁ{
0) Sovellboy — ﬁlamaﬂn Qi'Jquw.nHumH whin e S04
ok mgnlfu\dm :
e Jaeh ey o Ko
hou o Chawded

;nXow Qutn 14 bu\\an o LU}ACI(S)Q.»-‘ L

=) Towd C-O'n?omh) C]

&) window 5 (anuder W
| ochuadd, oed), &qaa\%ua@@ e,

Deb oy ;Y};On ,

jh}(m a (@
c& 3(@ Y@L QQ\:Gn

D Athonliskensr —> Dedings 0N mekho

Q\Rf\\é.
DPASMMMX Ui, -3 DQI?;M, s mdhs) o Yeaive
O\A')ub)thml L\fmk‘

3>C°M?0hw\rtis3mm - Defing ow mafheds !Wtféjhf“
Lu\r\aﬂ O Cﬂ'anng,L 1S L;Alﬁ,nfﬁm\ud/
Yomzd OY shown

D ovotulistow Definw Awo mohole b Yelonite e,

O Cem\'Jcanr I\f QA&Q& Yo 5\‘f Yemoued
i\(om ON Cur\)_(ounu ;

. qu{’\m 3(&}0 meLols A‘DWQC.o‘jn}?QULQ/»

oL COMQMM} (30\1,@ 6V \OSQ%QQ\.@ "

;MA Hhe mQ)f\"lﬁcl lo ’Y((ojm’zg LA_‘JNg/)
+ Yhe SA’JZ 04’ N \\(m (laangus

S> Focus ULB‘ QU

) lomhva T oy
&—f@ﬁ“@mﬂ

oo > D bk b i
mM O \C, Y s 'YVQM A Y deancd ov Jgpw()
—) D(Lg(tw;‘ ,g:! U mﬁﬂﬂﬁfb bo v CCoy 1) LJ’“M’H&

moult 1 (\de d, ke & fém")owj Qa8 ay
QDM?D"Q“)U i \n%& & | M@y H)

Q Mol Uskws

°\>- HGL&SQHQ);MUAM@ - DO.?]I’\U, %Luo MQSrLOOL\ L‘) ‘Yé,(@jhf?e
Lu\qer, fou mow, Av&jjm OV Mo d

) TodUshng —> Da,thng ong mithed o Ye(oni e whey
o 4ot valug QLQﬂ(}U& -

l> M‘m:lou‘b&”\“@* ety DQQEVM Seuin MQHAOC‘& Jrv VQ(G?MZe

Whan a toindow s achyalrd Cloted
QquLtUQQL—(ﬂ) OYLNJL ov ﬁU.F

AQS\‘QHMMX ;E\Hn/L o{\tjjra_mu f\,h‘\fﬂg‘ﬂlg

‘—“DHomcl\lna M owe. Cvank |

%) 10 hoadl mowe evanks , s - \PMVLW laf
Mot Udvu ond M Hobu Mobon Uik l\nhqioch ,
L domsbals ke protss - oy disph
0) We Mouk 1" M. c\];[;[nq”s S—hé@
WIOUL mubrod ()

0 N Jellowry Apy

Yo Comnt (otvdinek
LU:M{M -w‘isf\ﬂ VMFM

UDLMO»«;,LJZ My Moty Qyant !ﬂ&na”ﬂ.lé,

mpork Java, aut . # F
‘i'Y) GYA' _ja\\{a\ , C{Lu‘l’ .Q\“Q_‘, "A’;
i‘MVov¥ J'm\pq IQWMT X /‘

a5$ Mom@w%g it AWWF

PQL\:(Q]
{M?\LMMK HowUist] How Fohan Uidiny
{
-S\«ring msg = g

ik X=0, \jﬁo/“

guuit Vol dl Y CO)
OAAHOLU&\:A Ly (—PNJ)/, |
ad AH 0L ﬂO\,lc A Usjl v (’H\M)/
Y

// Moww chiddad
?uﬂ:g Vo id moustC

i r
'}LCO/
‘jc\'b;,

g (e d
meq < mowe e)

mvéa}();

\1‘ LIQA (HOLU;UZw,,} M)

Y

/[Mowy knjf wul

[)L\L\;(\lm‘ol MGWQE”*WC{ (HOW(@/&A/I’
{

n =40,
Y2,
MSg = " o uk L"J’ﬂb{c‘ "/'

11 YQT \:»Jr()/

[/ mowe, ke d

)

YD\LUQ \101\01 M ouwglen fluﬂ (WOUMQW/IJ(mg)

LT
y=z 1o,
mey < THougl e

\ft[)‘\l\q}’():/
)

//louk« N YYW‘[‘
peblic goid Mowped

{

(ﬂo ux,—(lZin)(m»k)

L = W&a?érkk);/
Y- m.jl}:}(.)/“
Ms ?“Ut}w”/
FYQ ‘Rl'“)r[-)/

/I buz\\«h Y&l‘la’kfﬂ

V“L\;L ordh ok
Loy = T gund)]

Yz Mt.%ty0)’
‘jwls o ”?J(r';y" ’
q}« ’Y(Y‘ulnf\'”/r

hleag d (HouaCuen) me)

iy

/() o WY l\fﬂwﬂl .
VU‘\’\‘\(\!ﬁl\ck V] 06Uz P\rf-*j j,w[

(HO\L{&GUW* “’U—)

{ Lo 9dnx),
Y2 Mgy ()
MSJ’/('_%”}

shou gyakig (7 DY)y mew of
Trmegduy b

3 L5 ()) ’}M’*'Wyu)/'

// D:;}J\‘ly |

VUL\:L Yo) Cl Pc‘“\"}/ ((IHFLM 9)

| { j Avq‘uil‘rla (Msj/')t’ lj)/

A
V)

Hondling Vohtod B

N To haadle %Lomcl ULy | we ua Ko Samg
(gﬂ/‘ﬂ-{d OJCL L"-L}U\/L{ 0y S\’\%Lo'\ n holue (um+

4’) L’Q\k]‘o I")T)[N"lf»l’ a \CLyL\S’Hﬁu mx}af

~ e pessep IepRetesrser
) Gy aqoh o Gl Wi TP e

ey 74eD .

pimsabele fi g tued boodios

\ry\?gy,\' Java aml(ﬁ“ |
¥ Java - awt s JLYM} ¥,

[0
YQ\:)(JQ\VCI C\[’)’)&"’ %‘

"

Jhlie (lass 51m{;h\‘<\/ tukindh Amﬁ,}v

\m ?\QMMLS \beb "

