
Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 5

MODULE 1

INTRODUCTION TO OPERATING SYSTEM

Structure

 Goals of an OS

 Operation of an OS

 Computational Structures

 Resource allocation techniques

 Efficiency, System Performance and User Convenience

 Classes operating System

 Batch processing,

 Multi programming

 Time Sharing Systems

 Real Time operating systems

 Distributed operating systems

1.0: Objective

On completion of this chapter student will be able to

 Discuss the concepts of operating system.

 Explain the goals and functions of OS.

 Differentiate between the different classes of OS.

 Explain Batch processing Operating System.

 Discuss the concepts of multiprogramming system.

 Discuss the operation of time sharing system

 Explain the concept of real time operating system

 Discuss the operation of distributed system.

An operating system (OS) is different things to different users. Each user's view is

called an abstract view because it emphasizes features that are important from the viewer‘s

perspective, ignoring all other features. An operating system implements an abstract view by

acting as an intermediary between the user and the computer system. This arrangement not

note
s4

fre
e.i

n

Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 6

only permits an operating system to provide several functionalities at the same time, but also

to change and evolve with time.

An operating system has two goals—efficient use of a computer system and user

convenience. Unfortunately, user convenience often conflicts with efficient use of a computer

system- Consequently; an operating system cannot provide both. It typically strikes a balance

between the two that is most effective in the environment in which a computer system is

used—efficient use is important when a computer system is shared by several users while

user convenience is important in personal computers.

1.1 The fundamental goals of an operating system are:

1. Efficient use: Ensure efficient use of a computer‘s resources.

2. User convenience: Provide convenient methods of using a computer system.

3. Non-interference: Prevent interference in the activities of its users.

The goals of efficient use and user convenience sometimes conflict. For example,

emphasis on quick service could mean that resources like memory have to remain allocated to

a program even when the program is not in execution; however, it would lead to inefficient

use of resources. When such conflicts arise, the designer has to make a trade-off to obtain the

combination of efficient use and user convenience that best suits the environment. This is the

notion of effective utilization of the computer system. We find a large number of operating

systems in use because each one of them provides a different flavor of effective utilization. At

one extreme we have OSs that provide fast service required by command and control

applications, at the other extreme we have OSs that make efficient use of computer resources

to provide low-cost computing, while in the middle we have OSs that provide different users.

Such interference could be caused by both users and nonusers, and every OS must

incorporate measures to prevent it. In the following, we discuss important aspects of these

fundamental goals.

1.1.1 Efficient Use

An operating system must ensure efficient use of the fundamental computer system

resources of memory, CPU, and I/O devices such as disks and printers. Poor efficiency can

result if a program does not use a resource allocated to it, e.g., if memory or I/O devices

allocated to a program remain idle. Such a situation may have a snowballing effect: Since the

resource is allocated to a program, it is denied to other programs that need it. These programs

cannot execute, hence resources allocated to them also remain idle. In addition, the OS itself

consumes some CPU and memory resources during its own operation, and this consumption

of resources constitutes an overhead that also reduces the resources available to user

note
s4

fre
e.i

n

Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 7

programs. To achieve good efficiency, the OS must minimize the waste of resources by

programs and also minimize its own overhead. Efficient use of resources can be obtained by

monitoring use of resources and performing corrective actions when necessary. However,

monitoring use of resources increases the overhead, which lowers efficiency of use. In

practice, operating systems that emphasize efficient use limit their overhead by either

restricting their focus to efficiency of a few important resources, like the CPU and the

memory, or by not monitoring the use of resources at all, and instead handling user programs

and resources in a manner that guarantees high efficiency.

1.1.2 User Convenience

User convenience has many facets, as Table 1.1 indicates. In the early days of

computing, user convenience was synonymous with bare necessity—the mere ability to

execute a program written in a higher level language was considered adequate. Experience

with early operating systems led to demands for better service, which in those days meant

only fast response to a user request. Other facets of user convenience evolved with the use of

computers in new fields. Early operating systems had command-line interfaces, which

required a user to type in a command and specify values of its parameters. Users needed

substantial training to learn use of the commands, which was acceptable because most users

were scientists or computer professionals. However, simpler interfaces were needed to

facilitate use of computers by new classes of users. Hence graphical user interfaces (GUIs)

were evolved. These interfaces used icons on a screen to represent programs and files and

interpreted mouse clicks on the icons and associated menus as commands concerning them

Table 1.1 Facets of User Convenience

Facet Examples

Fulfillment of necessity Ability to execute programs, use the file system

Good Service Speedy response to computational requests

User friendly interfaces Easy-to-use commands, graphical user interface (GUI)

New programming model Concurrent programming

Web-oriented features Means to set up complex computational structures

Evolution Multi-threaded application servers

1.1.3 Non-interference

A computer user can face different kinds of interference in his computational

activities. Execution of his program can be disrupted by actions of other persons, or the

OS services which he wishes to use can be disrupted in a similar manner. The OS

note
s4

fre
e.i

n

Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 8

prevents such interference by allocating resources for exclusive use of programs and OS

services, and preventing illegal accesses to resources. Another form of interference

concerns programs and data stored in user files. A computer user may collaborate with

some other users in the development or use of a computer application, so he may wish to

share some of his files with them. Attempts by any other person to access his files are

illegal and constitute interference. To prevent this form of interference, an OS has to

know which files of a user can be accessed by which persons. It is achieved through the

act of authorization, whereby a user specifies which collaborators can access what files.

The OS uses this information to prevent illegal accesses to file

1.2 OPERATION OF AN OS

The primary concerns of an OS during its operation are execution of programs, use of

resources, and prevention of interference with programs and resources. Accordingly, its three

principal functions are:

 Program management: The OS initiates programs, arranges their execution on the

CPU, and terminates them when they complete their execution. Since many programs

exist in the system at any time, the OS performs a function called scheduling to select

a program for execution.
 Resource management: The OS allocates resources like memory and I/O devices

when a program needs them. When the program terminates, it deallocates these

resources and allocates them to other programs that need them.
 Security and protection: The OS implements non-interference in users‘activities

through joint actions of the security and protection functions. As an example, consider

how the OS prevents illegal accesses to a file. The security function prevents nonusers

from utilizing the services and resources in the computer system, hence none of them

can access the file. The protection function prevents users other than the file owner or

users authorized by him, from accessing the file.
Table 1.2 describes the tasks commonly performed by an operating system. When a computer

system is switched on, it automatically loads a program stored on a reserved part of an I/O

device, typically a disk, and starts executing the program. This program follows a software

technique known as bootstrapping to load the software called the boot procedure in

memory—the loads program initially loaded in memory some other programs in memory,

which load other programs, and so on until the complete boot procedure is loaded. The boot

procedure makes a list of all hardware resources in the system, and hands over control of the

computer system to the OS

note
s4

fre
e.i

n

Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 9

 Task When performed

 Construct a list of resources during booting

 Maintain information for security while registering new users

 Verify identity of a user at login time

 Initiate execution of programs at user commands

 Maintain authorization information When a user specifies which Collaborators can access

 what programs or data.

 Perform resource allocation when requested by users or programs

Table 1.2 Common Tasks Performed by Operating Systems

The following sections are a brief overview of OS responsibilities in managing programs

and resources and in implementing security and protection. The following sections are a

brief overview of OS responsibilities in managing programs and resources and in

implementing security and protection.

1.2.1 Program Management

Modern CPUs have the capability to execute program instructions at a very high

rate, so it is possible for an OS to interleave execution of several programs on a CPU and

yet provide good user service. The key function in achieving interleaved execution of

programs is scheduling, which decides which program should be given the CPU at any

time. Figure 1.3 shows an abstract view of scheduling. The scheduler, which is an OS

routine that performs scheduling, maintains a list of programs waiting to execute on the

CPU, and selects one program for execution.

In operating systems that provide fair service to all programs, the scheduler also specifies

how long the program can be allowed to use the CPU. The OS takes away the CPU from a

program after it has executed for the specified period of time, and gives it to another

program. This action is called preemption. A program that loses the CPU because of

preemption is put back into the list of programs waiting to execute on the CPU. The

scheduling policy employed by an OS can influence both efficient use of the CPU and user

service. If a program is preempted after it has executed for only a short period of time, the

overhead of scheduling actions would be high because of frequent preemption.

However,each program would suffer only a short delay before it gets an opportunity to use

note
s4

fre
e.i

n

Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 10

the CPU, which would result in good user service. If preemption is performed after a

program has executed for a longer period of time, scheduling overhead would be lesser but

programs would suffer longer delays, so user service would be poorer.

1.2.2 Resource Management

Resource allocations and deallocations can be performed by using a resource table.

Each entry in the table contains the name and address of a resource unit and its present status,

indicating whether it is free or allocated to some program. Table 1.3 is such a table for

management of I/O devices. It is constructed by the boot procedure by sensing the presence

of I/O devices in the system, and updated by the operating system to reflect the allocations

and deallocations made by it. Since any part of a disk can be accessed directly, it is possible

to treat different parts

Figure 1.1 A schematic of scheduling

Table 1.3 Resource Table for I/O Devices

Resource name Class Address Allocation status

printer1 Printer 101 Allocated to P1

printer2 Printer 102 Free

printer3 Printer 103 Free

disk1 Disk 201 Allocated to P1

disk2 Disk 202 Allocated to P2

cdw1 CD writer 301 Free

Virtual Resources A virtual resource is a fictitious resource—it is an illusion supported by

an OS through use of a real resource. An OS may use the same real resource to support

several virtual resources. This way, it can give the impression of having a larger number of

resources than it actually does. Each use of a virtual resource results in the use of an

appropriate real resource. In that sense, a virtual resource is an abstract view of a resource

taken by a program.

note
s4

fre
e.i

n

Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 11

Use of virtual resources started with the use of virtual devices. To prevent mutual

interference between programs, it was a good idea to allocate a device exclusively for use by

one program. However, a computer system did not possess many real devices, so virtual

devices were used. An OS would create a virtual device when a user needed an I/O device;

e.g., the disks called disk1 and disk2 in Table 1.3 could be two virtual disks based on the real

disk, which is allocated to programs P1 and P2, respectively. Virtual devices are used in

contemporary operating systems as well. A print server is a common example of a virtual

device.

When a program wishes to print a file, the print server simply copies the file into the

print queue. The program requesting the print goes on with its operation as if the printing had

been performed. The print server continuously examines the print queue and prints the files it

finds in the queue. Most operating systems provide a virtual resource called virtual memory,

which is an illusion of a memory that is larger in size than the real memory of a computer. Its

use enables a programmer to execute a program whose size may exceed the size of real

memory.

1.3 Classes of Operating Systems

Classes of operating systems have evolved over time as computer systems and users’

expectations of them have developed; i.e., as computing environments have evolved. As we

study some of the earlier classes of operating systems, we need to understand that each was

designed to work with computer systems of its own historical period; thus we will have to

look at architectural features representative of computer systems of the period. Table 1.4 lists

five fundamental classes of operating systems that are named according to their defining

features. The table shows when operating systems of each class first came into widespread

use; what fundamental effectiveness criterion, or prime concern, motivated its development;

and what key concepts were developed to address that prime concern.

Computing hardware was expensive in the early days of computing, so the batch

processing and multiprogramming operating systems focused on efficient use of the CPU and

other resources in the computer system. Computing environments were noninteractive in this

era. In the 1970s, computer hardware became cheaper, so efficient use of a computer was no

longer the prime concern and the focus shifted to productivity of computer users. Interactive

computing environments were developed and time-sharing operating systems facilitated

note
s4

fre
e.i

n

Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 12

Table 1.4 Key Features of Classes of Operating Systems

better productivity by providing quick response to subrequests made to processes. The 1980s

saw emergence of real-time applications for controlling or tracking of real-world activities, so

operating systems had to focus on meeting the time constraints of such applications. In the

1990s, further declines in hardware costs led to development of distributed systems, in which

several computer systems, with varying sophistication of resources, facilitated sharing of

resources across their boundaries through networking.

The following paragraphs elaborate on key concepts of the five classes of operating systems

mentioned in Table 1.4.

Batch Processing Systems: In a batch processing operating system, the prime concern is

CPU efficiency. The batch processing system operates in a strict one job- at-a-time manner;

within a job, it executes the programs one after another. Thus only one program is under

execution at any time. The opportunity to enhance CPU efficiency is limited to efficiently

initiating the next program when one program ends and the next job when one job ends, so

that the CPU does not remain idle.

Multiprogramming Systems: A multiprogramming operating system focuses on efficient

use of both the CPU and I/O devices. The system has several programs in a state of partial

completion at any time. The OS uses program priorities and gives the CPU to the highest-

priority program that needs it. It switches the CPU to a low-priority program when a high-

priority program starts an I/O operation, and switches it back to the high-priority program at

the end of the I/O operation. These actions achieve simultaneous use of I/O devices and the

CPU.

Time-Sharing Systems: A time-sharing operating system focuses on facilitating quick

response to subrequests made by all processes, which provides a tangible benefit to users. It is

note
s4

fre
e.i

n

Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 13

achieved by giving a fair execution opportunity to each process through two means: The OS

services all processes by turn, which is called round-robin scheduling. It also prevents a

process from using too much CPU time when scheduled to execute, which is called time-

slicing. The combination of these two techniques ensures that no process has to wait long for

CPU attention.

Real-Time Systems: A real-time operating system is used to implement a computer

application for controlling or tracking of real-world activities. The application needs to

complete its computational tasks in a timely manner to keep abreast of external events in the

activity that it controls. To facilitate this, the OS permits a user to create several processes

within an application program, and uses real-time scheduling to interleave the execution of

processes such that the application can complete its execution within its time constraint.

Distributed Systems: A distributed operating system permits a user to access resources

located in other computer systems conveniently and reliably. To enhance convenience, it does

not expect a user to know the location of resources in the system, which is called

transparency. To enhance efficiency, it may execute parts of a computation in different

computer systems at the same time. It uses distributed control; i.e., it spreads its decision-

making actions across different computers in the system so that failures of individual

computers or the network does not cripple its operation.

1.4 BATCH PROCESSING SYSTEMS

Computer systems of the 1960s were non interactive. Punched cards were the primary input

medium, so a job and its data consisted of a deck of cards. A computer operator would load

the cards into the card reader to set up the execution of a job. This action wasted precious

CPU time; batch processing was introduced to prevent this wastage.

A batch is a sequence of user jobs formed for processing by the operating system. A

computer operator formed a batch by arranging a few user jobs in a sequence and inserting

special marker cards to indicate the start and end of the batch. When the operator gave a

command to initiate processing of a batch, the batching kernel set up the processing of the

first job of the batch. At the end of the job, it initiated execution of the next job, and so on,

until the end of the batch. Thus the operator had to intervene only at the start and end of a

batch. Card readers and printers were a performance bottleneck in the 1960s, so batch

processing systems employed the notion of virtual card readers and printers (described in

Section 1.3.2) through magnetic tapes, to improve the system‘s throughput. A batch of jobs

was first recorded on a magnetic tape, using a less powerful and cheap computer. The batch

processing system processed these jobs from the tape, which was faster than processing them

note
s4

fre
e.i

n

Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 14

from cards, and wrote their results on another magnetic tape. These were later printed and

released to users. Figure 1.2 shows the factors that make up the turnaround time of a job.

User jobs could not interfere with each other‘s execution directly because they did not

coexist in a computer‘s memory. However, since the card reader was the only input device

available to users, commands, user programs, and data were all derived from the card reader,

so if a program in a job tried to read more data than provided in the job, it would read a few

cards of the following job! To protect against such interference between jobs, a batch

processing system required

Figure 1.2 Turnaround time in a batch processing system.

// JOB ―Start of job‖ statement

// EXEC FORTRAN Execute the Fortran compiler

Fortran

program

// EXEC Execute just compiled program

Data for

Fortran

program

/* ―End of data‖ statement

/& ―End of job‖ statement

Figure 1.3 Control statements in IBM 360/370 systems.

note
s4

fre
e.i

n

Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 15

a user to insert a set of control statements in the deck of cards constituting a job. The

command interpreter, which was a component of the batching kernel, read a card when the

currently executing program in the job wanted the next card. If the card contained a control

statement, it analyzed the control statement and performed appropriate actions; otherwise, it

passed the card to the currently executing program. Figure 3.2 shows a simplified set of

control statements used to compile and execute a Fortran program. If a program tried to read

more data than provided, the command interpreter would read the /*, /& and // JOB cards. On

seeing one of these cards, it would realize that the program was trying to read more cards than

provided, so it would abort the job. A modern OS would not be designed for batch

processing, but the technique is still useful in financial and scientific computation where the

same kind of processing or analysis is to be performed on several sets of data. Use of batch

processing in such environments would eliminate time-consuming initialization of the

financial or scientific analysis separately for each set of data.