{ o
&Li;na MS?}’, LR P
e, Y*/LO ,

PUsL"‘(_ vord 1t O

| O\Ac\\(nj(}slu.m UL%)/
Y

in)r U = \

PU\B\:\ \Jojeh l&yfusw{ UGLL;{ZVL,)J,)

Slnotu55ra)r% (” l(ny Do 2 ")/'
ﬂ} 2 i
Puﬁ\f(per d l&yl&\acmo(Uﬁ}/@um} &)

¢ { .
Showshatu (1l upt)2

qj 357
Wie vor d \Qﬂj};ﬂd ([leyevunt)

i |

DF :mga} ﬁ}(}’Qy(ch()/
msg

Yqvain)r()’/

)

D{s\';\f&\/ | |
vk (Graphis 90
Yul\lgvmal \70«'4“% f

3 C} AYO\'\U‘SL{% (MSj, %, :7)/

¥
N

5th Module[Applets]

Applets

» Applet is a small program that
e can be placed on a web page
e will be executed by the web browser
e give web pages “dynamic content”.
e Java Applets enable user interaction with GUI elements
e Applets are Java programs that can be embedded in HTML documents
e When browser loads Web page containing applet,Applet downloads into
Web browser and begins execution or applets can be executed in
appletviewer.
e Applets are not stand alone programs.
e Applets are specified in html document by using applet tag
e /[* <applet code="MyApplet” width=200 height=100>
</applet> */
e [thus applet will be executed in java enabled web browser when it encounters
applet tag within the html file.]
» The Applet class

o Applet class provides all necessary methods to start and stop the applet
program.

e |t also provides methods to load and display images,and play audio clips.

e Applet extends the AWT class Panel.

e Panel extends Container which extends Component

Method Description

void destroy() Called by the browser just before an applet is terminated.
Your applet will override this method if it needs to perform
any cleanup prior to its destruction.

AccessibleContext

getAccessibleContext() Returns the accessibility context for the invoking object.
AppletContext getAppletContext() Returns the context associated with the applet.

String getAppletinfo() Returns a string that describes the applet.

AudioClip getAudioClip(URL url) Returns an AudioClip object that encapsulates the audio
clip found at the location specified by url.

Mangala KB,CSE,CITech Page 1

5th Module[Applets]

Method
AudioClip getAudioClip(

URL url, String clipName)

URL getCodeBase()

URL getDocumentBase()

Image getlmage(URL url)

Image getlmage(

URL url, String imageName)

Locale getLocale()

String getParameter(

String paramName)

String[] [] getParameterinfo()

void init()

boolean isActive()

Description

Returns an AudioClip object that encapsulates the audio
clip found at the location specified by url and having the
name specified by clipName.

Returns the URL associated with the invoking applet.

Returns the URL of the HTML document that invokes the
applet.

Returns an Image object that encapsulates the image found
at the location specified by url.

Returns an image object that encapsulates the image found
at the location specified by url and having the name
specified by imageName.

Returns a Locale object that is used by various
localesensitive classes and methods.

Returns the parameter associated with paramName. null is
returned if the specified parameter is not found.

Returns a String table that describes the parameters
recognized by the applet. Each entry in the table must
consist of three strings that contain the name of the
parameter, a description of its type and/or range, and an
explanation of its purpose.

Called when an applet begins execution. It is the first
method called for any applet.

Returns true if the applet has been started. It returns false if
the applet has been stopped.

static final AudioClip newAudioClip(URL url) Returns an AudioClip object that encapsulates

the audio clip found at the location specified by url. This
method is similar to getAudioClip() except that it is static
and can be executed without the need for an Applet object.

Mangala KB,CSE,CITech

Page 2

5th Module[Applets]

void play(URL url) If an audio clip is found at the location specified by url, the
clip is played.

void play(URL url, String clipName) If an audio clip is found at the location specified by url
with the name specified by clipName, the clip is played.

void resize(Dimension dim) Resizes the applet according to the dimensions specified
by dim. Dimension is a class stored inside java.awt. It
contains two integer fields: width and height.

void resize(int width, int height) Resizes the applet according to the dimensions specified by
width and height.

final void setStub(AppletStub stubObj) Makes stubObj the stub for the applet. This method is
used by the run-time system and is not usually called by
your applet. A stub is a small piece of code that provides
the linkage between your applet and the browser.

void showStatus(String str) Displays str in the status window of the browser or applet
viewer. If the browser does not support a status window,
then no action takes place.

void start() Called by the browser when an applet should start (or
resume) execution. It is automatically called after init()
when an applet first begins.

void stop() Called by the browser to suspend execution of the applet.
Once stopped, an applet is restarted when the browser calls
start().

> Applet Architecture

e Anapplet is a window-based program. As such, its architecture is different from the
console-based programs

e . Applets are event driven.

e . Anapplet waits until an event occurs.

e The run-time system notifies the applet about an event by calling an event handler that
has been provided by the applet.

e Once this happens, the applet must take appropriate action and then quickly return.

e Applet must perform specific actions in response to events and then return control to the
run-time system.

e Inthose situations in which your applet needs to perform a repetitive task on its own
(for example, displaying a scrolling message across its window), an additional thread of
execution must be started.

Mangala KB,CSE,CITech Page 3

5th Module[Applets]

e the user interacts with the applet as he or she wants, when he or she wants. These
interactions are sent to the applet as events to which the applet must respond.
e For example, when the user clicks the mouse inside the applet’s window, a mouse-
clicked event is generated.
e Ifthe user presses a key while the applet’s window has input focus, a keypress event is
generated.
e Applets can contain various controls, such as push buttons and check boxes. When the
user interacts with one of these controls, an event is generated.
» An Applet Skeleton.
e It defines init(),start(),stop(),destroy() methods
e AWT-based applets will override paint() method defined by AWT Component class.This
method is called when applet’s output must be redisplayed.

import java.awt.*;

import java.applet.*;
/*
<applet code="AppletSkel” width=300 height=200>
</applet>
*/

public class AppletSkel extends Applet

{

I Called first.

public void init()

{ // initialization }

[* Called second, after init(). Also called whenever the applet is restarted. */
public void start()

{ // start or resume execution }

/I Called when the applet is stopped.

public void stop()

{ // suspends execution }

/* Called when applet is terminated. This is the last method executed. */
public void destroy()

{ // perform shutdown activities }

/I Called when an applet's window must be restored.
public void paint(Graphics g)

{

// redisplay contents of window

}

}

When run, it generates the following window when viewed with an applet viewe
plot Viewer: AppletSke =S

Applet started.

Mangala KB,CSE,CITech Page 4

5th Module[Applets]

> Applet Initialization and Termination

e Applet methods are called in the following order

e When an applet begins, the following methods are called, in this sequence:
= Ll init()
= 2. start()
= 3. paint()

e When an applet is terminated, the following sequence of method calls takes place
= 1. stop()
= 2. destroy()

. init()

e The init() method is the first method to be called. Initialization of variables is
done here. This method is called only once during the run time of applet.

start()

e The start() method is called after init(). It is also called to restart an applet after
it has been stopped. Whereas init() is called once—the first time an applet is
loaded

e start() is called each time an applet’s HTML document is displayed onscreen. So,
if a user leaves a web page and comes back, the applet resumes execution at start(

).
paint()

e The paint() method is called each time when applet’s output must be redrawn.

e For example, the window in which the applet is running may be overwritten by another
window and then uncovered.

e Or the applet window may be minimized and then restored.

e paint() is also called when the applet begins execution. Whatever the cause, whenever
the applet must redraw its output, paint() is called.

e The paint() method has one parameter of type Graphics. This parameter will contain the
graphics context, which describes the graphics environment in which the applet is
running.

stop()

e The stop() method is called when a web browser leaves the HTML document containing
the applet—when it goes to another page

e , For example. stop() is called,when the applet is probably running. stop()is used to
suspend threads that don’t need to run when the applet is not visible.

Mangala KB,CSE,CITech Page 5

5th Module[Applets]

destroy()

e The destroy() method is called when the environment determines that the applet needs to
be removed completely from memory.

e We should free up any resources the applet may be using.

e The stop() method is always called before destroy().

Overriding update()

e AWT, defines a method called update(). This method is called when applet has
requested that a portion of its window be redrawn.
e update() method simply calls paint().

» Simple Applet Display Methods
e AWT-based applets use AWT to perform input and output.
e tooutput a string to an applet, drawString() method is used, which is a member
of the Graphics class. Typically, it is called from within either update() or paint(
).
e It has the following general form:
= void drawString(String message, int x, int y) Here, message is the
string to be displayed at x,y location. In a Java window, the upper-
left corner is location 0,0.
e To set the background color of an applet’s window,
setBackground() method is used.
e To set the foreground color setForeground() method is used.
e These methods are defined by Component,
and they have the following general forms:
= void setBackground(Color newColor)
= void setForeground(Color newColor)
= Here, newColor specifies the new color.

The class Color defines the constants shown here that can be used to specify colors:

Color.black Color.magenta Color.blue Color.orange Color.cyan
Color.pink Color.darkGray Color.red Color.gray Color.white
Color.green Color.yellow Color.lightGray
e The following example sets the background color to green and the text color to red:
setBackground(Color.green);
setForeground(Color.red);
e A good place to set the foreground and background colors is in the init() method.
e We can obtain the current settings for the background and foreground colors by calling
getBackground() and getForeground(), respectively.

Mangala KB,CSE,CITech Page 6

5th Module[Applets]

e They are also defined by Component ,they are:
Color getBackground() Color getForeground()
e Here is a very simple applet that sets the background color to cyan, the foreground color
to red, and displays a message that illustrates the order in which the init(), start(), and
paint() methods are called when an applet starts up:
/* A simple applet that sets the foreground and background colors and outputs a string. */
import java.awt.*;

import java.applet.*;

[*<applet code="Sample” width=300 height=200>
</applet> */

public class Sample extends Applet

{

String msg;

/1 set the foreground and background colors.

public void init()

{

setBackground(Color.cyan);
setForeground(Color.red);

msg = "Inside init() --";
}

/I Initialize the string to be displayed.

public void start()

{

msg += " Inside start() --";0

}

/I Display msg in applet window.
public void paint(Graphics)

{

msg +=" Inside paint().";
g.drawString(msg, 10, 30);

}

}

,;%;Applet Viewer: Sample

Applet
[nside init) - Inside starti) -- Inside paint).

Applet started.

This applet generates the window shown here: The methods stop() and destroy() are not
overridden, because they are not needed by this simple applet

Mangala KB,CSE,CITech Page 7

5th Module[Applets]

» Requesting Repainting

As a general rule, an applet writes to its window only when its update() or paint()
method is called by the AWT.
An applet must quickly return control to the run-time system.(constraint)
It cannot create a loop inside paint() that repeatedly scrolls the banner. This would
prevent control from passing back to the AWT.
If applet needs to update the information displayed in the window, it simply calls repaint(
).
The repaint() method is defined by the AWT. It causes the AWT run-time system to
execute a call to your applet’s update() method, which by default, calls paint().
The AWT will then execute a call to paint(), which can display the stored information.
The repaint() method has four forms.
The simplest version of repaint() is shown here:
void repaint()
This version causes the entire window to be repainted.

The following version specifies a region that will be repainted: void repaint(int left, int
top, int width, int height)
These dimensions are specified in pixels.
Update may not be called immediately if system is slow or busy. In this case the
following forms of repaint() are used:

= void repaint(long maxDelay)

= void repaint(long maxDelay, int x, int y, int width, int height)
Here, maxDelay specifies the maximum number of milliseconds that can elapse before
update() is called.
It is possible for a method other than paint() or update() to output to applet window,to
do so it must obtain a graphics context by calling getGraphics() (defined by Component)
and then use this context to output to the window.

» A Simple Banner Applet

To demonstrate repaint(), a simple banner applet is developed. This applet scrolls a
message, from right to left, across the applet’s window.
The scrolling of the message is a repetitive task, it is performed by a separate thread,
created by the applet when it is initialized.

import java.awt.*;
import java.applet.*;

[*<applet code=SimpleBanner width=300 height=200>
</applet> */
public class SimpleBanner extends Applet implements Runnable

{

String msg =" A Simple Moving Banner.";

Mangala KB,CSE,CITech Page 8

5th Module[Applets]

Thread t = null;
int state;
boolean stopFlag;
/I Set colors and initialize thread.
public void init()

{
setBackground(Color.cyan);
setForeground(Color.red);

}

/[Start thread

public void start()

{
t = new Thread(this);
stopFlag = false;
t.start();

}

/I Entry point for the thread that runs the banner.
public void run()

{
char ch;
/I Display banner
for(; ;)
{
try
4
repaint();
Thread.sleep(250);
ch = msg.charAt(0);
msg = msg.substring(1, msg.length());
msg += ch;
if(stopFlag) break;
}
catch(InterruptedException e) {}
}
}

// Pause the banner.
public void stop()

Mangala KB,CSE,CITech Page 9

5th Module[Applets]

stopFlag = true;
t = null;
}
// Display the banner.
public void paint(Graphics g)

{
g.drawString(msg, 50, 30);
¥
¥
1= AppletVimer:javaapplica;.ic;_-i —_ _|:| —X_]
Applet I

BannerfAsimple moving I

this is shown in status window

SimpleBanner extends Applet and implements Runnable Interface.