1.5 MULTIPROGRAMMING SYSTEM

Multiprogramming operating systems were developed to provide efficient resource
utilization in a non interactive environment.

 Figure 1.4 Operation of a multiprogramming system: (a) program2 is in execution while
program1 is performing an I/O operation; (b) program2 initiates an I/O operation,
program3 is scheduled; (c) program1‘s I/O operation completes and it is scheduled.

A multiprogramming OS has many user programs in the memory of the computer at

any time, hence the name multiprogramming. Figure 1.4 illustrates operation of a

multiprogramming OS. The memory contains three programs. An I/O operation is in progress

for program1, while the CPU is executing program2. The CPU is switched to program3

when program2 initiates an I/O operation, and it is switched to program1 when program1‘s

I/O operation completes. The multiprogramming kernel performs scheduling, memory

management and I/O management.

A computer must possess the features summarized in Table 1.5 to support

multiprogramming. The DMA makes multiprogramming feasible by permitting concurrent

note
s4

fre
e.i

n

Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 16

operation of the CPU and I/O devices. Memory protection prevents a program from accessing

memory locations that lie outside the range of addresses defined by contents of the base

register and size register of the CPU. The kernel and user modes of the CPU provide an

effective method of preventing interference between programs.

The CPU initiates an I/O operation when an I/O instruction is executed. The DMA

implements the data transfer involved in the I/O operation without involving the CPU and

raises an I/O interrupt when the data transfer completes. Memory protection a program can

access only the part of memory defined by contents of the base register and size register.

Kernel and user modes of CPU Certain instructions, called privileged instructions, can

be performed only when the CPU is in the kernel mode. A program interrupt is raised if

program tries to execute a privileged instruction when the CPU is in the user mode. The CPU

is in the user mode; the kernel would abort the program while servicing this interrupt.

The turnaround time of a program is the appropriate measure of user service in a

multiprogramming system. It depends on the total number of programs in the system, the

manner in which the kernel shares the CPU between programs, and the program‘s own

execution requirements.

1.5.1 Priority of Programs

An appropriate measure of performance of a multiprogramming OS is throughput,

which is the ratio of the number of programs processed and the total time taken to process

them. Throughput of a multiprogramming OS that processes n programs in the interval

between times t0 and tf is n/(tf − t0). It may be larger than the throughput of a batch

processing system because activities in several programs may take place simultaneously—

one program may execute instructions on the CPU, while some other programs perform I/O

operations. However, actual throughput depends on the nature of programs being processed,

i.e., how much computation and how much I/O they perform, and how well the kernel can

overlap their activities in time.

The OS keeps a sufficient number of programs in memory at all times, so that the CPU

and I/O devices will have sufficient work to perform. This number is called the degree of

multiprogramming. However, merely a high degree of multiprogramming cannot guarantee

good utilization of both the CPU and I/O devices, because the CPU would be idle if each of

the programs performed I/O operations most of the time, or the I/O devices would be idle if

each of the programs performed computations most of the time. So the multiprogramming OS

employs the two techniques described in Table 1.6 to ensure an overlap of CPU and I/O

activities in programs: It uses an appropriate program mix, which ensures that some of the

programs in memory are CPU-bound programs, which are programs that involve a lot of

note
s4

fre
e.i

n

Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 17

computation but few I/O operations, and others are I/O-bound programs, which contain very

little computation but perform more I/O operations. This way, the programs being serviced

have the potential to keep the CPU and I/O devices busy simultaneously. The OS uses the

notion of priority-based preemptive scheduling to share the CPU among programs in a

manner that would ensure good overlap of their CPU and I/O activities. We explain this

technique in the following.

Table 1.6 Techniques of Multiprogramming

The kernel assigns numeric priorities to programs. We assume that priorities are

positive integers and a large value implies a high priority. When many programs need the

CPU at the same time, the kernel gives the CPU to the program with the highest priority. It

uses priority in a preemptive manner; i.e., it pre-empts a low-priority program executing on

the CPU if a high-priority program needs the CPU. This way, the CPU is always executing

the highest-priority program that needs it. To understand implications of priority-based

preemptive scheduling, consider what would happen if a high-priority program is performing

an I/O operation, a low-priority program is executing on the CPU, and the I/O operation of

the high-priority program completes—the kernel would immediately switch the CPU to the

high-priority program. Assignment of priorities to programs is a crucial decision that can

influence system throughput. Multiprogramming systems use the following priority

assignment rule:

An I/O-bound program should have a higher priority than a CPU-bound program.

note
s4

fre
e.i

n

Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 18

Figure 1.5 Timing chart when I/O-bound program has her priority.

Table 1.7 Effect of Increasing the Degree of Multiprogramming

Table 1.7 describes how addition of a CPU-bound program can reduce CPU idling

without affecting execution of other programs, while addition of an I/O-bound program can

improve I/O utilization while marginally affecting execution of CPU-bound programs. The

kernel can judiciously add CPU-bound or I/O-bound programs to ensure efficient use of

resources.

When an appropriate program mix is maintained, we can expect that an increase in the

degree of multiprogramming would result in an increase in throughput. Figure 1.6 shows how

the throughput of a system actually varies with the degree of multiprogramming. When the

degree of multiprogramming is 1, the throughput is dictated by the elapsed time of the lone

program in the system. When more programs exist in the system, lower-priority programs

also contribute to throughput. However, their contribution is limited by their opportunity to

use the CPU. Throughput stagnates with increasing values of the degree of multiprogramming

if low-priority programs do not get any opportunity to execute.

note
s4

fre
e.i

n

Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 19

Figure 1.6 Variation of throughput with degree of multiprogramming.

Figure 1.7 A schematic of round-robin scheduling with time-slicing.

1.6 TIME-SHARING SYSTEMS

In an interactive computing environment, a user submits a computational

requirement—a subrequest—to a process and examines its response on the monitor screen. A

time-sharing operating system is designed to provide a quick response to subrequests made

by users. It achieves this goal by sharing the CPU time among processes in such a way that

each process to which a subrequest has been made would get a turn on the CPU without much

delay.

The scheduling technique used by a time-sharing kernel is called round-robin

scheduling with time-slicing. It works as follows (see Figure 1.7): The kernel maintains a

scheduling queue of processes that wish to use the CPU; it always schedules the process at

the head of the queue. When a scheduled process completes servicing of a subrequest, or

starts an I/O operation, the kernel removes it from the queue and schedules another process.

Such a process would be added at the end of the queue when it receives a new subrequest, or

when its I/O operation completes. This arrangement ensures that all processes would suffer

comparable delays before getting to use the CPU. However, response times of processes

note
s4

fre
e.i

n

Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 20

would degrade if a process consumes too much CPU time in servicing its subrequest. The

kernel uses the notion of a time slice to avoid this situation. We use the notation δ for the time

slice.

Time Slice The largest amount of CPU time any time-shared process can consume when

scheduled to execute on the CPU. If the time slice elapses before the process completes

servicing of a subrequest, the kernel preempts the process, moves it to the end of the

scheduling queue, and schedules another process. The preempted process would be

rescheduled when it reaches the head of the queue once again.

The appropriate measure of user service in a time-sharing system is the time taken to

service a subrequest, i.e., the response time (rt). It can be estimated in the following manner:

Let the number of users using the system at any time be n. Let the complete servicing of each

user subrequest require exactly δ CPU seconds, and let σ be the scheduling overhead; i.e., the

CPU time consumed by the kernel to perform scheduling. If we assume that an I/O operation

completes instantaneously and a user submits the next subrequest immediately after receiving

a response to the previous subrequest, the response time (rt) and the CPU efficiency (η) are

given by

rt = n × (δ + σ) (1.1)

The actual response time may be different from the value of rt predicted by Eq. (1.1),

for two reasons. First, all users may not have made subrequests to their processes. Hence rt

would not be influenced by n, the total number of users in the system; it would be actually

influenced by the number of active users. Second, user subrequests do not require exactly δ

CPU seconds to produce a response. Hence the relationship of rt and η with δ is more

complex than shown in Eqs (1.1) and (1.2).

1.6.1 Swapping of Programs

Throughput of subrequests is the appropriate measure of performance of a timesharing

operating system. The time-sharing OS of Example 3.2 completes two subrequests in 125 ms,

hence its throughput is 8 subrequests per second over the period 0 to 125 ms. However, the

throughput would drop after 125 ms if users do not make the next subrequests to these

processes immediately

.

note
s4

fre
e.i

n

Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 21

Figure 1.8 Operation of processes P1 and P2 in a time-sharing system.

The CPU is idle after 45 ms because it has no work to perform. It could have serviced a few

more subrequests, had more processes been present in the system. But what if only two

processes could fit in the computer‘s memory? The system throughput would be low and

response times of processes other than P1 and P2 would suffer. The technique of swapping is

employed to service a larger number of processes than can fit into the computer‘s memory. It

has the potential to improve both system performance and response times of processes.

Figure 1.8 Swapping: (a) processes in memory between 0 and 105 ms; (b) P2 is replaced by
P3 at 105 ms; (c) P1 is replaced by P4 at 125 ms; (d) P1 is swapped in to service the next
subrequest made to it.

The kernel performs a swap-out operation on a process that is not likely to get

scheduled in the near future by copying its instructions and data onto a disk. This operation

frees the area of memory that was allocated to the process. The kernel now loads another

process in this area of memory through a swap-in operation.

note
s4

fre
e.i

n

Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 22

The kernel would overlap the swap-out and swap-in operations with servicing of other

processes on the CPU, and a swapped-in process would itself get scheduled in due course of

time. This way, the kernel can service more processes than can fit into the computer‘s

memory. Figure 1.9 illustrates how the kernel employs swapping. Initially, processes P1 and

P2 exist in memory. These processes are swapped out when they complete handling of the

subrequests made to them, and they are replaced by processes P3 and P4, respectively. The

processes could also have been swapped out when they were preempted. A swapped-out

process is swapped back into memory before it is due to be scheduled again, i.e., when it

nears the head of the scheduling queue in Figure 1.7.

1.7 REAL-TIME OPERATING SYSTEMS

In a class of applications called real-time applications, users need the computer to perform

some actions in a timely manner to control the activities in an external system, or to participate

in them. The timeliness of actions is determined by the time constraints of the external system.

Accordingly, we define a real-time application as follows:

If the application takes too long to respond to an activity, a failure can occur in the

external system. We use the term response requirement of a system to indicate the largest

value of response time for which the system can function perfectly; a timely response is one

whose response time is not larger than the response requirement of the system.

Consider a system that logs data received from a satellite remote sensor. The satellite

sends digitized samples to the earth station at the rate of 500 samples per second. The

application process is required to simply store these samples in a file. Since a new sample

arrives every two thousandth of a second, i.e., every 2 ms, the computer must respond to

every ―store the sample‖ request in less than 2 ms, or the arrival of a new sample would

wipe out the previous sample in the computer‘s memory. This system is a real-time

application because a sample must be stored in less than 2 ms to prevent a failure. Its

response requirement is 1.99 ms. The deadline of an action in a real-time application is the

time by which the action should be performed. In the current example, if a new sample is

received from the satellite at time t, the deadline for storing it on disk is t + 1.99 ms.

Examples of real-time applications can be found in missile guidance, command and control

applications like process control and air traffic control, data sampling and data acquisition

systems like display systems in automobiles, multimedia systems, and applications like

reservation and banking systems that employ large databases. The response requirements of

these systems vary from a few microseconds or milliseconds for guidance and control

systems to a few seconds for reservation and banking systems.

note
s4

fre
e.i

n

Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 23

1.7.1 Hard and Soft Real-Time Systems

To take advantage of the features of real-time systems while achieving maximum cost

effectiveness, two kinds of real-time systems have evolved. A hard real-time system is

typically dedicated to processing real-time applications, and provably meets the response

requirement of an application under all conditions. A soft real-time system makes the best

effort to meet the response requirement of a real-time application but cannot guarantee that it

will be able to meet it under all conditions. Typically, it meets the response requirements it

some probabilistic manner, say, 98 percent of the time. Guidance and control applications fail

if they cannot meet the response requirement; hence they are serviced by hard real-time

systems. Applications that aim at providing good quality of service, e.g., multimedia

applications and applications like reservation and banking, do not have a notion of failure, so

they may be serviced by soft real-time systems—the picture quality provided by a video-on-

demand system may deteriorate occasionally, but one can still watch the video!

1.7.2 Features of a Real-Time Operating System

A real-time OS provides the features summarized in Table 3.7. The first three features

help an application in meeting the response requirement of a system as follows: A real-time

application can be coded such that the OS can execute its parts concurrently, i.e., as separate

processes. When these parts are assigned priorities and priority-based scheduling is used, we

have a situation analogous to multiprogramming within the application—if one part of the

application initiates an I/O operation, the OS would schedule another part of the application.

Thus, CPU and I/O activities of the application can be overlapped with one another, which

help in reducing the duration of an application, i.e., its running time. Deadline-aware

scheduling is a technique used in the kernel that schedules processes in such a manner that

they may meet their deadlines.

Ability to specify domain-specific events and event handling actions enables a real-

time application to respond to special conditions in the external system promptly.

Predictability of policies and overhead of the OS enables an application developer to

calculate the worst-case running time of the application and decide whether the response

requirement of the external system can be met.

A real-time OS employs two techniques to ensure continuity of operation when faults

occur—fault tolerance and graceful degradation. A fault-tolerant computer system uses

redundancy of resources to ensure that the system will keep functioning even if a fault

occurs; e.g., it may have two disks even though the application actually needs only one disk.

Graceful degradation is the ability of a system to fall back to a reduced level of service when

a fault occurs and to revert to normal operations when the fault is rectified.

note
s4

fre
e.i

n

Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 24

The programmer can assign high priorities to crucial functions so that they would be

performed in a timely manner even when the system operates in a degraded mode.

1.8 DISTRIBUTED OPERATING SYSTEMS

A distributed computer system consists of several individual computer systems

connected through a network. Each computer system could be a PC, a multiprocessor system

or a cluster, which is itself a group of computers that work together in an integrated manner.

Thus, many resources of a kind, e.g., many memories, CPUs and I/O devices, exist in the

distributed system. A distributed operating system exploits the multiplicity of resources and

the presence of a network to provide the benefits summarized in Table 1.9. However, the

possibility of network faults or faults in individual computer systems complicates functioning

of the operating system and necessitates use of special techniques in its design. Users also

need to use special techniques to access resources over the network. Resource sharing has

been the traditional motivation for distributed operating systems. A user of a PC or

workstation can use resources such as printers over a local area network (LAN), and access

specialized hardware or software resources of a geographically distant computer system over

a wide area network (WAN).

A distributed operating system provides reliability through redundancy of computer

systems, resources, and communication paths—if a computer system or a resource used in an

application fails, the OS can switch the application to another computer system or resource,

and if a path to a resource fails, it can utilize another path to the resource. Reliability can be

used to offer high availability of resources and services, which is defined as the fraction of

time a resource or service is operable. High availability of a data resource, e.g., a file, can be

provided by keeping copies of the file in various parts of the system. Computation speedup

 implies a reduction in the duration of an application, i.e., in its running time.

Table 1.9 Benefits of Distributed Operating Systems

It is achieved by dispersing processes of an application to different computers in the

distributed system, so that they can execute at the same time and finish earlier than if they

note
s4

fre
e.i

n

Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 25

were to be executed in a conventional OS. Users of a distributed operating system have user

ids and passwords that are valid throughout the system. This feature greatly facilitates

communication between users in two ways. First, communication through user ids

automatically invokes the security mechanisms of the OS and thus ensures authenticity of

communication. Second, users can be mobile within the distributed system and still be able to

communicate with other users through the system.

1.8.1 Special Techniques of Distributed Operating Systems

A distributed system is more than a mere collection of computers connected to a

network functioning of individual computers must be integrated to achieve the benefits

summarized in Table 1.8. It is achieved through participation of all computers in the control

functions of the operating system. Accordingly, we define a distributed system as follows

Distributed control is the opposite of centralized control—it implies that the control

functions of the distributed system are performed by several computers in the system instead

of being performed by a single computer. Distributed control is essential for ensuring that

failure of a single computer, or a group of computers, does not halt operation of the entire

system.