It is necessary to implement Runnable interface since the applet will be creating a second
thread of execution that will be used to scroll the banner.

Inside init(), the foreground and background colors of the applet are set.

After initialization, the run-time system calls start() to start the applet running.

Inside start(), a new thread of execution is created and assigned to the Thread variable t.
Then, the boolean variable stopFlag, which controls the execution of the applet, is set to
false.
the thread is started by a call to t.start().

t.start() calls run() to begin executing.

Inside run(), the characters in the string contained in msg are repeatedly rotated left.
Between each rotation, a call to repaint() is made. This eventually causes the paint()
method to be called, and the current contents of msg are displayed.

Between each iteration, run() sleeps for a quarter of a second.

The stopFlag variable is checked on each iteration. When it is true, the run(') method
terminates.

If a browser is displaying the applet when a new page is viewed, the stop() method is
called, which sets stopFlag to true, causing run() to terminate.

Mangala KB,CSE,CITech Page 10

5th Module[Applets]

» Using the Status Window

e An applet can also output a message to the status window of the browser or applet viewer
on which it is running.

e showStatus() method displays the msg in the status window which is passed as a
parameter to it.

e The following applet demonstrates showStatus():
//' Using the Status Window.
import java.awt.*;
import java.applet.*;
[* <applet code StatusWindow width=300 height=100>
</applet>*/
public class StatusWindow extends Applet
{
public void init()
{
setBackground(Color.cyan);
}
// Display msg in applet window.
public void paint(Graphics g)
{
g.drawString("This is in the applet window.", 10, 20);
showsStatus(“This is shown In the status window.");
}
}

Sample output from this program is shown her

1 | Applet Viewer: javaapplication1/s...

Applet

EBannerAsimple moving

f
lthis is shown in status window

» The HTML APPLET Tag

e the APPLET tag can be used to start an applet from both an HTML document and from
an applet viewer.

e Anapplet viewer will execute each APPLET tag that it finds in a separate window, while
web browsers will allow many applets on a single page.

e Bracketed items are optional.
< APPLET
[CODEBASE = codebaseURL]

Mangala KB,CSE,CITech Page 11

5th Module[Applets]

CODE = appletFile

[ALT = alternateText]

[NAME = appletinstanceName]

WIDTH = pixels HEIGHT = pixels

[ALIGN = alignment]

[VSPACE = pixels]

[HSPACE = pixels] >

[< PARAM NAME = AttributeName VALUE = AttributeValue>] [< PARAM NAME =
AttributeName2 VALUE =AttributeVValue>]

[HTML Displayed in the absence of Java]
</APPLET>
e CODEBASE
CODEBASE is an optional attribute that specifies the base URL of the applet code
e The HTML document’s URL directory is used as the CODEBASE if this attribute is not
specified.
e CODE
CODE is a required attribute that gives the name of the file containing your applet’s
compiled .class file.
e ALT
The ALT tag is an optional attribute used to specify a short text message that should be
displayed if the browser recognizes the APPLET tag but can’t currently run Java applets.
e NAME
NAME is an optional attribute used to specify a name for the applet instance.
To obtain an applet by name, getApplet() methos is ised, which is defined by the
AppletContext interface.
e WIDTH and HEIGHT
WIDTH and HEIGHT are required attributes that give the size (in pixels) of the applet
display area.
e ALIGN
ALIGN is an optional attribute that specifies the alignment of the applet.with values:
LEFT, RIGHT, TOP, BOTTOM, MIDDLE,
BASELINE, TEXTTOP, ABSMIDDLE, and ABSBOTTOM.
e VSPACE and HSPACE
These attributes are optional.
VSPACE specifies the space, in pixels, above and below the applet.
HSPACE specifies the space, in pixels, on each side of the applet.
e PARAM NAME and VALUE
The PARAM specifies applet-specific arguments in an HTML page. Applets access
their attributes with the getParameter() method.

Mangala KB,CSE,CITech Page 12

5th Module[Applets]

» Passing Parameters to Applets
the APPLET tag in HTML allows to pass parameters to applet.
To retrieve a parameter, getParameter() method is used.
It returns the value of the specified parameter in the form of a String object.
Thus, for numeric and boolean values, its need to convert their string representations into
their internal formats.
Here is an example that demonstrates passing parameters:
/I Use Parameters
import java.awt.*;
import java.applet.*;
[* <applet code=""ParamDemo” width=300 height=200>
</applet> */
public class ParamDemo extends Applet

{

String fontName;

int fontSize;

float leading;

boolean active;

/I Initialize the string to be displayed.

public void start()

{
String param;
fontName = getParameter("fontName™);
if(fontName == null)
fontName = "Not Found";
param = getParameter("fontSize™);

try
{
if(param 1= null)
/I if not found
fontSize = Integer.parselnt(param);
else
fontSize = 0;
}
catch(NumberFormatException e)
{
fontSize = -1;
}
param = getParameter("leading");
try

Mangala KB,CSE,CITech Page 13

5th Module[Applets]

// if not found

if(param != null)

leading = Float.valueOf(param).floatValue();
else leading = 0;

¥
catch(NumberFormatException e)
{
leading = -1;
¥

param = getParameter("accountEnabled");
if(param !'= null)
active = Boolean.valueOf(param).booleanValue();

public void paint(Graphics g)

{

g.drawsString("Font name: " + fontName, 0, 10);
g.drawsString("'Font size: " + fontSize, 0, 26);
g.drawString("Leading: " + leading, 0, 42); g.drawString("Account
Active: " + active, 0, 58);

¥

conversions to numeric types must be attempted in a try statement that catches

NumberFormatException. Uncaught exceptions should never occur within an applet.

Applet
Font narme: Courier
Font size: 14
Leading: 2.0
Accaunt Active: true

Applet started.

et Viewern: Parmuﬂ i"ii-\

5%

S =

i

Improving the Banner Applet

It is possible to use a parameter to enhance the banner applet
However, passing the message as a parameter allows the banner applet to display a

different message each time it is executed.

the APPLET tag specifies a parameter called message that is linked to a quoted string.