Transparency of a resource or service implies that a user should be able to access it

without having to know which node in the distributed system contains it. This feature

enables the OS to change the position of a software resource or service to optimize its use by

applications.

For example, in a system providing transparency, a distributed file system could move

a file to the node that contains a computation using the file, so that the delays involved in

accessing the file over the network would be eliminated. The remote procedure call (RPC)

invokes a procedure that executes in another computer in the distributed system. An

application may employ the RPC feature to either performa part of its computation in another

computer, which would contribute to computation speedup, or to access a resource located in

that computer.

1.9 :Questions

1. Explain the benefits / features of distributed operating system.

2. Define an operating system . what are the different facets of user convenience?

3. Explain partition based and pool based resource allocation strategies.

4. Explain time sharing operating system with respect to

i) Scheduling

note
s4

fre
e.i

n

Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 26

ii) Memory management

5. What is OS? What are the common tasks performed by OS and when they are
performed.

6. Explain turn around time in batch processing system.

7. Define distributed system. Give the key concepts and techniques used in distributed
OS.

8. What are the two goals of an operating system ?explain briefly.

9. Describe the batch processing system and functions of scheduling and memory
management for the same.

10. Why I/O bound programs should be given higher priorities in a multiprogramming
environment? Illustrate with timing diagram.

 1.11 FURTHER READINGS

 https://en.wikipedia.org/wiki/operating_system

 https:codex.cs.yale.edu/avi/os-book/OS8/os8c/slide-dir/PDF-dir/ch9.pdf

 https:www.tutorialspoint.com/operating_system/os_operating_system.html

 https:searchstorage.techtarget.com/definition/classes of operating _system

note
s4

fre
e.i

n

Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 27

note
s4

fre
e.i

n

Operating System-10EC553

Dpt. Of ECE,ATMECE,Mysuru Page 1

MODULE -2

PROCESS MANAGEMENT

Structure:

• OS View of Processes

• PCB

• Fundamental State Transitions,

• Threads

• Kernel and User level Threads

• Non-preemptive scheduling- FCFS and SRN

• Preemptive Scheduling- RR and LCN

• Long term, medium term and short term scheduling in a time sharing system

Objective:

On completion of this chapter student will be able to

• Discuss the concepts of process

• Discuss the concepts of PCB.

• Explain the operation fundamental state transistion.

• Explain the concepts of threads.

• Discuss the concept of kernel and user level threads.

• Discuss the operation of Non-preemptive and Preemptive Scheduling

/. This situation arises when several executions of a program are initiated, each with its

own data, and when a program that is coded using concurrent programming techniques is in

execution.

A programmer uses processes to achieve execution of programs in a sequential or

concurrent manner as desired. An OS uses processes to organize execution of programs. Use of

the process concept enables an OS to execute both sequential and concurrent programs equally

easily.

note
s4

fre
e.i

n

Operating System-10EC553

Dpt. Of ECE,ATMECE,Mysuru Page 2

A thread is an execution of a program that uses the environment of a process, that is. its

code, data and resources. If many threads use the environment of the same process, they share

its code, data and resources. An OS uses this fact to reduce its overhead while switching

between such threads.

2.1 OS OVERVIEW OF PROCESS

A program is a passive entity that does not perform any actions by itself; it has to be

executed if the actions it calls for are to take place. A process is an execution of a program. It

actually performs the actions specified in a program. An operating system shares the CPU

among processes. This is how it gets user programs to execute.

To understand what a process is, let us discuss how the OS executes a program. Program

P shown in Figure 2.1(a) contains declarations of file info and a variable item, and statements

that read values from info, use them to perform some calculations, and print a result before

coming to a halt.

During execution, instructions of this program use values in its data area and the stack to

perform the intended calculations. Figure 2.1(b) shows an abstract view of its execution. The

instructions, data, and stack of program P constitute its address space. To realize execution of P,

the OS allocates memory to accommodate P‘s address space, allocates a printer to print its

results, sets up an arrangement through which P can access file info, and schedules P for

execution. The CPU is shown as a lightly shaded box because it is not always executing

instructions of P—the OS shares the CPU between execution of P and executions of other

programs.

note
s4

fre
e.i

n

Operating System-10EC553

Dpt. Of ECE,ATMECE,Mysuru Page 3

2.1.1 Relationships between Processes and Programs

A program consists of a set of functions and procedures. During its execution, control

flows between the functions and procedures according to the logic of the program. Is an

execution of a function or procedure a process? This doubt leads to the obvious question: what

is the relationship between processes and programs?

The OS does not know anything about the nature of a program, including functions and

procedures in its code. It knows only what it is told through system calls. The rest is under

control of the program. Thus functions of a program may be separate processes, or they may

constitute the code part of a single process.

 Table 2.1 shows two kinds of relationships that can exist between processes and

programs. A one-to-one relationship exists when a single execution of a sequential program is

in progress, for example, execution of program P in Figure 2.1. A many-to-one relationship

exists between many processes and a program in two cases: Many executions of a program may

be in progress at the same time; processes representing these executions have a many-to-one

relationship with the program. During execution, a program may make a system call to request

that a specific part of its code should be executed concurrently, i.e., as a separate activity

occurring at the same time. The kernel sets up execution of the specified part of the code and

treats it as a separate process. The new process and the process representing execution of the

program have a many-to-one relationship with the program. We call such a program a

concurrent program. Processes that coexist in the system at some time are called concurrent

processes. Concurrent processes may share their code, data and resources with other processes;

they have opportunities to interact with one another during their execution.

Table 2.1 Relationships between Processes and Programs Relationship Examples

note
s4

fre
e.i

n

Operating System-10EC553

Dpt. Of ECE,ATMECE,Mysuru Page 4

2.1.2 Child Processes

The kernel initiates an execution of a program by creating a process for it. For lack of a

technical term for this process, we will call it the primary process for the program execution.

The primary process may make system calls as described in the previous section to create other

processes—these processes become its child processes, and the primary process becomes their

parent.

A child process may itself create other processes, and so on. The parent–child

relationships between these processes can be represented in the form of a process tree, which

has the primary process as its root. A child process may inherit some of the resources of its

parent; it could obtain additional resources during its operation through system calls.

Typically, a process creates one or more child processes and delegates some of its work

to each of them. It is called multitasking within an application. Creation of child processes has

the same benefits as the use of multiprogramming in an OS—the kernel may be able to

interleave operation of I/O-bound and CPU-bound processes in the application, which may lead

to a reduction in the duration, i.e., running time, of an application. It is called computation

speedup. Most operating systems permit a parent process to assign priorities to child processes.

A real-time application can assign a high priority to a child process that performs a critical

function to ensure that its response requirement is met.

The third benefit, namely, guarding a parent process against errors in a child process,

arises as follows: Consider a process that has to invoke an untrusted code. If the untrusted code

were to be included in the code of the process, an error in the untrusted code would compel the

kernel to abort the process; however, if the process were to create a child process to execute the

untrusted code, the same error would lead to the abort of the child process, so the parent process

would not come to any harm. The OS command interpreter uses this feature to advantage. The

command interpreter itself runs as a process, and creates a child process whenever it has to

execute a user program. This way, its own operation is not harmed by malfunctions in the user

program.

note
s4

fre
e.i

n

Operating System-10EC553

Dpt. Of ECE,ATMECE,Mysuru Page 5

2.1.3 Programmer view of processes

Child Processes in a Real-Time Application

Example 2.1: The real-time data logging application of Section 2.2 receives data samples from a

satellite at the rate of 500 samples per second and stores them in a file. We assume that each

sample arriving from the satellite is put into a special register of the computer. The primary

process of the application, which we will call the data_logger process, has to perform the

following three functions:

1. Copy the sample from the special register into memory.

2. Copy the sample from memory into a file.

3. Perform some analysis of a sample and record its results into another file used for future

processing.

It creates three child processes named copy_sample, record_sample, and housekeeping,

leading to the process tree shown in Figure 2.2(a). Note that a process is depicted by a circle

and a parent–child relationship is depicted by an arrow. As shown in Figure 2.2(b),

copy_sample copies the sample from the register into a memory area named buffer_area that

can hold, say, 50 samples. record_sample writes a sample from buffer_area into a file.

housekeeping analyzes a sample from buffer_area and records its results in another file. Arrival

of a new sample causes an interrupt, and a programmer-defined interrupt servicing routine is

associated with this interrupt. The kernel executes this routine whenever a new sample arrives.

It activates copy_sample.

Operation of the three processes can overlap as follows: copy_sample can copy a sample

into buffer_area, record_sample can write a previous sample to the file, while housekeeping can

analyze it and write its results into the other file. This arrangement provides a smaller worst-

case response time of the application than if these functions were to be executed sequentially.

So long as buffer_area has some free space, only copy_sample has to complete before the next

sample arrives. The other processes can be executed later. This possibility is exploited by

assigning the highest priority to copy_sample.

note
s4

fre
e.i

n

Operating System-10EC553

Dpt. Of ECE,ATMECE,Mysuru Page 6

Figure 2.2 Real-time application of (a) process tree; (b) processes.

To facilitate use of child processes, the kernel provides operations for:

1. Creating a child process and assigning a priority to it

2. Terminating a child process

3. Determining the status of a child process

4. Sharing, communication, and synchronization between processes

Their use can be described as follows: In Example 2.1, the data_logger process creates three

child processes. The copy_sample and record_sample processes share buffer_area. They need to

synchronize their operation such that process record_sample would copy a sample out of

buffer_area only after process copy_sample has written it there. The data_logger process could

be programmed to either terminate its child processes before itself terminating, or terminate

itself only after it finds that all its child processes have terminated.

2.2 PCB

 The process control block (PCB) of a process contains three kinds of information

concerning the process—identification information such as the process id, id of its parent

process, and id of the user who created it; process state information such as its state, and the

note
s4

fre
e.i

n

Operating System-10EC553

Dpt. Of ECE,ATMECE,Mysuru Page 7

contents of the PSW and the general-purpose registers (GPRs); and information that is useful in

controlling its operation, such as its priority, and its interaction with other processes. It also

contains a pointer field that is used by the kernel to form PCB lists for scheduling, e.g., a list of

ready processes. Table 2.2 describes the fields of the PCB data structure.

The priority and state information is used by the scheduler. It passes the id of the

selected process to the dispatcher. For a process that is not in the running state, the PSW and

 GPRs fields together contain the CPU state of the process when it last got blocked or

was pre-empted. Operation of the process can be resumed by simply loading this information

from its PCB into the CPU. This action would be performed when this process is to be

dispatched.

When a process becomes blocked, it is important to remember the reason. It is done by

noting the cause of blocking, such as a resource request or an I/O operation, in the event

information field of the PCB. Consider a process Pi that is blocked on an I/O operation on

device d. The event information field in Pi ‘s PCB indicates that it awaits end of an I/O

operation on device d. When the I/O operation on device d completes, the kernel uses this

information to make the transition blocked→ready for process Pi .

Table 2.2 Fields of the Process Control Block (PCB)

note
s4

fre
e.i

n

Operating System-10EC553

Dpt. Of ECE,ATMECE,Mysuru Page 8

2.3 FUNDAMENTAL STATE TRANSITION

An operating system uses the notion of a process state to keep track of what a process is

doing at any moment. The kernel uses process states to simplify its own functioning, so the

number of process states and their names may vary across OSs. However, most OSs use the

four fundamental states described in Table 2.3. The kernel considers a process to be in

theblocked state if it has made a resource request and the request is yet to be granted, or if it is

waiting for some event to occur. A CPU should not be allocated to such a process until its wait

is complete. The kernel would change the state of the process to ready when the request is

granted or the event for which it is waiting occurs. Such a process can be considered for

scheduling. The kernel would change the state of the process to running when it is dispatched.

The state would be changed to terminated when execution of the process completes or when it

is aborted by the kernel for some reason.

A conventional computer system contains only one CPU, and so at most one process can

be in the running state. There can be any number of processes in the blocked, ready, and

terminated states. An OS may define more process states to simplify its own functioning or to

support additional functionalities like swapping.

Process State Transitions A state transition for a process Pi is a change in its state. A

state transition is caused by the occurrence of some event such as the start or end of an I/O

operation. When the event occurs, the kernel determines its influence on activities in processes,

and accordingly changes the state of an affected process.

When a process Pi in the running state makes an I/O request, its state has to be changed

to blocked until its I/O operation completes. At the end of the I/O operation, Pi ‘s state is

changed from blocked to ready because it now wishes to use the CPU. Similar state changes are

made when a process makes some request that cannot immediately be satisfied by the OS. The

process state is changed to blocked when the request is made, i.e., when the request event

occurs, and it is changed to ready when the request is satisfied. The state of a ready process is

changed to running when it is dispatched, and the state of a running process is changed to ready

when it is preempted either because a higher-priority process became ready or because its time

slice elapsed. Table 2.3 summarizes causes of state transitions.

note
s4

fre
e.i

n

Operating System-10EC553

Dpt. Of ECE,ATMECE,Mysuru Page 9

Figure 2.3 diagrams the fundamental state transitions for a process. A new process is put

in the ready state after resources required by it have been allocated. It may enter the running,

blocked, and ready states a number of times as a result of events described in Table 2.4.

Eventually it enters the terminated state.

Figure 2.3 Fundamental state transitions for a process.

Table 2.3 Fundamental state transitions for a process.

2.2.1 Suspended Processes

A kernel needs additional states to describe the nature Of the activity of a process that

is not in one of the four fundamental states described earlier.

note
s4

fre
e.i

n

Operating System-10EC553

Dpt. Of ECE,ATMECE,Mysuru Page 10

Figure 2.4 Process states and state transitions using two swapped states.

Consider a process that was in the ready or the blocked state when it got swapped out of

memory. The process needs to be swapped back into memory before it can resume its activity.

Hence it is no longer in the ready or blocked state; the kernel must define a new state for it. We

call such a process a suspended process. If a user indicates that his process should not be

considered for scheduling for a specific period of time, it, too, would become a suspended

process. When a suspended process is to resume its old activity, it should go back to the state it

was in when it was suspended. To facilitate this state transition, the kernel may define many

suspend states and put a suspended process into the appropriate suspend state. We restrict the

discussion of suspended processes to swapped processes and use two suspend states called

ready swapped and blocked swapped. Accordingly, Figure 2.5 shows process states and state

transitions. The transition ready → ready swapped or blocked → blocked swapped is caused by

a swap-out action.

The reverse state transition takes place when the process is swapped back into memory.

The blocked swapped → ready swapped transition takes place if the request for which the

note
s4

fre
e.i

n

Operating System-10EC553

Dpt. Of ECE,ATMECE,Mysuru Page 11

process was waiting is granted even while the process is in a suspended state, for example, if a

resource for which it was blocked is granted to it. However, the process continues to be

swapped out.

When it is swapped back into memory, its state changes to ready and it competes with

other ready processes for the CPU. A new process is put either in the ready state or in the ready

swapped state depending on availability of memory.

2.3 THREADS

Applications use concurrent processes to speed up their operation. However, switching

between processes within an application incurs high process switching overhead because the

size of the process state information is large, so operating system designers developed an

alternative model of execution of a program, called a thread, that could provide concurrency

within an application with less overhead.

To understand the notion of threads, let us analyze process switching overhead and see

where a saving can be made. Process switching overhead has two components:

➢ Execution related overhead: The CPU state of the running process has to be saved and

the CPU state of the new process has to be loaded in the CPU. This overhead is

unavoidable.

➢ Resource-use related overhead: The process context also has to be switched. It involves

switching of the information about resources allocated to the process, such as memory

and files, and interaction of the process with other processes. The large size of this

information adds to the process switching overhead.

Consider child processes Pi and Pj of the primary process of an application. These processes

inherit the context of their parent process. If none of these processes have allocated any

resources of their own, their context is identical; their state information differs only in their

CPU states and contents of their stacks. Consequently, while switching between Pi andPj, much

of the saving and loading of process state information is redundant. Threads exploit this feature

to reduce the switching overhead.

note
s4

fre
e.i

n

Operating System-10EC553

Dpt. Of ECE,ATMECE,Mysuru Page 12

 A process creates a thread through a system call. The thread does not have resources of

its own, so it does not have a context; it operates by using the context of the process, and

accesses the resources of the process through it. We use the phrases ―”thread(s) of a process”

and ―”parent process of a thread” to describe the relationship between a thread and the process

whose context it uses.