/I A parameterized banner

import java.awt.*;
import java.applet.*;
1**|

public class ParamBanner extends Applet implements Runnable

Mangala KB,CSE,CITech

Page 14

5th Module[Applets]

String msg;
Thread t = null;
int state;
boolean stopFlag;
/I Set colors and initialize thread.
public void init()

{
setBackground(Color.cyan);
setForeground(Color.red);

}

/[Start thread

public void start()

{
msg = getParameter("message");
if(msg == null)
msg = "Message not found.";
msg =" " + msg;
t = new Thread(this);
stopFlag = false;
t.start();

}

/I Entry point for the thread that runs the banner.
public void run()
{
char ch;
// Display banner
for(; ;)
{
try
{
repaint();
Thread.sleep(250);
ch = msg.charAt(0);
msg = msg.substring(1, msg.length());
msg += ch;
if(stopFlag) break;
}
catch(InterruptedException e) {}

¥

Mangala KB,CSE,CITech Page 15

5th Module[Applets]

¥

[/ Pause the banner.
public void stop()
{
stopFlag = true;
t = null;
}
// Display the banner.
public void paint(Graphics g)
{
g.drawString(msg, 50, 30);
}
}
» getDocumentBase() and getCodeBase()
e Java allows applet to load data from the directory holding the HTML file that started the
applet (the document base)
e and the directory from which the applet’s class file was loaded (the code base).
e These directories are returned as URL objects by getDocumentBase() and
getCodeBase().
e To actually load another file, will use the showDocument() method defined by the
AppletContext interface.

import java.awt.*;
import java.applet.*;
import java.net.*;
[*<applet code="Bases” width=300 height=200> </applet>*/
public class Bases extends Applet
{
// Display code and document bases.
public void paint(Graphics g)
{
String msg;
URL url = getCodeBase();
/I get code base
msg = "Code base: " + url.toString();
g.drawString(msg, 10, 20);
url = getDocumentBase();
/I get document base
msg = "Document base: " + url.toString();
g.drawString(msg, 10, 40);
}

Mangala KB,CSE,CITech Page 16

5th Module[Applets]

¥

Sample output from this program is shown here:

.‘_%’i_.ﬂﬂljlet Viewer: Bases

Applet

Code base: filedhSfjaval
Document base: filedhfjavalBases java

Applet started.

AppletContext and showDocument()

One application of Java is to use active images and animation to provide a graphical
means of navigating the Web that is more interesting than simple text-based links.

To allow applet to transfer control to another URL, we use showDocument() method
defined by the AppletContext interfac

The context of the currently executing applet is obtained by a call to the
getAppletContext() method defined by Applet.

This method has no return value and throws no exception if it fails.

There are two showDocument() methods.

The method showDocument(URL) displays the document at the specified URL.

The method showDocument(URL, String) displays the specified document at the
specified location within the browser window.

The methods defined by AppletContext are shown in

Method Description
Applet getApplet(String appletName) Returns the applet specified by appletName if it is
within the current applet context. Otherwise, null is
returned.
Enumeration<Applet> getApplets() Returns an enumeration that contains all of the

applets within the current applet context.

AudioClip getAudioClip(URL url) Returns an AudioClip object that encapsulates the

audio clip found at the location specified by url.

Image getlmage(URL url) Returns an Image object that encapsulates the image

found at the location specified by url.

InputStream getStream(String key) Returns the stream linked to key. Keys are linked to

streams by using the setStream(') method. A null
reference is returned if no stream is linked to key.

Mangala KB,CSE,CITech Page 17

5th Module[Applets]

Iterator<String> getStreamKeys() Returns an iterator for the keys associated with the
invoking object. The keys are linked to streams. See
getStream() and setStream().

void setStream(String key,

InputStream strm)

Links the stream specified by strm to the key passed
in key. The key is deleted from the invoking object
if strm is null.

void showDocument(URL url) Brings the document at the URL specified by url
into view. This method may not be supported by
applet viewers.

void showDocument(URL url,

String where)
Brings the document at the URL specified by url
into view. This method may not be supported by
applet viewers. The placement of the document is
specified by where as described in the text.

void showStatus(String str) Displays str in the status window.

e Upon execution, it obtains the current applet context and uses that context to transfer
control to a file called Test.html. This file must be in the same directory as the applet.

import java.awt.*;

import java.applet.*;

import java.net.*;
[*<applet code="ACDemo” width=300 height=200>
</applet> */

public class ACDemo extends Applet

{
public void start()

{
AppletContext ac = getAppletContext();
URL url = getCodeBase();
/I get url of this applet
try
{

ac.showDocument(new URL(url+"Test.html™));

}
catch(MalformedURLEXxception €)

{
showStatus("URL not found");

Mangala KB,CSE,CITech Page 18

5th Module[Applets]

¥
¥

The AudioClip Interface

e The AudioClip interface defines these methods: play() (play a clip from the beginning),
stop() (stop playing the clip), and loop() (play the loop continuously).
e After its loaded ,using getAudioClip(), we can use these methods to play it.

The AppletStub Interface

e The AppletStub interface provides the means by which an applet and the browser (or
applet viewer) communicate.

Outputting to the Console

e Although output to an applet’s window must be accomplished through GUI-based
methods, such as drawString(), it is still possible to use console output

e Inanapplet,if System.out.printin(), the output is not sent to applet’s window.

e Instead, it appears in the Java console that is available in some browsers.

e Use of console output for purposes other than debugging is discouraged, since it violates
the design principles of the graphical interface most users will expect.

Mangala KB,CSE,CITech Page 19

JAVA AND J2EE NOTES

Unit ---3

Swing is a set of classes that provides more powerful and flexible components than are
possible with the AWT.

In addition to the familiar components, such as buttons, check boxes, and labels, Swing
supplies several exciting additions, including tabbed panes, scroll panes, trees, and tables.

Even familiar components such as buttons have more capabilities in Swing. For example,
a button may have both an image and a text string associated with it. Also, the image can be
changed as the state of the button changes.

Unlike AWT components, Swing components are not implemented by platform-specific
code. Instead, they are written entirely in Java and, therefore, are platform-independent. The term
lightweight 1s used to describe such elements.

Swing are built on AWT.

Explain two key features of Swing.
1. Swing components are light weight
They are entirely written in java they does not map to native platform specific
code. More flexible and more efficient. Not in rectangular shapes.

2. Swing supports a pluggable look and feel.

It becomes possible to change the that component is rendered with out affecting

any of its other aspects. Possible to create new look and feel for any given

component with out side effects. Look and feel is simply plugged in.

Briefly explain Container and Component of Swing.

1. A Swing GUI consists of two key items: Components and Container

2. A term component is an independent visual control such as push button or
slider.

3. A container holds group of components. Thus container is special kind of
component that holds that is designed to hold other components. Container are
also called components so container can hold other container.