 Figure 2.5 illustrates the relationship between threads and processes. In the abstract view

of Figure 2.5(a), process Pi has three threads, which are represented by wavy linesinside the

circle representing process Pi. Figure 2.5 (b) shows an implementation arrangement. Process Pi

has a context and a PCB. Each thread of Pi is an execution of a program, so it has its own stack

and a thread control block (TCB), which is analogous to the PCB and stores the following

information:

1. Thread scheduling information—thread id, priority and state.

2. CPU state, i.e., contents of the PSW and GPRs.

3. Pointer to PCB of parent process.

4. TCB pointer, which is used to make lists of TCBs for scheduling.

 Use of threads effectively splits the process state into two parts—the resource state

remains with the process while an execution state, which is the CPU state, is associated with a

thread. The cost of concurrency within the context of a process is now merely replication of the

execution state for each thread. The execution states need to be switched during switching

between threads. The resource state is neither replicated nor switched during switching between

threads of the process.

note
s4

fre
e.i

n

Operating System-10EC553

Dpt. Of ECE,ATMECE,Mysuru Page 13

Figure 2.5 Threads in process Pi: (a) concept; (b) implementation.

2.2.1 Thread States and State Transitions

Barring the difference that threads do not have resources allocated to them, threads and

processes are analogous. Hence thread states and thread state transitions are analogous to

process states and process state transitions. When a thread is created, it is put in the ready state

already has the necessary resources allocated to it. It enters the running state when it is

dispatched. It does not enter the blocked state because of resource requests, because it does not

make any resource requests; however, it can enter the blocked state because of process

synchronization requirements.

Advantages of Threads over Processes

Table 2.5 summarizes the advantages of threads over processes, of which we have

already discussed the advantage of lower overhead of thread creation and switching. Unlike

child processes, threads share the address space of the parent process, so they can communicate

through shared data rather than through messages, thereby eliminating the overhead of system

calls.

Applications that service requests received from users, such as airline reservation

systems or banking systems, are called servers; their users are called clients. Performance of

servers can be improved through concurrency or parallelism, i.e., either through interleaving of

note
s4

fre
e.i

n

Operating System-10EC553

Dpt. Of ECE,ATMECE,Mysuru Page 14

requests that involve I/O operations or through use of many CPUs to service different requests.

Use of threads simplifies their design;

Figure 2.6(a) is a view of an airline reservation server. The server enters requests made

by its clients in a queue and serves them one after another. If several requests are to be serviced

concurrently, the server would have to employ advanced I/O techniques such as asynchronous

I/O, and use complex logic to switch between the processing of requests. By contrast, a

multithreaded server could create a new thread to service each new request it receives, and

terminate the thread after servicing the request.

Table 2.5 Advantages of Threads over Processes

Figure 2.6 Use of threads in structuring a server: (a) server using sequential code; (b)
multithreaded server; (c) server using a thread pool.

2.4 KERNEL-LEVEL AND USER-LEVEL

 These two models of threads differ in the role of the process and the kernel in the

creation and management of threads. This difference has a significant impact on the overhead of

thread switching and the concurrency and parallelism within a process.

note
s4

fre
e.i

n

Operating System-10EC553

Dpt. Of ECE,ATMECE,Mysuru Page 15

2.4.1 Kernel-Level Threads

 A kernel-level thread is implemented by the kernel. Hence creation and termination of

kernel-level threads, and checking of their status, is performed through system calls. Figure 2.7

shows a schematic of how the kernel handles kernel-level threads. When a process makes a

create_thread system call, the kernel creates a thread, assigns an id to it, and allocates a thread

control block (TCB). The TCB contains a pointer to the PCB of the parent process of the

threads.

Figure 2.7 Scheduling of kernel-level threads.

TCB to check whether the selected thread belongs to a different process than the

interrupted thread. If so, it saves the context of the process to which the interrupted thread

belongs, and loads the context of the process to which the selected thread belongs. It then

dispatches the selected thread. However, actions to save and load the process context are

skipped if both threads belong to the same process. This feature reduces the switching

overhead, hence switching between kernel-level threads of a process could be as much as an

order of magnitude faster, i.e., 10 times faster, than switching between processes.

Advantages and Disadvantages of Kernel-Level Threads

A kernel-level thread is like a process except that it has a smaller amount of state

information. This similarity is convenient for programmers—programming for threads is no

different from programming for processes. In a multiprocessor system, kernel-level threads

provide parallelism, as many threads belonging to a process can be scheduled simultaneously,

which is not possible with the user-level threads described in the next section, so it provides

better computation speedup than user-level threads.

note
s4

fre
e.i

n

Operating System-10EC553

Dpt. Of ECE,ATMECE,Mysuru Page 16

However, handling threads like processes has its disadvantages too. Switching between

threads is performed by the kernel as a result of event handling. Hence it incurs the overhead of

event handling even if the interrupted thread and the selected thread belong to the same process.

This feature limits the savings in the thread switching overhead.

2.4.2 User-Level Threads

User-level threads are implemented by a thread library, which is linked to the code of

a process. The library sets up the thread implementation arrangement without involving the

kernel, and itself interleaves operation of threads in the process. Thus, the kernel is not aware of

presence of user-level threads in a process; it sees only the process. Most OSs implement the

pthreads application program interface provided in the IEEE POSIX standard in this manner.

Scheduling of User-Level Threads

 Figure 2.8 is a schematic diagram of scheduling of user-level threads. The thread library

code is a part of each process. It performs “scheduling” to select a thread, and organizes its

execution. We view this operation as “mapping” of the TCB of the selected thread into the PCB

of the process.

Figure 2.8 Actions of the thread library (N,R,B indicate running, ready, and blocked).

note
s4

fre
e.i

n

Operating System-10EC553

Dpt. Of ECE,ATMECE,Mysuru Page 17

The thread library uses information in the TCBs to decide which thread should operate at

any time. To ―dispatch‖ the thread, the CPU state of the thread should become the CPU state of

the process, and the process stack pointer should point to the thread‘s stack. Since the thread

library is a part of a process, the CPU is in the user mode. Hence a thread cannot be dispatched

by loading new information into the PSW; the thread library has to use nonprivileged

instructions to change PSW contents. Accordingly, it loads the address of the thread‘s stack into

the stack address register, obtains the address contained in the program counter (PC) field of the

thread‘s CPU state found in its TCB, and executes a branch instruction to transfer control to the

instruction which has this address.

Advantages and Disadvantages of User-Level Threads

Thread synchronization and scheduling is implemented by the thread library. This

arrangement avoids the overhead of a system call for synchronization between threads, so the

thread switching overhead could be as much as an order of magnitude smaller than in kernel-

level threads.

2.5 NON PRE EMPTIVE SCHEDULING

 In non pre emptive scheduling, a server always services a scheduled request to

completion. Thus, scheduling is performed only when servicing of a previously scheduled

request is completed and so pre emption of a request as shown in Figure 7.1 never occurs. Non

pre emptive scheduling is attractive because of its simplicity the scheduler does not have to

distinguish between a un serviced request and a partially serviced one. Since a user service or

system performance is reordering of requests. The three non pre emptive scheduling policies are:

• First-come, first-served (FCFS) scheduling

• Shortest request next (SRN) scheduling

FCFS Scheduling

 Requests are scheduled in the order in which they arrive in the system. The list of

pending requests is organized as a queue. The scheduler always schedules the first request in the

list. An example of FCFS scheduling is a batch processing system in which jobs are ordered

according to their arrival times (or arbitrarily, if they arrive at exactly the same time) and Results

of a job are released to the user immediately on completion of the job. The following example

illustrates operation of an FCFS scheduler.

note
s4

fre
e.i

n

Operating System-10EC553

Dpt. Of ECE,ATMECE,Mysuru Page 18

Table 2.6 Processes for Scheduling

Table 7.2 illustrates the scheduling decisions made by the FCFS scheduling policy for the

processes of Table 2.6. Process P1 is scheduled at time 0. The pending list contains P2 andP3

when P1 completes at 3 seconds, so P2 is scheduled. The Completed column shows the id of the

completed process and its turnaround time (ta) and weighted turnaround (w). The mean values of

ta and w (i.e., ta and w) are shown below the table. The timing chart of Figure 7.2shows how the

processes operated.

Shortest Request Next (SRN) Scheduling

note
s4

fre
e.i

n

Operating System-10EC553

Dpt. Of ECE,ATMECE,Mysuru Page 19

 The SRN scheduler always schedules the request with the smallest service time. Thus, a

request remains pending until all shorter requests have been serviced.

Figure 7.3 illustrates the scheduling decisions made by the SRN scheduling policy for the

processes of Table 2.6, and the operation of the processes. At time 0, P1 is the only process in

the system, so it is scheduled. It completes at time 3 seconds. At this time, processes P2 andP3

exist in the system, and P2 is shorter than P3. So P2 is scheduled, and so on. The mean

turnaround time and the mean weighted turnaround are better than in FCFS scheduling because

short requests tend to receive smaller turnaround times and weighted turnarounds than in FCFS

scheduling. This feature degrades the service that long requests receive;

However, their weighted turnarounds do not increase much because their service times are large.

The throughput is higher than in FCFS scheduling in the first 10 seconds of the schedule because

short processes are being serviced; however, it is identical at the end of the schedule because the

same processes have been serviced.

2.6 PRE EMPTIVE SCHEDULING POLICIES

 In pre emptive scheduling, the server can be switched to the processing of a new request

before completing the current request. The pre empted request is put back into the list of pending

requests . Its servicing is resumed when it is scheduled again. Thus, a request might have to be

note
s4

fre
e.i

n

Operating System-10EC553

Dpt. Of ECE,ATMECE,Mysuru Page 20

scheduled many times before it completed. This feature causes a larger scheduling overhead than

when non pre emptive scheduling is used.

The three pre emptive scheduling policies are:

Round-robin scheduling with time-slicing (RR)

Least completed next (LCN) scheduling

Shortest time to go (STG) scheduling

The RR scheduling policy shares the CPU among admitted requests by servicing them in turn.

The other two policies take into account the CPU time required by a request or the CPU

Preemptive Scheduling Policies In preemptive scheduling, the server can be switched to the

processing of a new request before completing the current request. The preempted request is put

back into the list of pending requests (see Figure 7.1). Its servicing is resumed when it is

scheduled again. Thus, a request might have to be scheduled many times before it completed.

This feature causes a larger scheduling overhead than when non pre emptive scheduling is used.

The three preemptive scheduling policies are:

note
s4

fre
e.i

n

Operating System-10EC553

Dpt. Of ECE,ATMECE,Mysuru Page 21

• Round-robin scheduling with time-slicing (RR)

• Least completed next (LCN) scheduling

• Shortest time to go (STG) scheduling

The RR scheduling policy shares the CPU among admitted requests by servicing them in turn.

The other two policies take into account the CPU time required by a request or the CPU time

consumed by it while making their scheduling decisions. 7.2.1 Round-Robin Scheduling with

Time-Slicing (RR) The RR policy aims at providing good response times to all requests. The

time slice, which is designated as , is the largest amount of CPU time a request may use when

scheduled. A request is preempted at the end of a time slice. To facilitate this, the kernel arranges

to raise a timer interrupt when the time slice elapses.

TheRRpolicy provides comparable service to all CPU-bound processes. This feature is reflected

in approximately equal values of their weighted turnarounds. The actual value of the weighted

turnaround of a process depends on the number of processes in the system.Weighted turnarounds

provided to processes that perform I/O operations would depend on the durations of their I/O

operations. The RR policy does not fare well on measures of system performance like throughput

because it does not give a favored treatment to short processes. The following example illustrates

the performance of RR scheduling.

Example 2.3 Round-Robin (RR) Scheduling

Around-robin scheduler maintains a queue of processes in the ready state and simply selects the

first process in the queue. The running process is pre-empted when the time slice elapses and it is

put at the end of the queue. It is assumed that a new process that was admitted into the system at

the same instant a process was preempted will be entered into the queue before the pre-empted

process. Figure 7.5 summarizes operation of the RR scheduler with = 1 second for the five

processes shown in Table 2.6. The scheduler makes scheduling decisions every second. The time

when a decision is made is shown in the first row of the table in the top half of Figure 7.5. The

next five rows show positions of the five processes in the ready queue. A blank entry indicates

that the process is not in the system at the designated time. The last row shows the process

note
s4

fre
e.i

n

Operating System-10EC553

Dpt. Of ECE,ATMECE,Mysuru Page 22

selected by the scheduler; it is the process occupying the first position in the ready queue.

Consider the situation at 2 seconds. The scheduling queue contains P2 followed by P1. Hence P2

is scheduled. Process P3 arrives at 3 seconds, and is entered in the queue. P2 is also preempted at

3 seconds and it is entered in the queue. Hence the queue has process P1 followed by P3 and P2,

so P1 is scheduled.

Least Completed Next (LCN) Scheduling: The LCN policy schedules the process that has so

far consumed the least amount of CPU time. Thus, the nature of a process, whether CPU-bound

or I/O-bound, and its CPU time requirement do not influence its progress in the system. Under

the LCN policy, all processes will make approximately equal progress in terms of the CPU time

consumed by them, so this policy guarantees that short processes will finish ahead of long

processes. Ultimately, however, this policy has the familiar drawback of starving long processes

note
s4

fre
e.i

n

Operating System-10EC553

Dpt. Of ECE,ATMECE,Mysuru Page 23

of CPU attention. It also neglects existing processes if new processes keep arriving in the system.

So even not-so long processes tend to suffer starvation or large turnaround times.

Example 7.6 Least Completed Next (LCN) Scheduling Implementation of the LCN scheduling

policy for the five processes shown in Table 2.6 is summarized in Figure 7.6. The middle rows in

the table in the upper half of the figure show the amount of CPU time already consumed by a

process. The scheduler analyzes this information and selects the process that has consumed the

least amount of CPU time. In case of a tie, it selects the process that has not been serviced for the

longest period of time. The turnaround times and weighted turnarounds of the processes are

shown in the right half of the table.

It can be seen that servicing of P1, P2, and P3 is delayed because new processes arrive and

obtain CPU service before these processes can make further progress.

note
s4

fre
e.i

n

Operating System-10EC553

Dpt. Of ECE,ATMECE,Mysuru Page 24

The LCN policy provides poorer turnaround times and weighted turnarounds than those provided

by the RR policy (See Example 7.4) and the STG policy (to be discussed next) because it favours

newly arriving processes over existing processes in the system until the new processes catch up

in terms of CPU utilization; e.g., it favours P5 over P1, P2, and P3.

2.7 LONG TERM, MEDIUM TERM AND SHORT TERM SCHEDULING

IN A TIME SHARING SYSTEM

Long-term scheduler: Decides when to admit an arrived process for scheduling, depending on its

nature (whether CPU-bound or I/O-bound) and on availability of resources like kernel data

structures and disk space for swapping.

Medium-term scheduler: Decides when to swap-out a process from memory and when to load it

back, so that a sufficient number of ready processes would exist in memory.

Short-term scheduler: Decides which ready process to service next on the CPU and for how long.

Thus, the short-term scheduler is the one that actually selects a process for operation. Hence it is

also called the process scheduler, or simply the scheduler.

note
s4

fre
e.i

n

Operating System-10EC553

Dpt. Of ECE,ATMECE,Mysuru Page 25

Figure 7.8 shows an overview of scheduling and related actions. The operation of the kernel is

interrupt-driven. Every event that requires the kernel.

Long-Term Scheduling The long-term scheduler may defer admission of a request for two

reasons: it may not be able to allocate sufficient resources like kernel data structures or I/O

devices to a request when it arrives, or it may find that admission of a request would affect

system performance in some way; e.g., if the system currently contained a large number of CPU-

bound requests, the scheduler might defer admission of a new CPU-bound request, but it might

admit a new I/O-bound request right away.

Long-term scheduling was used in the 1960s and 1970s for job scheduling because computer

systems had limited resources, so a long-term scheduler was required to decide whether a

process could be initiated at the present time. It continues to be important in operating systems

where resources are limited. It is also used in systems where requests have deadlines, or a set of

requests are repeated with a known periodicity, to decide when a process should be initiated to

meet response requirements of applications. Long-term scheduling is not relevant in other

operating systems.

Medium-Term Scheduling Medium-term scheduling maps the large number of requests that have

been admitted to the system into the smaller number of requests that can fit into the memory of

the system at any time. Thus its focus is on making a sufficient number of ready processes

available to the short-term scheduler by suspending or reactivating processes. The medium term

scheduler decides when to swap out a process from memory and when to swap it back into

memory, changes the state of the process appropriately, and enters its process control block

(PCB) in the appropriate list of PCBs. The actual swapping-in and swapping out operations are

performed by the memory manager.

The kernel can suspend a process when a user requests suspension, when the kernel runs out of

free memory, or when it finds that the CPU is not likely to be allocated to the process in the near

future. In time-sharing systems, processes in blocked or ready states are candidates for

suspension. Short-Term Scheduling Short-term scheduling is concerned with effective use of the

CPU. It selects one process from a list of ready processes and hands it to the dispatching

note
s4

fre
e.i

n

Operating System-10EC553

Dpt. Of ECE,ATMECE,Mysuru Page 26

mechanism. It may also decide how long the process should be allowed to use the CPU and

instruct the kernel to produce a timer interrupt accordingly.

Figure 7.10 is a schematic diagram of the process scheduler. It uses several lists of PCBs whose

organization and use depends on the scheduling policy. The process scheduler selects one

process and passes its id to the process dispatching mechanism. The process dispatching

mechanism loads contents of two PCB fields the program status word (PSW) and general

purpose registers (GPRs) fields into the CPU to resume operation of the selected process. Thus,

the dispatching mechanism interfaces with the scheduler on one side and the hardware on the

other side. The context save mechanism is a part of the interrupt processing routine. When an

interrupt occurs, it is invoked to save the PSW and GPRs of the interrupted process. The priority

computation and reordering mechanism re computes the priority of requests and reorders the

PCB lists to reflect the new priorities.

2.8 SUMMARY

The process concept helps to explain, understand and organize execution of programs in an OS.

A process is an execution of a program. The emphasis on 'an' implies that several processes may

represent executions of the same program. A scheduling policy decides which process should be

note
s4

fre
e.i

n

Operating System-10EC553

Dpt. Of ECE,ATMECE,Mysuru Page 27

given the CPU at the present moment. This decision influences both system performance and

user service. The scheduling policy in modern operating system must provide the best

combination of user service and system performance to suit its computing environment.

2.9 QUESTIONS

1. Explain the contents of process control block.

2. Explain with a neat diagram, process state and transistion.

3. What is process? What are the components of a process? Explain .

4. Explain with neat diagrams a)User threads b)Kernel level threads.

5. Define a process . list the different fields of a process control block.

6. Explain the four fundamental states of a process with state transition diagram.

7. What are the advantages of threads over process? Explain kernel level threads.

8. Mention the three kinds of entities used for concurrency within a process in threads in

solaris, along with a neat diagram.

9. With a state transition diagram and PCB structure , explain the function of the states ,

state transitions and the functions of a schedule.

10. Summarize the main approaches to real time scheduling.

11. Explain briefly the mechanism and policy modules of short term process scheduler with

a neat block diagram.

12. Briefly explain the features of time sharing system. Also explain process state transitions

in time sharing system.

13. Compare i) pre-emptive and non-preemptive scheduling ii) long term and short term

schedulers

2.10 FURTHER READINGS

• www.studytonight.com/operating-system/cpu-scheduling

• https://www.youtube.com/watch?v=1fwxHAf1E88

note
s4

fre
e.i

n

Operating System-10EC553

Dpt. Of ECE,ATMECE,Mysuru Page 28

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 1

MODULE 3

MEMORY MANAGEMENT

STRUCTURE

1. Contiguous and noncontiguous allocation to programs

2. Paging

3. Segmentation

4. Segmentation with paging

5. Virtual Memory Management

6. Demand Paging

7. Paging Hardware

8. VM handler

9. FIFO, LRU page replacement policies

OBJECTIVE:

On completion of this chapter student will be able to

 Discuss the concepts of memory management.

 Discuss the concepts of contiguous and non contiguous memory allocation.

 Explain how memory is allocated to kernel.

 Discuss the concepts of Segmentation , Paging and Segmentation with paging.

INTRODUCTION

The memory hierarchy comprises the cache, the memory management unit (MMU), random

access memory (RAM), which is simply called memory in this chapter, and a disk. We

discuss management of memory by the OS in two parts—this chapter discusses techniques

for efficient use of memory, whereas the next chapter discusses management of virtual

memory, which is part of the memory hierarchy consisting of the memory and the disk.

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 2

3.1 CONTIGUOUS MEMORY ALLOCATION

 Contiguous memory allocation is the classical memory allocation model inwhich

each process is allocated a single contiguous area in memory. Contiguous memory

allocation faces the problem of memory fragmentation. In this section we focus on

techniques to address this problem.

3.1.1Handling Memory Fragmentation

Internal fragmentation has no cure in contiguous memory allocation because the kernel has

no means of estimating the memory requirement of a process accurately. Example 3.1

illustrates use of memory compaction.

Figure 3.1 Memory compaction.

3.1.1 Contiguous memory

Allocation Example 3.1

Processes A, B, C, and D are in memory in Figure 3.1(a). Two free areas of memory exist

after B terminates; however, neither of them is large enough to accommodate another

process [see Figure 3.1(b)]. The kernel performs compaction to create a single free

memory area and initiates process E in this area [see Figure 3.1(c)]. It involves moving

processes C and D in memory during their execution.

Memory compaction involves dynamic relocation, which is not feasible without a

relocation register. In computers not having a relocation register, the kernel must resort to

reuse of free memory areas. However, this approach incurs delays in initiation of processes

when large free memory areas do not exist, e.g., initiation of process E would be delayed

in Example 4.8 even though the total free memory in the system exceeds the size of E.

3.1.2 Swapping

The kernel swaps out a process that is not in the running state by writing out its code and

data space to a swapping area on the disk. The swapped out process is brought back into

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 3

memory before it is due for another burst of CPU time. A basic issue in swapping is

whether a swapped-in process should be loaded back into the same memory area that it

occupied before it was swapped out. If so, it‘s swapping in depends on swapping out of

some other process that may have been allocated that memory area in the meanwhile. It

would be useful to be able to place the swapped-in process elsewhere in memory; however,

it would amount to dynamic relocation of the process to a new memory area. As mentioned

earlier, only computer systems that provide a relocation register can achieve it.

3.2 NONCONTIGUOUS MEMORY ALLOCATION

 Modern computer architectures provide the noncontiguous memory allocation

model, in which a process can operate correctly even when portions of its address space are

distributed among many areas of memory. This model of memory allocation permits the

kernel to reuse free memory areas that are smaller than the size of a process, so it can

reduce external fragmentation. Noncontiguous memory allocation using paging can even

eliminate external fragmentation completely. Example 4.9 illustrates noncontiguous

memory allocation. We use the term component for that portion of the process address

space that is loaded in a single memory area.

Example 3.2 Noncontiguous Memory Allocation In Figure 3.2(a), four free memory areas

starting at addresses 100K, 300K, 450K, and 600K, where K = 1024, with sizes of 50 KB,

30 KB, 80 KB and 40 KB, respectively, are present in memory. Process P, which has a

size of 140 KB, is to be initiated [see Figure 3.2 (b)]. If process P consists of three

components called P-1, P-2, and P-3, with sizes of 50 KB, 30 KB and 60 KB, respectively;

these components can be loaded into three of the free memory areas as follows [see Figure

3.2(c)]:

Figure 3.2 Noncontiguous memory allocation to process P.

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 4

3.2.1 Logical Addresses, Physical Addresses, and Address Translation

 The abstract view of a system is called its logical view and the arrangement and

relationship among its components is called the logical organization. On the other hand,

the real view of the system is called its physical view and the arrangement depicted in it is

called the physical organization. Accordingly, the views of process P shown in Figures

3.2(b) and Figures 3.2(c) constitute the logical and physical views of process P.

 A logical address is the address of an instruction or data byte as used in a process; it

may be obtained using index, base, or segment registers. The logical addresses in a process

constitute the logical address space of the process. A physical address is the address in

memory where an instruction or data byte exists. The set of physical addresses in the

system constitutes the physical address space of the system.

 The schematic diagram of Figure 3.3 shows how the CPU obtains the physical

address that corresponds to a logical address. The kernel stores information about the

memory areas allocated to process P in a table and makes it available to the memory

management unit (MMU).

Figure 3.3 A schematic of address translation in noncontiguous memory allocation.

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 5

Approaches to Noncontiguous Memory Allocation

There are two fundamental approaches to implementing noncontiguous memory allocation:

• Paging

• Segmentation

 In paging, each process consists of fixed-size components called pages. The size of a

page is defined by the hardware of a computer, and demarcation of pages is implicit in it. The

memory can accommodate an integral number of pages. It is partitioned into memory areas

that have the same size as a page, and each of these memory areas is considered separately for

allocation to a page. This way, any free memory area is exactly the same size as a page, so

external fragmentation does not arise in the system. Internal fragmentation can arise because

the last page of a process is allocated a page-size memory area even if it is smaller than a

page in size.

 In segmentation, a programmer identifies components called segments in a process.

A segment is a logical entity in a program, e.g., a set of functions, data structures, or

objects. Segmentation facilitates sharing of code, data, and program modules between

processes. However, segments have different sizes, so the kernel has to use memory reuse

techniques such as first-fit or best-fit allocation. Consequently, external fragmentation can

arise. A hybrid approach called segmentation with paging combines the features of both

segmentation and paging. It facilitates sharing of code, data, and program modules

between processes without incurring external fragmentation; however, internal

fragmentation occurs as in paging.

Table 3.1 Comparison of Contiguous and Noncontiguous
note

s4
fre

e.i
n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 6

 Table 3.1 summarizes the advantages of noncontiguous memory allocation over

contiguous memory allocation. Swapping is more effective in non-contiguous memory

allocation because address translation enables the kernel to load components of a swapped-

in process in any parts of memory.

3.3 PAGING

 In the logical view, the address space of a process consists of a linear arrangement of

pages. Each page has s bytes in it, where s is a power of 2. The value of s is specified in

the architecture of the computer system. Processes use numeric logical addresses. The

MMU decomposes a logical address into the pair (pi , bi), where pi is the page number

and bi is the byte number within page pi . Pages in a program and bytes in a page are

numbered from 0; so, in a logical address (pi, bi), pi ≥ 0 and 0 ≤ bi < s. In the physical

view, pages of a process exist in nonadjacent areas of memory.

 Consider two processes P and R in a system using a page size of 1 KB. The bytes in

a page are numbered from 0 to 1023. Process P has the start address 0 and a size of 5500

bytes. Hence it has 6 pages numbered from 0 to 5. The last page contains only 380 bytes. If

a data item sample had the address 5248, which is 5 × 1024 + 128, the MMU would view

its address as the pair (5, 128). Process R has a size of 2500 bytes. Hence it has 3 pages,

numbered from 0 to 2. Figure 3.4 shows the logical view of processes P and R. The

hardware partitions memory into areas called page frames; page frames in memory are

numbered from 0. Each page frame is the same size as a page. At any moment, some page

frames are allocated to pages of processes, while others are free. The kernel maintains a list

called the free frames list to note the frame numbers of free page frames. While loading a

process for execution, the kernel consults the free frames list and allocates a free page

frame to each page of the process. To facilitate address translation, the kernel constructs a

page table (PT) for each process. The page table has an entry for each page of the process,

which indicates the page frame allocated to the page. While performing address translation

for a logical address (pi , bi), the MMU uses the page number pi to index the page table of

the process, obtains the frame number of the page frame allocated to pi , and computes the

effective memory address according to Equation above.

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 7

 Figure 3.5 shows the physical view of execution of processes P and R. Each page

frame is 1 KB in size. The computer has a memory of 10 KB, so page frames are

numbered from 0 to 9. Six page frames are occupied by process P, and three page frames

are occupied by process R. The pages contained in the page frames are shown as P-0, . . . ,

P-5 and R-0, . . . , R-2. Page frame 4 is free. Hence the free frames list contains only one

entry. The page table of P indicates the page frame allocated to each page of P. As

mentioned earlier, the variable sample process P has the logical address (5, 128).

Figure 3.4 Logical view of processes in paging.

Figure 3.5 Physical organization in paging.

When process P uses this logical address during its execution, it will be translated into

the effective memory address by using Eq. as follows:

Effective memory address of (5, 128)

= start address of page frame #8 + 128

=8 × 1024 + 128 =8320

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 8

We use the following notation to describe how address translation is

actually performed: s Size of a page

ll Length of a logical address (i.e., number of bits

in it) lp Length of a physical address

nb Number of bits used to represent the byte number in a logical address

np Number of bits used to represent the page number in a logical address

nf Number of bits used to represent the frame number in a physical

address

 The size of a page, s, is a power of 2. nb is chosen such that s = 2nb . Hence the least

significant nb bits in a logical address give us bi , the byte number within a page. The

remaining bits in a logical address form pi , the page number.

Example 3.2 Address Translation in Paging

 A hypothetical computer uses 32-bit logical addresses and a page size of 4KB. 12

bits are adequate to address the bytes in a page. Thus, the higher order 20 bits in a logical

address represent pi and the 12 lower order bits represent bi . For a memory size of 256

MB, lp = 28. Thus, the higher-order 16 bits in a physical address represent qi . If page 130

exists in page frame 48, pi = 130, and qi = 48. If bi = 600, the logical and physical

addresses look as follows: Logical address

 During address translation, the MMU obtains pi and bi merely by grouping the bits

of the logical address as shown above. The 130th entry of the page table is now accessed

to obtain qi , which is 48. This number is concatenated with bi to form the physical

address.

3.4 SEGMENTATION

 A segment is a logical entity in a program, e.g., a function, a data structure, or an

object. Hence it is meaningful to manage it as a unit—load it into memory for execution or

share it with other programs. In the logical view, a process consists of a collection of

segments. In the physical view, segments of a process exist in nonadjacent areas of

memory. A process Q consists of five logical entities with the symbolic names main,

database, search, update, and stack. While coding the program, the programmer declares

these five as segments in Q. This information is used by the compiler or assembler to

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 9

generate logical addresses while translating the program. Each logical address used in Q

has the form (si , bi) where si and bi are the ids of a segment and a byte within a segment.

For example, the instruction corresponding to a statement call get_sample, where

get_sample is a procedure in segment update, may use the operand address (update,

get_sample). Alternatively, it may use a numeric representation in which si and bi are the

segment number and byte number within a segment, respectively

Figure 3.6 A process Q in segmentation.

3.4 SEGMENTATION WITH PAGING

 In this approach, each segment in a program is paged separately. Accordingly, an

integral number of pages is allocated to each segment. This approach simplifies memory

allocation and speeds it up, and also avoids external fragmentation. A page table is

constructed for each segment, and the address of the page table is kept in the segment‘s

entry in the segment table.

 Address translation for a logical address (si , bi) is now done in two stages. In the

first stage, the entry of si is located in the segment table, and the address of its page table is

obtained. The byte number bi is now split into a pair (psi , bpi), where psi is the page

number in segment si , and bpi is the byte number in page pi . The effective address

calculation is now completed as in paging, i.e., the frame number of psi is obtained and bpi

is concatenated with it to obtain the effective address.

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 10

Figure 3.7 A process Q in segmentation with paging.

Figure 3.7 shows process Q of Figure 3.6 in a system using segmentation with paging.

Each segment is paged independently, so internal fragmentation exists in the last page of

each segment. Each segment table entry now contains the address of the page table of the

segment. The size field in a segment‘s entry is used to facilitate a bound check for memory

protection.

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 11

VIRTUAL MEMORY

 Virtual memory is a part of the memory hierarchy that consists of memory and a

disk. In accordance with the principle of memory hierarchies only some portions of the

address space of a process—that is, of its code and data—exist in memory at any time;

other portions of its address space reside on disk and are loaded into memory when needed

during operation of the process. The kernel employs virtual memory to reduce the memory

commitment to a process so that it can service a large number of processes concurrently,

and to handle processes whose address space is larger than the size of memory.

 Virtual memory is implemented through the noncontiguous memory allocation

model and comprises both hardware components and a software component called a virtual

memory manager. The hardware components speed up address translation and help the

virtual memory manager perform its tasks more effectively. The virtual memory manager

decides which portions of a process address space should be in memory at any time.