Components

1. Swing components are derived from JComponent Class. Supports

pluggable look and feel. It inherits Component and Container of AWT.

JAVA AND J2EE NOTES

Swing Components : JButton, JCheckBox, JComboBox ,JTree ,JLabel,
JTable ,JPanel etc
Container
1. Swing defines two types of heavy weight container.
JFrame , JApplet
2. Others are light weight containers.
Top level containers should be declared first like JFrame and JApplet.
4. Light weight containers example if JPanel. This is used to manage group
of related components
5. JPanel is used to create subgroups of related components that are
contained with in another container.
Examples of containers
JPanel is Swing’s version of the AWT class Panel and uses the same default

layout,FlowLayout. JPanel is descended directly from JComponent.

JFrame is Swing’s version of Frame and is descended directly from that class.
The components added to the frame are referred to as its contents; these are managed by
the contentPane. To add a component to a JFrame, we must use its contentPane instead.

JWindow is Swing’s version of Window and is descended directly from that
class. LikeWindow, it uses BorderLayout by default.

JDialog is Swing’s version of Dialog and is descended directly from that class.
Like Dialog, it uses BorderLayout by default. Like JFrame and JWindow,

What is swing and what is its application?

Swing was developed to provide a more sophisticated set of GUI

components than the earlier Abstract Window Toolkit (AWT).

Swing provides a native look and feel that emulates the look and

feel of several platforms, and also supports a pluggable look and feel that

allows applications to have a look and feel unrelated to the underlying

platform.

http://en.wikipedia.org/wiki/Software_component
http://en.wikipedia.org/wiki/Abstract_Window_Toolkit
http://en.wikipedia.org/wiki/Look_and_feel
http://en.wikipedia.org/wiki/Pluggable_look_and_feel

JAVA AND J2EE NOTES

It has more powerful and flexible components than AWT. In
addition to familiar components such as buttons, check boxes and labels,
Swing provides several advanced components such as tabbed panel, scroll

panes, trees, tables, and lists.

Explain MVC architecture of swing:

1.

10.

11.

In general a visual component is composite of three distinct aspects

The way that the component looks when rendered on the screen

The way the component reacts to the user.

The state information associated with the component

The architecture has proven itself to be effective is MVC

MVC mean Model View Controller.

Model corresponds to the state information associated with the
component. For example in case of check Box model contained a field that
indicates if check box ix checked or unchecked.

View determines how the component is displayed on the screen

Controller determines how the component react to the user after that result
in the view is updated.

By separating model , view , and controller the specific implementation of
one model can be changed with out affecting other model.

The MVC architecture sounds good but in swing separating view and
controller is not beneficial.

Swing uses modified version of MVC called UI delegate. For this reason
swings approach is called Model delegate architecture.

Swings pluggable look and feel is possible by its model delegate
architecture.

Because view and controller are separate look and feel can be changed

without affecting the component

JAVA AND J2EE NOTES

Class Description

AbstractButton Abstract super class for Swing buttons.

ButtonGroup Encapsulates a mutually exclusive set of buttons.

Image Icon encapsulates an icon.

JApplet The Swing version of Applet.

JButton The Swing push button class.

JCheckBox The Swing check box class.

JComboBox Encapsulates a combo box (an combination of a
drop-down listand text field).

JLabel The Swing version of a label.

JRadioButton The Swing version of a radio button.

JScrollPane Encapsulates a scrollable window.

JTabbedPane Encapsulates a tabbed window.

JTable Encapsulates a table-based control.

JTextField The Swing version of a text field.

JTree Encapsulates a tree-based control.

The Swing-related classes are contained in javax.swing

JLabel

Swing labels are instances of the JLabel class, which extends JComponent. It can
display text and/or an icon. Some of its constructors are shown here:
JLabel(Icon i)
Label(String s)
JLabel(String s, Icon i, int align)
Here, s and i are the text and icon used for the label.
The align argument is either LEFT,RIGHT, or CENTER
The text associated with the label can be read and written by the following
methods: String getText() ,void setText(String s)
Example Program

import javax.swing.*;

import javax.swing.*;
class SwingDemo

{
SwingDemo()

JAVA AND J2EE NOTES

JFrame jfrm=new JFrame("A simple Swing Application");
jfrm.setSize(275,100);
jfrm.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
JLabel jlab=new JLabel("'Swing means power ful GUI");
jfrm.add(jlab);
jfrm.setVisible(true);

h

public static void main(String args[]) {

ob=new SwingDemo();

h
h

Text Fields
The Swing text field is encapsulated by the JTextComponent class, which extends

JComponent.

It provides functionality that is common to Swing text components.

One of its subclasses is JTextField, which allows you to edit one line of text. Some of its
constructors are shown here:

JTextField()

JTextField(int cols)

JTextField(String s, int cols)

JTextField(String s)

Here, s is the string to be presented, and cols is the number of columns in the text field.
The following example illustrates how to create a text field. The applet begins by getting
its content pane, and then a flow layout is assigned as its layout manager. Next, a
JTextField object is created and is added to the content pane.

import java.awt.*;

import javax.swing.*;

J*

<applet code="JTextFieldDemo" width=300 height=50>

JAVA AND J2EE NOTES

</applet>

*/

public class JTextFieldDemo extends JApplet {
JTextField jtf;

public void init() {

Container contentPane = getContentPane();
contentPane.setLayout(new FlowLayout());

jtf = new JTextField(15);

contentPane.add(jtf);

§
§
Output from the above program
E.l.u:ll:! Wirwe JTextFrkibDcmn
Lpplet atarind
JButton

The JButton class provides the functionality of a push button. JButton allows an icon, a
string, or both to be associated with the push button. Some of its constructors are shown
here:

JButton(Icon i)

JButton(String s)

JButton(String s, Icon i)

Here, s and i are the string and icon used for the button.

The following program displays a button on swing frame and displays string “SayHello”
import javax.swing.*;

import java.awt.*;

public class First {

JFrame jf;

public First()

{

JAVA AND J2EE NOTES

jf=new JFrame("My window");

JButton btn= new JButton("say Hello");

jf.add(btn);

jf.setLayout(new FlowLayout());
jf.setDefaultCloseOperation(JFrame. EXIT ON_CLOSE);
jf.setSize(400,400);

jf.setVisible(true);

h

public static void main(String[] args) {

new First();

——

Check Boxes
The JCheckBox class, which provides the functionality of a check box, is a concrete

implementation of AbstractButton. Some of its constructors are shown here:
JCheckBox(Icon i)

JCheckBox(Icon i, boolean state)

JCheckBox(String s)

JCheckBox(String s, boolean state)

JCheckBox(String s, Icon i)

JCheckBox(String s, Icon i, boolean state)

Here, i is the icon for the button. The text is specified by s. If state is true, the check box

is initially selected. Otherwise, it is not. The state of the check box can be changed via the
following method: void setSelected(boolean state) Here, state is true if the check box should be
checked.