VIRTUAL MEMORY BASICS

 Users always want more from a computer system—more resources and more

services. The need for more resources is satisfied either by obtaining more efficient use of

existing resources, or by creating an illusion that more resources exist in the system. A

virtual memory is what its name indicates—it is an illusion of a memory that is larger than

the real memory, i.e., RAM, of the computer system.

 As we pointed out in Section 1.1, this illusion is a part of a user‘s abstract view of

memory. A user or his application program sees only the virtual memory. The kernel

implements the illusion through a combination of hardware and software means. We refer

to real memory simply as memory. We refer to the software component of virtual memory

as a virtual memory manager.

 The illusion of memory larger than the system‘s memory crops up any time a

process whose size exceeds the size of memory is initiated. The process is able to operate

because it is kept in its entirety on a disk and only its required portions are loaded in

memory at any time. The basis of virtual memory is the non-contiguous memory allocation

model. The address space of each process is assumed to consist of portions called

components. The portions can be loaded into nonadjacent areas of memory. The address of

each operand or instruction in the code of a process is a logical address of the form (compi

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 12

, bytei).

 The memory management unit (MMU) translates it into the address in memory

where the operand or instruction actually resides.

 Figure 5.1 shows a schematic diagram of a virtual memory. The logical address

space of the process shown consists of five components. Three of these components are

presently in memory. Information about the memory areas where these components exist is

maintained in a data structure of the virtual memory manager. This information is used by

the MMU during address translation. When an instruction in the process refers to a data

item or instruction that is not in memory, the component containing it is loaded from the

disk. Occasionally, the virtual memory manager removes some components from memory

to make room for other components.

Figure 5.1 Overview of virtual memory.

Virtual Memory A memory hierarchy, consisting of a computer system‘s memory and a

disk, that enables a process to operate with only some portions of its address space in

memory.

 Demand Loading of Process Components The virtual memory manager loads only

one component of a process address space in memory to begin with—the component that

contains the start address of the process, that is, address of the instruction with which its

execution begins. It loads other components of the process only when they are needed.

This technique is called demand loading. To keep the memory commitment to a process

low, the virtual memory manager removes components of the process from memory from

time to time. These components would be loaded back in memory when needed again.

 Performance of a process in virtual memory depends on the rate at which its

components have to be loaded into memory. The virtual memory manager exploits the law

of locality of reference to achieve a low rate of loading of process components.

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 13

Table 5.1 Comparison of Paging and Segmentation

Paging and Segmentation The two approaches to implementation of virtual memory

differ in the manner in which the boundaries and sizes of address space components are

determined.

 Table 5.1 compares the two approaches. In paging, each component of an address

space is called a page. All pages have identical size, which is a power of two. Page size is

defined by the computer hardware and demarcation of pages in the address space of a

process is performed implicitly by it. In segmentation, each component of an address space

is called a segment. A programmer declares some significant logical entities (e.g., data

structures or objects) in a process as segments. Thus identification of components is

performed by the programmer, and segments can have different sizes. This fundamental

difference leads to different implications for efficient use of memory and for sharing of

programs or data. Some systems use a hybrid segmentation-with-paging approach to

obtain advantages of both

the approaches.

3.5 DEMAND PAGING

 A process is considered to consist of pages, numbered from 0 onward. Each page is

of size s bytes, where s is a power of 2. The memory of the computer system is considered

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 14

to consist of page frames, where a page frame is a memory area that has the same size as a

page. Page frames are numbered from 0 to #frames−1 where #frames is the number of page

frames of memory. Accordingly, the physical address space consists of addresses from 0 to

#frames × s

− 1. At any moment, a page frame may be free, or it may contain a page of some process.

Each logical address used in a process is considered to be a pair (pi , bi), where pi is a page

number and bi is the byte number in pi, 0 ≤ bi < s.

The effective memory address of a logical address (pi , bi) is computed as

follows: Effective memory address of logical address (pi , bi)

= start address of the page frame containing page pi + bi (5.1)

 The size of a page is a power of 2, and so calculation of the effective address is

performed through bit concatenation, which is much faster than addition.

 Figure 5.2 is a schematic diagram of a virtual memory using paging in which page

size is assumed to be 1KB, where 1KB = 1024 bytes. Three processes P1, P2 and P3, have

some of their pages in memory. The memory contains 8 page frames numbered from 0 to

7. Memory allocation information for a process is stored in a page table. Each entry in the

page table contains memory allocation information for one page of a process. It contains

the page frame number where a page resides. Process P2 has its pages 1 and 2 in memory.

They occupy page frames 5 and 7 respectively. Process P1 has its pages 0 and 2 in page

frames 4 and 1, while process P3 has its pages 1, 3 and 4 in page frames 0, 2 and 3,

respectively. The free frames list contains a list of free page frames. Currently only page

frame 6 is free.

Figure 5.2 Address translation in virtual memory using paging.

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 15

 Process P2 is currently executing the instruction ‗Add ·· 2528‘, so the MMU uses

P2‘s page table for address translation. The MMU views the operand address 2528 as

the pair (2, 480) because 2528=2×1024+480. It now accesses the entry for page 2 in

P2‘s page table. This entry contains frame number 7, so the MMU forms the effective

address 7×1024+480 according to Eq. (5.1), and uses it to make a memory access. In

effect, byte 480 in page frame 7 is accessed.

3.5.1 Demand Paging Preliminaries

 If an instruction of P2 in Figure 5.2 refers to a byte in page 3, the virtual memory

manager will load page 3 in memory and put its frame number in entry 3 of P2‘s page

table. These actions constitute demand loading of pages, or simply demand paging.

 To implement demand paging, a copy of the entire logical address space of a process

is maintained on a disk. The disk area used to store this copy is called the swap space of a

process. While initiating a process, the virtual memory manager allocates the swap space

for the process and copies its code and data into the swap space. During operation of the

process, the virtual memory manager is alerted when the process wishes to use some data

item or instruction that is located in a page that is not present in memory. It now loads the

page from the swap space into memory. This operation is called a page-in operation. When

the virtual memory manager decides to remove a page from memory, the page is copied

back into the swap space of the process to which it belongs if the page was modified since

the last time it was loaded in memory. This operation is called a page-out operation.

 This way the swap space of a process contains an up-to-date copy of every page of

the process that is not present in memory. A page replacement operation is one that loads a

page into a page frame that previously contained another page.

 It may involve a page-out operation if the previous page was modified while it occupied

the page frame, and involves a page-in operation to load the new page.

Page Table The page table for a process facilitates implementation of address translation,

demand loading, and page replacement operations. Figure 5.3 shows the format of a page

table entry. The valid bit field contains a Boolean value to indicate whether the page exists

in memory. We use the convention that 1 indicates ―resident in memory‖ and 0 indicates

―not resident in memory.‖ The page frame# field, which was described earlier, facilitates

address translation. The misc info field is divided into four subfields. Information in the

prot info field is used for protecting contents of the page against interference. It indicates

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 16

whether the process can read or write data in the page or execute instructions in it. ref info

contains information concerning references made to the page while it is in memory.

 The modified bit indicates whether the page has been modified, i.e., whether it is

dirty. It is used to decide whether a page-out operation is needed while replacing the page.

The other info field contains information such as the address of the disk block in the swap

space where a copy of the page is maintained.

3.5.2 Page Faults and Demand Loading of Pages

 Table 5.2 summarizes steps in address translation by the MMU. While performing

address translation for a logical address (pi , bi), the MMU checks the valid bit of the page

table entry of pi

Figure 5.3 Fields in a page table entry.

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 17

Table 5.2 Steps in Address Translation by the MMU

Figure 5.4 Demand loading of a page.

 If the bit indicates that pi is not present in memory, the MMU raises an interrupt called

a missing page interrupt or a page fault, which is a program interrupt (see Section 2.2.5).

 The interrupt servicing routine for program interrupts finds that the interrupt was

caused by a page fault, so it invokes the virtual memory manager with the page number

that caused the page fault, i.e., pi , as a parameter. The virtual memory manager now loads

page pi in memory and updates its page table entry. Thus, the MMU and the virtual

memory manager interact to decide when a page of a process should be loaded in memory.

Figure 5.4 is an overview of the virtual memory manager‘s actions in demand loading of a

page. The broken arrows indicate actions of the MMU, whereas firm arrows indicate

accesses to the data structures, memory, and the disk by the virtual memory manager when

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 18

a page fault occurs. The numbers in circles indicate the steps in address translation, raising,

and handling of the page fault—

Steps 1–3 were described earlier in Table 12.2. Process P2 of Figure 5.2 is in operation.

While translating the logical address (3, 682), the MMU raises a page fault because the

valid bit of page 3‘s entry is 0.

3.5.3 Page-in, Page-out, and Page Replacement Operations

 Figure 5.4 showed how a page-in operation is performed for a required page when a

page fault occurs in a process and a free page frame is available in memory. If no page

frame is free, the virtual memory manager performs a page replacement operation to

replace one of the pages existing in memory with the page whose reference caused the

page fault. It is performed as follows: The virtual memory manager uses a page

replacement algorithm to select one of the pages currently in memory for replacement,

accesses the page table entry of the selected page to mark it as ―not present‖ in memory,

and initiates a page-out operation for it if the modified bit of its page table entry indicates

that it is a dirty page.

 In the next step, the virtual memory manager initiates a page-in operation to load the

required page into the page frame that was occupied by the selected page. After the page-in

operation completes, it updates the page table entry of the page to record the frame number

of the page frame, marks the page as ―present,‖ and makes provision to resume operation

of the process. The process now reexecutes its current instruction. This time, the address

translation for the logical address in the current instruction completes without a page fault.

The page-in and page-out operations required to implement demand paging constitute page

I/O; we use the termpage traffic to describe movement of pages in and out of memory.

Note that page I/O is distinct from I/O operations performed by processes,whichwe will

call programI/O. The state of a process that encounters a page fault is changed to blocked

until the required page is loaded in memory, and so its performance suffers because of a

page fault. The kernel can switch theCPU to another process to safeguard system

performance.

Effective Memory Access Time The effective memory access time for a process in

demand paging is the average memory access time experienced by the process.

 It depends on two factors: time consumed by the MMU in performing address

translation, and the average time consumed by the virtual memory manager in handling a

page fault. We use the following notation to compute the effective memory access time:

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 19

pr1 probability that a page exists in memory

tmem memory access time

tpfh time overhead of page fault handling

 pr1 is called the memory hit ratio. tpfh is a few orders of magnitude larger than

tmem because it involves disk I/O—one disk I/O operation is required if only a page-in

operation is sufficient, and two disk I/O operations are required if a page replacement is

necessary.

 A process‘s page table exists in memory when the process is in operation. Hence,

accessing an operand with the logical address (pi , bi) consumes two memory cycles if

page pi exists in memory—one to access the page table entry of pi for address translation,

and the other to access the operand in memory using the effective memory address of (pi ,

bi). If the page is not present in memory, a page fault is raised after referencing the page

table entry of pi , i.e., after one memory cycle.Accordingly, the effective memory access

time is as follows:

Effective memory access time = pr1 × 2 × tmem + (1 − pr1) × (tmem + tpfh + 2 × tmem)

(5.2)

The effective memory access time can be improved by reducing

the number of page faults.

3.5.3 Page Replacement

 Page replacement becomes necessary when a page fault occurs and there are no free

page frames in memory. However, another page fault would arise if the replaced page is

referenced again. Hence it is important to replace a page that is not likely to be referenced

in the immediate future. But how does the virtual memory manager know which page is

not likely to be referenced in the immediate future?

 The empirical law of locality of reference states that logical addresses used by a

process in any short interval of time during its operation tend to be bunched together in

certain portions of its logical address space. Processes exhibit this behaviour for two

reasons. Execution of instructions in a process is mostly sequential in nature, because only

10–20 percent of instructions executed by a process are branch instructions. Processes also

tend to perform similar operations on several elements of nonscalar data such as arrays.

Due to the combined effect of these two reasons, instruction and data references made by a

process tend to be in close proximity to previous instruction and data references made by it.

We define the current locality of a process as the set of pages referenced in its previous

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 20

few instructions. Thus, the law of locality indicates that the logical address used in an

instruction is likely to refer to a page that is in the current locality of the process.

 The virtual memory manager can exploit the law of locality to achieve an analogous

effect— fewer page faults would arise if it ensures that pages that are in the current locality

of a process are present in memory.

 Note that locality of reference does not imply an absence of page faults. Let the

proximity region of a logical address ai contain all logical addresses that are in close

proximity to ai . Page faults can occur for two reasons: First, the proximity region of a

logical address may not fit into a page; in this case, the next address may lie in an adjoining

page that is not included in the current locality of the process. Second, an instruction or

data referenced by a process may not be in the proximity of previous references. We call

this situation a shift in locality of a process. It typically occurs when a process makes a

transition from one action in its logic to another. The next example illustrates the locality

of a process.

 The law of locality helps to decide which page should be replaced when a page fault

occurs. Let us assume that the number of page frames allocated to a process Pi is a

constant. Hence whenever a page fault occurs during operation of Pi , one of Pi ‘s own

pages existing in memory must be replaced. Let t1 and t2 be the periods of time for which

pages p1 and p2 have not been referenced during the operation of Pi . Let t1 > t2, implying

that some byte of page p2 has been referenced or executed (as an instruction) more

recently than any byte of page p1.

 Hence page p2 is more likely to be a part of the current locality of the process than

page p1; that is, a byte of page p2 is more likely to be referenced or executed than a byte of

page p1. We use this argument to choose page p1 for replacement when a page fault

occurs. If many pages of Pi exist in memory, we can rank them according to the times of

their last references and replace the page that has been least recently referenced. This page

replacement policy is called LRU page replacement.

. Figure 5.5 Proximity regions of previous references and current locality of a process

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 21

3.5.4 Memory Allocation to a Process

 Figure 5.6 shows how the page fault rate of a process should vary with the amount of

memory allocated to it. The page fault rate is large when a small amount of memory is

allocated to the process; however, it drops when more memory is allocated to the process.

This page fault characteristic of a process is desired because it enables the virtual memory

manager to take corrective action when it finds that a process has a high page fault rate—it

can bring about a reduction in the page fault rate by increasing the memory allocated to the

process.

 As we shall discuss in Section 5.4, the LRU page replacement policy possesses a

page fault characteristic that is similar to the curve of Figure 12.6 because it replaces a

page that is less likely to be in the current locality of the process than other pages of the

process that are in memory.How much memory should the virtual memory manager

allocate to a process? Two opposite factors influence this decision. From Figure 5.6, we

see that an over commitment of memory to a process implies a low page fault rate for the

process; hence it ensures good process performance. However, a smaller number of

processes would fit in memory, which could cause CPU idling and poor system

performance. An under commitment of memory to a process causes a high page fault rate,

which would lead to poor performance of the process.

 The desirable operating zone marked in Figure 5.6 avoids the regions of over

commitment and under commitment of memory.

 The main problem in deciding how much memory to allocate to a process is that the

page fault characteristic, i.e., the slope of the curve and the page fault rate in Figure 5.6,

varies among processes. Even for the same process, the page fault characteristic may be

different when it operates with different data.

Figure 5.6 Desirable variation of page fault rate with memory allocation.

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 22

 If all processes in the system operate in the region of high page fault rates, the CPU

would be engaged in performing page traffic and process switching most of the time. CPU

efficiency would be low and system performance, measured either in terms of average

response time or throughput, would be poor. This situation is called thrashing.

 Thrashing A condition in which high page traffic and low CPU efficiency coincide.

Note that low CPU efficiency can occur because of other causes as well, e.g., if too few

processes exist in memory or all processes in memory perform I/O operations frequently.

The thrashing situation is different in that all processes make poor progress because of high

page fault rates.

 From Figure 5.6, we can infer that the cause of thrashing is an under commitment of

memory to each process. The cure is to increase the memory allocation for each process.

This may have to be achieved by removing some processes from memory—that is, by

reducing the degree of multiprogramming.

 A process may individually experience a high page fault rate without the system

thrashing. The same analysis now applies to the process—it must suffer from an under

commitment of memory, so the cure is to increase the amount of memory allocated to it.