1.The following example illustrates how to create an applet that displays four check boxes

and a text field. When a check box is pressed, its text is displayed in the text field.

2.) flow layout is assigned as its layout manager.

7

JAVA AND J2EE NOTES

3.).four check boxes are added to the content pane, and icons are assigned for the normal,
rollover, and selected states. The applet is then registered to receive item events.

Finally, a text field is added to the JFrame. When a check box is selected or deselected, an item
event is generated. This is handled by itemStateChanged(). Inside itemStateChanged(), the
getltem() method gets the JCheckBox object that generated the event. The getText() method
gets the text for that check box and uses it to set the text inside the text field.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

/*

<applet code="JCheckBoxDemo" width=400 height=50>
</applet>

*/

public class JCheckBoxDemo extends JFrame
implements ItemListener {

JTextField jtf;

JCheckBoxDemo()

{

setLayout(new FlowLayout());

JCheckBox cb = new JCheckBox("C");
cb.addltemListener(this);
add(cb);

cb = new JCheckBox("C++");
cb.addItemListener(this);
add(cb);

cb = new JCheckBox("Java");
addItemListener(this);
add(cb);

cb = new JCheckBox("Perl", normal);
addItemListener(this);
add(cb);

jtf=new JTextField(15);
add(jtf);
}

public void itemStateChanged(ItemEvent ie) {

8

JAVA AND J2EE NOTES

JCheckBox cb = (JCheckBox)ie.getltem();
jtf.setText(cb.getText());

}

Public static void main(String args[])
{
new JCheckBoxDemo();
b

}

er. MCheehBuslemo

Oc es+ Woawa [Jren

awa

Applet stawtedd

Combo Boxes
1. Swing provides a combo box (a combination of a text field and a drop-down list)

through the JComboBox class, which extends JComponent.

2. A combo box normally displays one entry. However, it can also display a drop-
down list that allows a user to select a different entry. You can also type your

selection into the text field.

3. Two of JComboBox's
constructors are shown here:
JComboBox()
JComboBox(array a)
Here, a is a array that initializes the combo box.
4. Ttems are added to the list of choices via the addItem() method, whose signature
is shown here: void addItem(Object obj)
Here, obj is the object to be added to the combo box.
T he following example contains a combo box and a label. The label displays an
icon. The combo box contains entries for "France", "Germany", "Italy", and "Japan". When a

country is selected, the label is updated to display the flag for that country.

import java.awt.*;
import java.awt.event.*;

JAVA AND J2EE NOTES

import javax.swing.*;

public class JComboBoxDemo extends JFrame
implements ItemListener {

JLabel jl;

Imagelcon france, germany, italy, japan;

public void init() {
setLayout(new FlowLayout());

JComboBox jc = new JComboBox();
jc.addItem("France");
jc.addItem("Germany");
jc.addItem("Ttaly");
jc.addItem("Japan");
jc.addItemListener(this);

add(jc);

jl=new JLabel();

add(jl);

§

public void itemStateChanged(ItemEvent ie) {
String s = (String)ie.getltem();

jl.setText(s);

§

§

e Output is shown here:

Radio Buttons

Radio buttons are supported by the JRadioButton class, which is a concrete

implementation of AbstractButton. Some of its constructors are shown here:

JRadioButton(Icon i)
JRadioButton(Icon i, boolean state)
JRadioButton(String s)
JRadioButton(String s, boolean state)
JRadioButton(String s, Icon 1)

10

JAVA AND J2EE NOTES

JRadioButton(String s, Icon i, boolean state)

Radio buttons must be configured into a group. Only one of the buttons in that group can
be selected at any time.

For example, if a user presses a radio button that is in a group,
any previously selected button in that group is automatically deselected.

The ButtonGroup class is instantiated to create a button group. Its default constructor is
invoked for this purpose. Elements are then added to the button group via the following
method:

void add(AbstractButton ab)

Here, ab is a reference to the button

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class JRadioButtonDemo extends JFrame
implements ActionListener

{

JTextField tf;

JRadioButtonDemo()

setLayout(new FlowLayout());
JRadioButton b1 = new JRadioButton("A");
bl.addActionListener(this);

add(bl);

JRadioButton b2 = new JRadioButton("B");
b2.addActionListener(this);

add(b2);

JRadioButton b3 = new JRadioButton("C");
b3.addActionListener(this);

add(b3);

// Define a button group
ButtonGroup bg = new ButtonGroup();

bg.add(bl);
bg.add(b2);
bg.add(b3);

// Create a text field and add it
// to the frame
tf = new JTextField(5);

add(tf);

}

public void actionPerformed(ActionEvent ae) {
tf.setText(ae.getActionCommand());

}
H

Output from this applet is shown here:

11

JAVA AND J2EE NOTES

B Apphist Vinwenr: JR adicButioelizms [_15] =]

Tabbed Panes

1. A tabbed pane is a component that appears as a group of folders in a file cabinet.
Each folder has a title. When a user selects a folder, its contents become visible.
Only one of the folders may be selected at a time. Tabbed panes are commonly
used for setting configuration options.

2. Tabbed panes are encapsulated by the JTabbedPane class, which extends
JComponent. We will use its default constructor. Tabs are defined via the following
method: void addTab(String str, Component comp)

Here, str is the title for the tab, and comp is the component that should be added to the
tab. Typically, a JPanel or a subclass of it is added. The general procedure to use a

tabbed pane in an applet is outlined here:
1. Create a JTabbedPane object.
2. Call addTab() to add a tab to the pane. (The arguments to this method define

the title of the tab and the component it contains.)