3.5.4 Optimal Page Size

The size of a page is defined by computer hardware. It determines the number of bits

required to represent the byte number in a page. Page size also determines

1. Memory wastage due to internal fragmentation

2. Size of the page table for a process

3. Page fault rates when a fixed amount of memory is allocated to a process

Consider a process Pi of size z bytes. A page size of s bytes implies that the process has n

pages, where n = _z/s_ is the value of z/s rounded upward. Average internal fragmentation

is s/2 bytes because the last page would be half empty on the average. The number of

entries in the page table is n. Thus internal fragmentation varies directly with the page size,

while page table size varies inversely with it.

Address Translation and Page Fault Generation

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 23

The MMU follows the steps of Table 5.2 to perform address translation. For a logical

address (pi , bi), it accesses the page table entry of pi by using pi ×lPT_entry as an offset

into the page table, where lPT_entry is the length of a page table entry.

 lPT_entry is typically a power of 2, so pi ×lPT_entry can be computed efficiently by

shifting the value of pi by a few bits.

Address Translation Buffers A reference to the page table during address translation

consumes one memory cycle because the page table is stored in memory. The translation

look-aside buffer (TLB) is a small and fast associative memory that is used to eliminate the

reference to the page table, thus speeding up address translation. The TLB contains entries

of the form (page #, page frame #, protection info) for a few recently accessed pages of a

program that are in memory. During address translation of a logical address (pi , bi), the

TLB hardware searches for an entry of page pi . If an entry is found, the page frame # from

the entry is used to complete address translation for the logical address (pi , bi). Figure 5.8

illustrates operation of the TLB. The arrows marked 2_ and 3_ indicate TLB lookup. The

TLB contains entries for pages 1 and 2 of process P2. If pi is either 1 or 2, the TLB lookup

scores a hit, so the MMU takes the page frame number from the TLB and completes

address translation. A TLB miss occurs if pi is some other page, hence theMMUaccesses

the page table and completes the address translation if page pi is present in memory;

otherwise, it generates a page fault, which activates the virtual memory manager to load pi

in memory.

Figure 5.8 Address translation using the translation look-aside buffer and the page table

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 24

Figure 5.9 Summary of address translation of (pi , bi) (note: PT = page table).

 Figure 5.9 summarizes the MMU and software actions in address translation and

page fault handling for a logical address (pi , bi). MMU actions concerning use of the

TLB and the page table are as described earlier. The virtual memory manager is activated

by a page fault. If an empty page frame is not available to load page pi , it initiates a page-

out operation for some page pj to free the page frame, say page frame fj , occupied by it. pj

‘s page table entry is updated to indicate that it is no longer present in memory. If pj has an

entry in the TLB, the virtual memory manager erases it by executing an ―erase TLB entry‖

instruction. This action is essential for preventing incorrect address translation at pj ‘s next

reference. A page-in operation is now performed to load pi in page frame fj , and pi ‘s

page table entry is updated when the page-in operation is completed. Execution of the

instruction that caused the page fault is repeated when the process is scheduled again. This

time pi does not have an entry in the TLB but it exists in memory, and so the MMU uses

information in the page table to complete the address translation. An entry for pi has to be

made in the TLB at this time.

We use the following notation to compute the effective memory access time when a

TLB is used:

pr1 probability that a page exists in

memory pr2 probability that a page entry

exists in TLB tmem memory access time

tTLB access time of TLB

tpfh time overhead of page fault handling

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 25

pr1 is the memory hit ratio and tmem is a few orders of magnitude smaller than tpfh.

Typically tTLB is at least an order of magnitude smaller than tmem. pr2 is called the TLB

hit ratio.

 When the TLB is not used, the effective memory access time is as given by Eq.

(5.2). The page table is accessed only if the page being referenced does not have an entry

in the TLB. Accordingly, a page reference consumes (tTLB +tmem) time if the page has

an entry in the TLB, and (tTLB + 2 × tmem) time if it does not have a TLB entry but exists

in memory. The probability of the latter situation is (pr1− pr2). When the TLB is used, pr2

is the probability that an entry for the required page exists in the TLB. The probability that

a page table reference is both necessary and sufficient for address translation is (pr1− pr2).

The time consumed by each such reference is (tTLB + 2 × tmem) since an unsuccessful

TLB search would precede the page table lookup. The probability of a page fault is

(1−pr1).

It occurs after the TLB and the page tables have been looked up, and it requires (tpfh +

tTLB

+ 2 × tmem) time if we assume that the TLB entry is made for the page while the effective

memory address is being calculated. Hence the effective memory access time is

Effective memory access time = pr2 × (tTLB + tmem) + (pr1 − pr2) × (tTLB + 2 × tmem)

+ (1 − pr1) × (tTLB + tmem + tpfh + tTLB + 2 ×

tmem)

(5.3)

To provide efficient memory access during operation of the kernel,

most computers provide wired TLB entries for kernel pages. These

entries are never touched by replacement algorithms.

3.6 THE VIRTUAL MEMORY MANAGER

 The virtual memory manager uses two data structures—the page table, whose entry

format is shown in Figure 5.3, and the free frames list. The ref info and modified fields in a

page table entry are typically set by the paging hardware. All other fields are set by the

virtual memory manager itself. Table 5.4 summarizes the functions of the virtual memory

manager.

Management of the Logical Address Space of a Process The virtual memory manager

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 26

manages the logical address space of a process through the following subfunctions:

1. Organize a copy of the instructions and data of the process in its swap space.

2. Maintain the page table.

3. Perform page-in and page-out operations.

4. Perform process initiation.

 A copy of the entire logical address space of a process is maintained in the swap

space of the process. When a reference to a page leads to a page fault, the page is loaded

from the swap space by using a page-in operation. When a dirty page is to be removed

from memory, a page-out operation is performed to copy it from memory into a disk block

in the swap space. Thus the copy of a page in the swap space is current if that page is not

in memory, or it is in memory but it has not been modified since it was last loaded.

For other pages the copy in the swap space is stale (i.e., outdated), whereas that in memory

is current.

Table 5.4 Functions of the Virtual Memory Manager

Management of Memory The free frames list is maintained at all times. A page frame is

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 27

taken off the free list to load a new page, and a frame is added to it when a page-out

operation is performed. All page frames allocated to a process are added to the free list

when the process terminates.

 Protection During process creation, the virtual memory manager constructs its page

table and puts information concerning the start address of the page table and its size in the

PCB of the process. The virtual memory manager records access privileges of the process

for a page in the prot info field of its page table entry.

 During dispatching of the process, the kernel loads the page-table start address of the

process and its page-table size into registers of the MMU. During translation of a logical

address (pi , bi), the MMU ensures that the entry of page pi exists in the page table and

contains appropriate access privileges in the prot info field.

 Collection of Information for Page Replacement The ref info field of the page

table entry of a page indicates when the page was last referenced, and the modified field

indicates whether it has been modified since it was last loaded in memory.

 Page reference information is useful only so long as a page remains in memory; it is

reinitialized the next time a page-in operation is performed for the page. Most computers

provide a single bit in the ref info field to collect page reference information. This

information is not adequate to select the best candidate for page replacement. Hence the

virtual memory manager may periodically reset the bit used to store this information.

Example: Page Replacement

 The memory of a computer consists of eight page frames. A process P1 consists of

five pages numbered 0 to 4. Only pages 1, 2, and 3 are in memory at the moment; they

occupy page frames 2, 7, and 4, respectively. Remaining page frames have been allocated

to other processes and no free page frames are left in the system.

Figure 5.13 Data structures of the virtual memory manager: (a) before and (b)

after a page replacemen

 Figure 4.13(a) illustrates the situation in the system at time instant t+11, i.e., a little

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 28

after t11. Only the page table of P1 is shown in the figure since process P1 has been

scheduled. Contents of the ref info and modified fields are shown in the misc info field.

Pages 1, 2, and 3 were last referenced at time instants t4, t11, and t9, respectively. Page 1

was modified sometime after it was last loaded. Hence the misc info field of its page table

entry contains the information t4,m.

 At time instant t12, process P1 gives rise to a page fault for page 4. Since all page

frames in memory are occupied, the virtual memory manager decides to replace page 1 of

the process. The mark m in the misc info field of page 1‘s page table entry indicates that it

was modified since it was last loaded, so a page-out\ operation is necessary. The page

frame # field of the page table entry of page 1 indicates that the page exists in page frame

2. The virtual memory manager performs a page-out operation to write the contents of

page frame 2 into the swap area reserved for page 1 of P1, and modifies the valid bit in the

page table entry of page 1 to indicate that it is not present in memory. A page-in operation

is now initiated for page 4 of P1. At the end of the operation, the page table entry of page 4

is modified to indicate that it exists in memory in page frame 2.

 Execution of P1 is resumed. It now makes a reference to page 4, and so the page

reference information of page 4 indicates that it was last referenced at t12. Figure 5.13(b)

indicates the page table of P1 at time instant t+12.

Overview of Operation of the Virtual Memory Manager

The virtual memory manager makes two important decisions during

its operation:

• When a page fault occurs during operation of some process proci , it

decides which page should be replaced.

• Periodically it decides how much memory, i.e., howmany page frames,

should be allocated to each process.

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 29

Figure 5.14 Modules of the virtual memory manager.

3.7 PAGE REPLACEMENT POLICIES

 A page replacement policy should replace a page that is not likely to be referenced

in the immediate future. We evaluate the following three page replacement policies to see

how well they fulfill this requirement.

• Optimal page replacement policy

• First-in, first-out (FIFO) page replacement policy

• Least recently used (LRU) page replacement policy

 For the analysis of these page replacement policies, we rely on the concept of page

reference strings. A page reference string of a process is a trace of the pages accessed by

the process during its operation. It can be constructed by monitoring the operation of a

process, and forming a sequence of page numbers that appear in logical addresses

generated by it. The page reference string of a process depends on the data input to it, so

use of different data would lead to a different page reference string for a process.

 For convenience we associate a reference time string t1, t2, t3, . . . with each page

reference string. This way, the kth page reference in a page reference string is assumed to

have occurred at time instant tk. (In effect, we assume a logical clock that runs only when

a process is in the running state and gets advanced only when the process refers to a logical

address.) Example 5.5 illustrates the page reference string and the associated reference

time string for a process.

Page Reference String Example 5.5

A computer supports instructions that are 4 bytes in length, and uses a page size of 1KB. It

executes the following nonsense program in which the symbols A and B are in pages 2 and

5, respectively:

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 30

The page reference string and the reference time string for the process

are as follows:

Page reference string 1, 5, 1, 2, 2, 5, 2, 1, . . .

Reference time string t1, t2, t3, t4, t5, t6, t7, t8, . . .

 The logical address of the first instruction is 2040, and so it lies in page 1. The first

page reference in the string is therefore 1. It occurs at time instant t1. B, the operand of the

instruction is situated in page 5, and so the second page reference in the string is 5, at time

t2. The next instruction is located in page 1 and refers to A, which is located in page 2, and

thus the next two page references are to pages 1 and 2. The next two instructions are

located in page 2, and the instruction with the label LOOP is located in page 1. Therefore,

if the value of B input to the READ statement is greater than the value of A, the next four

page references would be to pages 2, 5, 2 and 1, respectively; otherwise, the next four page

references would be to pages 2, 5, 2 and 2, respectively.

 Optimal Page Replacement Optimal page replacement means making page

replacement decisions in such a manner that the total number of page faults during

operation of a process is the minimum possible; i.e., no other sequence of page

replacement decisions can lead to a smaller number of page faults. To achieve optimal

page replacement, at each page fault, the page replacement policy would have to consider

all alternative page replacement decisions, analyze their implications for future page faults,

and select the best alternative. Of course, such a policy is infeasible in reality: the virtual

memory manager does not have knowledge of the future behaviour of a process. As an

analytical tool, however, this policy provides a useful comparison in hindsight for the

performance of other page replacement policies.

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 31

Although optimal page replacement might seem to require excessive analysis, Belady

(1966) showed that it is equivalent to the following simple rule: At a page fault, replace the

page whose next reference is farthest in the page reference string.

 FIFO Page Replacement At every page fault, the FIFO page replacement policy

replaces the page that was loaded into memory earlier than any other page of the process.

To facilitate FIFO page replacement, the virtual memory manager records the time of

loading of a page in the ref info field of its page table entry.

When a page fault occurs, this information is used to determine pearliest, the page that was

loaded earlier than any other page of the process. This is the page that will be replaced with

the page whose reference led to the page fault.

 LRU Page Replacement The LRU policy uses the law of locality of reference as

the basis for its replacement decisions. Its operation can be described as follows: At every

page fault the least recently used (LRU) page is replaced by the required page. The page

table entry of a page records the time when the page was last referenced. This information

is initialized when a page is loaded, and it is updated every time the page is

referenced. When a page fault occurs, this information is used to locate the page pLRU

whose last reference is earlier than that of every other page. This page is replaced with the

page whose reference led to the page fault.

Analysis of Page Replacement Policies Example 5.6 illustrates operation

of the optimal, FIFO, and LRU page replacement policies.

Example 5.6 Operation of Page Replacement Policies

A page reference string and the reference time string for a process P are as follows:

Page reference string 0, 1, 0, 2, 0, 1, 2, . . . (5.4)

Reference time string t1, t2, t3, t4, t5, t6, t7, . . . (5.5)

Figure 5.15 illustrates operation of the optimal, FIFO and LRU page replacement policies

for this page reference string with alloc = 2. For convenience, we show only two fields of

the page table, valid bit and ref info. In the interval t0 to t3 (inclusive), only two distinct

pages are referenced: pages 0 and 1. They can both be accommodated in memory at the

same time because alloc = 2. t4 is the first time instant when a page fault leads to page

replacement.

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 32

Figure 5.15 Comparison of page replacement policies with alloc = 2.

 The left column shows the results for optimal page replacement. Page reference

information is not shown in the page table since information concerning past references is

not needed for optimal page replacement. When the page fault occurs at time instant t4,

page 1 is replaced because its next reference is farther in the page reference string than that

of page 0. At time t6 page 1 replaces page 0 because page 0‘s next reference is farther than

that of page 2.

 The middle column of Figure 5.15 shows the results for the FIFO replacement

policy. When the page fault occurs at time t4, the ref info field shows that page 0 was

loaded earlier than page 1, and so page 0 is replaced by page 2.

 The last column of Figure 5.15 shows the results for the LRU replacement policy. The

ref info field of the page table indicates when a page was last referenced. At time t4, page 1

is replaced by page 2 because the last reference of page 1 is earlier than the last reference of

page 0.

The total number of page faults occurring under the optimal, FIFO, and LRU policies are

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 33

4, 6, and 5, respectively. By definition, no other policy has fewer page faults than the

optimal page replacement policy.

Problems in FIFO Page

Replacement Example

5.7

Consider the following page reference and reference time strings for a process:

Page reference string 5, 4, 3, 2, 1, 4, 3, 5, 4, 3, 2, 1, 5, . . .

 (5

.6) Reference time string t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, . . .

 (5

.7)

Figure 5.17 shows operation of the FIFO and LRU page replacement policies for this page

reference string. Page references that cause page faults and result in page replacement are

marked with a ∗ mark. A column of boxes is associated with each time instant. Each box

is a page frame; the number contained in it indicates which page occupies it after execution

of the memory reference marked under the column.

•

Figure 5.18 illustrates the page fault characteristic of FIFO and LRU page replacement for

page reference string (12.6). For simplicity, the vertical axis shows the total number of

page faults rather than the page fault frequency.

Figure 5.18(a) illustrates an anomaly in behavior of FIFO page replacement— the number

of page faults increases when memory allocation for the process is increased. This

anomalous behavior was first reported by Belady and is therefore known as Belady‘s

anomaly.

note
s4

fre
e.i

n

 Operating System -15EC553

Dpt. Of ECE, ATMECE, Mysuru Page 34

Figure 5.18 (a) Belady‘s anomaly in FIFO page replacement; (b) page fault characteristic

for LRU page replacement.

The virtual memory manager cannot use FIFO page replacement because increasing the

allocation to a process may increase the page fault frequency of the process. This feature

would make it difficult to combat thrashing in the system.

However, when LRU page replacement is used, the number of page faults is a

nonincreasing function of alloc. Hence it is possible to combat thrashing by increasing the

value of alloc for each process.

QUESTION BANK

1. Explain the important concepts in the operation of demand paging.

2. Write a note on page replacement policies.

3. How can virtual memory be implemented?

4. Explain FIFO and LRU page replacement policy.

5. What are the functions performed by a virtual memory manager? Explain.

6. For the following page reference string, calculate the number of page faults

with FIFO and LRU page replacement policies when i) number of page

frames=3 ii) number of page frames=4.