3. Repeat step 2 for each tab.

4. Add the tabbed pane to the content pane of the applet. The following example illustrates
how to create a tabbed pane.
import javax.swing.*;
/*
<applet code="JTabbedPaneDemo" width=400 height=100>
</applet>
*/

public class JTabbedPaneDemo extends JApplet {
public void init() {

JTabbedPane jtp = new JTabbedPane();
jtp.addTab("Cities", new CitiesPanel());
jtp.addTab("Colors", new ColorsPanel());
jtp.addTab("Flavors", new FlavorsPanel());
getContentPane().add(jtp);

i
}

class CitiesPanel extends JPanel {

12

JAVA AND J2EE NOTES

public CitiesPanel() {

JButton b1 = new JButton("New York");
add(b1);

JButton b2 = new JButton("London");
add(b2);

JButton b3 = new JButton("Hong Kong");
add(b3);

JButton b4 = new JButton("Tokyo");
add(b4);

H

H

class ColorsPanel extends JPanel {

public ColorsPanel() {

JCheckBox c¢b1l = new JCheckBox("Red");
add(cbl);

JCheckBox cb2 = new JCheckBox("Green");
add(cb2);

JCheckBox ¢b3 = new JCheckBox("Blue");
add(cb3);

h

H

class FlavorsPanel extends JPanel {
public FlavorsPanel() {

JComboBox jcb = new JComboBox();
jeb.addItem("Vanilla"),
jeb.addItem("Chocolate");
jeb.addItem("Strawberry");

add(jcb);

H

H

[Asplel Varmer. 31 ablioedP snacllemo

e]

N Yark i | Longen | Hengkong | Tekyo

Applet startecd

E=t Asplei Varmer. 3T abloed? snliemo

|%-:-lmim|

i Fed tflaﬁruu Ll Blee

Applet startecd

13

JAVA AND J2EE NOTES

B Apulel Vaswer. JT abbiodP anal emo
e
| Cithes | Eadrs | Flavors |
Chocalate =
Wanilla
Chocolate -
Apples srared Strawbarry

Scroll Panes
1. A scroll pane is a component that presents a rectangular area in which a

component may be viewed. Horizontal and/or vertical scroll bars may be provided
if necessary.
2. Scroll panes are implemented in Swing by the JScrollPane class, which extends
JComponent. Some of its constructors are shown here:

JScrollPane(Component comp)

Here are the steps that you should follow to use a scroll pane in an applet:
1. Create a JComponent object.

2. Create a JScrollPane object. (The arguments to the constructor specify the
component and the policies for vertical and horizontal scroll bars.)

3. Add the scroll pane to the content pane of the applet.

The following example illustrates a scroll pane. First, the content pane of the JApplet
object is obtained and a border layout is assigned as its layout manager. Next, a JPanel
object is created and four hundred buttons are added to it, arranged into twenty columns.

The panel is then added to a scroll pane, and the scroll pane is added to the content
pane. This causes vertical and horizontal scroll bars to appear. You can use the scroll

bars to scroll the buttons into view.
import javax.swing.*;
import java.awt.BorderLayout;

import java.awt.GridLayout;

public class JScrollPaneDemo extends JApplet{

public void init()

{
JPanel jp=new JPanel();
jp.setLayout(new GridLayout(20,20));

14

JAVA AND J2EE NOTES

add(jp);

int b=0;
for(int i=0;i<20;i++)
for(int j=0;j<20;j++)

{

jp.add(new JButton("Button"+b));
++b;

H

JScrollPane jsp=new JScrollPane(jp);
add(jsp,BorderLayout. CENTER);

b
b
output
(B2 Aot Winewess: S5 i Fanel [IBL=]
F i . — - . - —
n i6% Buiton 196 Bautten 187
nzZ0% Audion 206 Bartinn FO0F |
n 225 Button 226 Button 237 | '
n 24% Bdion A6 Bariton F4F
265 Button 266 | Buttoen 267
E 2085 Button 206 | Batnen 267 %
ELE] Buiton 306 Bartinn 307
nAzs Button 326 Bartton 327
2w n.;n‘.;; aas I PR T . La
Tables

1. A table is a component that displays rows and columns of data. You can
drag the cursor on column boundaries to resize columns. You can also drag a column
to a new position. Tables are implemented by the JTable class, which extends
JComponent. One of its constructors is shown here:

JTable(Object data[][], Object colHeads[])
Here, data is a two-dimensional array of the information to be presented, and

colHeads is a one-dimensional array with the column headings.

2. Here are the steps for using a table in an applet:

e Create a JTable object.

15

JAVA AND J2EE NOTES

e Create a JScrollPane object.

e Add the table to the scroll pane.

e Add the scroll pane to the content pane of the applet.

The following example illustrates how to create and use a table. array of strings is created for
the column headings. This table has three columns. A two-dimensional array of strings is created
for the table cells. You can see that each element in the array is an array of three strings. These
arrays are passed to the JTable constructor. The table is added to a scroll pane and then the
scroll pane is added to the content pane.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class JTableDemo extends JFrame {

JTable jtbl;
final String[] colHeads = { "Name", "Phone", "Fax" };

final Object[][] data = {{ "Gail", "4567", "8675" },{ "Ken", "7566", "5555" },{ "Viviane", "5634",
"5887" },

{ "Melanie", "7345", "9222" }.{ "Anne", "1237", "3333" },{ "John", "5656", "3144" } { "Matt", "5672",
176" },

{ "Claire", "6741", "4244" } { "Erwin", "9023", "5159" },{ "Ellen", "1134", "5332" ! { "Jennifer",
"5689"’ "1212" }’{ HEdIY’ H9030H’ H‘l 3 1 3" },{ "HC]C]’]", V16751"’ H‘l4] 5" }};

JTableDemo()

{
setTitle("MY window");

setSize(400,400);
setLayout(new FlowLayout());
jtbl=new JTable(data,col);

add(jtbl);

setVisible(true);

setDefaultCloseOperation(JFrame. EXIT ON_CLOSE);
h
public static void main(String[] args) {

/! Auto-generated method stub
new JTableDemo();

16

17

JAVA AND J2EE NOTES

University questions

1. Difference between Swing and AWT(4)

2. Explain MVC architecture of swing(6)

3. Explain different types of swing button (10) (JButton, JToggleButton, JCheckBox,
JRadioButton)

4. What is swing? Explin Compnents and Containers in the swing (8)

5. Explain following component with example(12)
1) JTextField
1) JButton Class
111) JComboBox

6. How AWT is different from swings? what are the two key features of it? Explain.(08
Marks)

7. List four types of buttons in swings with their use. write a program to create four
different types of buttons on JApplet use suitable event to show action on JLabel (12
Marks

Discuss about swing features. List its components and container.(10)

9. Develop an applet to create a text field ,Label box and 4 check boxes with the caption

2 9

“red”, “blue”,”yellow”,”green”(10)

*®

10. Create a swing applet that has two buttons named alpha and beta when either of the
buttons pressed it should display ““ alpha was pressed and beta was pressed
respectively.(8)

11. Write steps to create JTable. Write a program to create a table with the column headings
“ FName, LName, Age” and insert atleast five tuples.(6)