Page reference string: 5 4 3 2 1 4 3 5 4 3 2 1 5. Reference time string: t1,t2,……,t13

7. Describe the address translation using TU and TLB in demand paged allocation

with a block diagram.

note
s4

fre
e.i

n

Operating System- 15EC553

Dpt. Of ECE ATMECE Page 1

MODULE 4

FILE SYSTEMS

Structure

 Objectives

4.1 File system and IOCS

4.2 Files operation

4.3 File Organization

4.4 Directory and structures

4.5 File protection

4.6 Interface between file systems and IOCS

4.7 Allocation of Disk Space

4.8 Implementing file access

4.9 Questions

4.10 Further Readings

 OBJECTIVES

Upon Completion of this chapter, the student should be able to:

 Discuss the concepts of file systems and IOCS.

 Discuss the concepts of file organization.

 Explain the interface between file systems and IOCS.

 Explain the concepts of allocations in disk.

4.1 FILE SYSTEMS AND IOCS

 A file system views a file as a collection of data that is owned by a user, can be shared by

a set of authorized users, and has to be reliably stored over an extended period of time. A

files System gives users freedom in naming their files, as an aspect of ownership, so that

note
s4

fre
e.i

n

Operating System- 15EC553

Dpt. Of ECE ATMECE Page 2

a user can give a desired name to a file without worrying whether it conflicts with names

of files; and it provides privacy by protecting against interference by other users.

 The IOCS, on the other hand, views a file as a repository of data that need to be accessed

speedily and are stored on an I/O device that needs to be used efficiently. Table 6.1

summarizes the facilities provided by the file system and the IOCS.

Facilities provided by the file system and the IOCS are

File system:

 Directory structures for convenient grouping of files

 Protection of files against illegal accesses

 File sharing semantics

 Reliable storage of files

 IOCS:

 Efficient operation of I/O devices

 Efficient access to records in a file

4.2 Files and file operation

File Types A file system houses and organizes different types of files, e.g., data files, executable

programs, object modules, textual information, documents, spreadsheets, photos, and video clips.

Each of these file types has its own format for recording the data. These file types can be

grouped into two classes:

 Structured files

 Byte stream files

A structured file is a collection of records, where a record is a meaningful unit for processing of

data. A record is a collection of fields, and a field contains a single data item. Each record in a

file is assumed to contain a key field. The value in the key field of a record is unique in a file;

i.e., no two records contain an identical key.

note
s4

fre
e.i

n

Operating System- 15EC553

Dpt. Of ECE ATMECE Page 3

Many file types mentioned earlier are structured files. File types used by standard system

software like compilers and linkers have a structure determined by the OS designer, while file

types of user files depend on the applications or programs that create them.

A byte stream file is flat. There are no records and fields in it. It is looked upon as a Sequence

of bytes by the processes that use it. The next example illustrates structured and byte stream files.

Structured and Byte Stream Files Example 4.1 (a) shows a structured file named employee info.

Each record in the file contains information about one employee. A record contains four fields:

employee id, name, designation, and age. The field containing the employee id is the key field.

Figure 4.1(b) shows a byte stream file report.

Fig 4.1 (a) logical views of structured file (b) stream file support

File Attributes: A file attribute is a characteristic of a file that is important either to its users or

to the file system, or both. Commonly used attributes of a file are: type, organization, size,

location on disk, access control information, which indicates the manner in which different users

can access the file; owner name, time of creation, and time of last use. The file system stores the

attributes of a file in its directory entry. During a file processing activity, the file system uses the

attributes of a file to locate it, and to ensure that each operation being performed on it is

consistent with its attributes.

File operation

 Table 4.1 Facilities the different operations of file system

note
s4

fre
e.i

n

Operating System- 15EC553

Dpt. Of ECE ATMECE Page 4

Table 4.1 Operation of file

4.3 FUNDAMENTAL FILE ORGANISATIONS

 A file organization is a combination of two features a method of arranging records in a

file and a procedure for accessing them. A file organization is designed to exploit the

characteristics of an I/O device for providing efficient record access for a specific record

access pattern. A file system supports several file organizations so that a process can

employ the one that best suits its file processing requirements and the I/O device in use.

This section describes three fundamental file organizations sequential file organization,

direct file organization and index sequential file organization. Other file organizations

used in practice are either variants of these fundamental ones or are special-purpose

organizations that exploit less commonly used I/O devices. Accesses to files governed by

a specific file organization are implemented by an IOCS module called an access method.

An access method is a policy module of the IOCS.

note
s4

fre
e.i

n

Operating System- 15EC553

Dpt. Of ECE ATMECE Page 5

 In sequential file organization, records are stored in an ascending or descending

sequence according to the key field; the record access pattern of an application is

expected to follow suit. Hence sequential file organization supports two kinds of

operations: read the next (or previous) record, and skip the next (or previous) record. A

sequential-access file is used in an application if its data can be conveniently pre-sorted

into an ascending or descending order. The sequential file organization is also used for

byte stream files.

 The direct file organization provides convenience and efficiency of file processing

when records are accessed in a random order. To access a record, a read/write command

needs to mention the value in its key field. We refer to such files as direct access files. A

direct-access file is implemented as follows: When a process provides the key value of a

record to be accessed, the access method module for the direct file organization applies a

transformation to the key value that generates the address of the record in the storage

medium. If the file is Organized on a disk, the transformation generates a (track no,

record no) address. The disk heads are now positioned on the track track no before a read

or write command is issued on the record record no.

 The index sequential file organization is a hybrid organization that combines elements

of the indexed and the sequential file organizations. To locate a desired record, the access

method module for this organization searches an index to identify a section of the disk

that may contain the record, and searches the records in this section of the disk

sequentially to find the record. The search succeeds if the record is present in the file;

otherwise, it results in a failure. This arrangement requires a much smaller index than

does a pure indexed file because the index contains entries for only some of the key

values. It also provides better access efficiency than the sequential file organization while

ensuring comparably efficient use of I/O media.

4.4 Directory Structure

A directory contains information about a group of files. Each entry in a directory contains the

attributes of one file, such as its type, organization, size, location, and the manner in which it

may be accessed by various users in the system. Figure 4.2 shows the fields of a typical directory

entry. The open count and lock fields are used when several processes open a file concurrently.

note
s4

fre
e.i

n

Operating System- 15EC553

Dpt. Of ECE ATMECE Page 6

The open count indicates the number of such processes. As long as this count is non zero, the file

system keeps some of the metadata concerning the file in memory to speedup accesses to the

data in the file. The lock field is used when a process desires exclusive access to a file.

 Fig4.2 Directory structure composed of files and directories

 Fig 4.3 Fields in a typical directory entry

note
s4

fre
e.i

n

Operating System- 15EC553

Dpt. Of ECE ATMECE Page 7

Directory Trees

The MULTICS file system of the 1960s contained features that allowed the user to create a new

directory, give it a name of his choice, and create files and other directories in it up to any

desired level. The resulting directory structure is a tree, it is called the directory tree. After

MULTICS, most file systems have provided directory trees.

 Fig 4.4 Directory trees of file system and of user A

A user can create a file to hold data or to act as a directory. When a distinction between the two

is important, we will call these files respectively data files and directory files, or simply

directories.

In a directory tree, each file except the root directory has exactly one parent directory. This

provides total separation of different users files and complete file naming freedom. However, it

makes file sharing rather cumbersome

Links: A link is a directed connection between two existing files in the directory structure. It can

be written as a triple (<from_ file_name>, < to_file_name>, < link_name>), where<from_

file_name>is a directory and<to_ file_name>can be a directory or a file. Once a link is

established, <to_ file_name>can be accessed as if it were a file named<link_name> in the

directory <from_ file_name>.

note
s4

fre
e.i

n

Operating System- 15EC553

Dpt. Of ECE ATMECE Page 8

 Fig 4.5 A link in the directory structure

4.5 FILE PROTECTION

A user would like to share a file with collaborators, but not with others. We call this requirement

controlled sharing of files. To implement it, the owner of a file specifies which users can access

the file in what manner. The file system stores this information in the protection info field of the

files directory entry, and uses it to control access to the file.

4.6 INTERFACES BETWEEN FILE SYSTEM AND IOCS

The file system uses the IOCS to perform I/O operations and the IOCS implements them rough

kernel calls. The interface between the file system and the IOCS consists of three data structures

the file map table (FMT), the file control block (FCB), and the open files table (OFT) and

functions that perform I/O operations. Use of these data structures avoids repeated processing of

file attributes by the file system, and provides a convenient method of tracking the status of

ongoing file processing activities. The file system allocates disk space to a file and stores

information about the allocated disk space in the file map table (FMT). The FMT is typically

held in memory during the processing of a file.

A file control block (FCB) contains all information concerning an ongoing file processing

activity.

 This information can be classified into the three categories shown in Table

6.2.Information in the file organization category is either simply extracted from the file

declaration statement in an application program, or inferred from it by the compiler, e.g.,

information such as the size of a record and number of buffers is extracted from a file

note
s4

fre
e.i

n

Operating System- 15EC553

Dpt. Of ECE ATMECE Page 9

declaration, while the name of the access method is inferred from the type and

organization of a file.

 The compiler puts this information as parameters in the open call.

 When the call is made during execution of the program, the file system puts this

information in the FCB.

 Directory information is copied into the FCB through joint actions of the file system and

the IOCS when a new file is created.

 Information concerning the current state of processing is written into the FCB by the

IOCS. This information is continually updated during the processing of a file. The open

files table (OFT) holds the FCBs of all open files.

 The OFT resides in the kernel address space so that user processes cannot tamper with it.

When a file is opened, the file system stores its FCB in a new entry of the OFT. The

offset of this entry in the OFT is called the internal id of the file.

 The internal id is passed back to the process, which uses it as a parameter in all future file

system calls.

 Figure 6.7 shows the arrangement set up when a file alpha is opened. The file system

copies fmt alpha in memory; creates fcb alpha, which is an FCB for alpha, in the OFT;

initializes its fields appropriately; and passes back its offset in OFT, which in this case is

6, to the process as internal_id alpha.

Table 4.2 Fields in FCB

note
s4

fre
e.i

n

Operating System- 15EC553

Dpt. Of ECE ATMECE Page 10

Fig 4.6 Interface between file system and IOCS OFT, FCB and FMT.

Fig 4.7 Files processing operations

Figure 4.7 is a schematic diagram of the processing of an existing file alpha in a process

executed by some user U. The compiler replaces the statements open, read, and close in the

source program with calls on the file system operations open, read, and close, respectively. The

following are the significant steps in file processing involving the file system and the IOCS,

shown by numbered arrows in Figure 4.7:

note
s4

fre
e.i

n

Operating System- 15EC553

Dpt. Of ECE ATMECE Page 11

 The file executes the call open (alpha, read,<file attributes>). The call returns with

internal_id with protection information of the file. The process saves internal_idalpha for

use while performing operations on file alpha.

 The file system creates a new FCB in the open files table. It resolves the path name alpha,

locates the directory entry of alpha, and stores the information about it in the new FCB

for use while closing the file. Thus, the new FCB becomes fcb alpha. The file system now

makes a call IOCS-open with internal_id alpha and the address of the directory entry of

alpha as parameters.

 The IOCS accesses the directory entry of alpha, and copies the file size and address of the

FMT, or the FMT itself, from the directory entry into fcb alpha.

 When the process wishes to read a record of alpha into area xyz, it invokes the read

operation of the file system with internal_idalpha, <record_info>, and Ad (xyz) as

parameters.

 Information about the location of alpha is now available in fcb alpha. Hence the

read/write operations merely invoke IOCS-read/write operations.

 The process invokes the close operation with internal_idalpha as a parameter.

 The file system makes a call IOCS-close with internal_idalpha.

 The IOCS obtains information about the directory entry of alpha from fcb alpha and

copies the file size and FMT address, or the FMT itself, from fcb alpha into the directory

entry of alpha.

4.7 ALLOCATION OF DISK SPACE

A disk may contain many file systems, each in its own partition of the disk. The file system

knows which partition a file belongs to, but the IOCS does not. Hence disk space allocation is

performed by the file system.

Early file systems adapted the contiguous memory allocation model by allocating a single

contiguous disk area to a file when it was created. This model was simple to implement. It also

provided data access efficiency by reducing disk head movement during sequential access to data

in a file. However, contiguous allocation of disk space led to external fragmentation.

note
s4

fre
e.i

n

Operating System- 15EC553

Dpt. Of ECE ATMECE Page 12

Interestingly, it also suffered from internal fragmentation because the file system found it

prudent to allocate some extra disk space to allow for expansion of a file.

Contiguity of disk space also necessitated complicated arrangements to avoid use of bad disk

blocks: The file system identified bad disk blocks while formatting the disk and noted their

addresses. It then allocated substitute disk blocks for the bad ones and built a table showing

addresses of bad blocks and their substitutes. During a read/write operation, the IOCS checked

whether the disk block to be accessed was a bad block. If it was, it obtained the address of the

substitute disk block and accessed it. Modern file systems adapt the non contiguous memory

allocation model to disk space allocation. In this approach, a chunk of disk space is allocated on

demand, i.e., when the file is created or when its size grows because of an update operation. The

file system has to address three issues for implementing this approach:

Managing free disk space: Keep track of free disk space and allocate from it when a file

requires a new disk block.

Avoiding excessive disk head movement: Ensure that data in a file is not dispersed to different

parts of a disk, as it would cause excessive movement of the disk heads during file processing.

Accessing file data: Maintain information about the disk space allocated to a file and use it

To find the disk block that contains required data.

Fig 4.9 Disk Status Map

Use of a disk status map, rather than a free list, has the advantage that it allows the file system to

readily pick disk blocks from an extent or cylinder group.

The two fundamental approaches to non contiguous disk space allocation. They differ in the

manner they maintain information about disk space allocated to a file.

Linked Allocation

note
s4

fre
e.i

n

Operating System- 15EC553

Dpt. Of ECE ATMECE Page 13

A file is represented by a linked list of disk blocks. Each disk block has two fields in it data and

metadata. The data field contains the data written into the file, while the metadata field is the

link field, which contains the address of the next disk block allocated to the file. Figure4.10

illustrates linked allocation. The location info field of the directory entry of file alpha points to

the first disk block of the file. Other blocks are accessed by following the pointers in the list of

disk blocks. The last disk block contains null information in its metadata field. Thus, file alpha

consists of disk blocks 3 and 2, while file beta consists of blocks 4, 5,and 7.

Fig 4.10 linked allocation of disk space

File Allocation Table (FAT)

MS-DOS uses a variant of linked allocation that stores the metadata separately from the file data.

A file allocation table (FAT) of a disk is an array that has one element corresponding to every

disk block in the disk. For a disk block that is allocated to a file, the corresponding FAT element

contains the address of the next disk block. Thus the disk block and its FAT element together

form a pair that contains the same information as the disk block in a classical linked allocation

scheme.

Fig 4.11 File Allocation Table

note
s4

fre
e.i

n

Operating System- 15EC553

Dpt. Of ECE ATMECE Page 14

Indexed Allocation

In indexed allocation, an index called the file map table (FMT) is maintained to note the

addresses of disk blocks allocated to a file. In its simplest form, an FMT can be an array

containing disk block addresses. Each disk block contains a single field the data field. The field

of a file’s directory entry points location info to the FMT for the file

Figure 4.12 Indexed allocation of disk space.

4.8 Implementing file access

Implementing file access includes

(i) File system action at open

(ii) File system actions at file operation

(iii) File system actions at close

File system action at open

A call open (<pathname>…) is to set up the processing of the file. Open performs the following

actions

(i) An FCB for the file <filename> is created in the AFT

(ii) Internal id of the file <filename> is passed back to the process for use in file

processing

(iii) If the file <filename> is being created or updated, provision is made to update its

directory entry when a close call is made by the process.

note
s4

fre
e.i

n

Operating System- 15EC553

Dpt. Of ECE ATMECE Page 15

File system at file operation

After opening a file <filename>, a process initiated by user U performs some read or write

operations on it. Each such operation is translated into a call

<opn> (internal id, record id, <IO_area addr>);

The file system performs the following actions to process this call

1. Locate the FCB of <filename> in the AFT using internal id.

2. Search the access control list of <filename> for the pair (U, ….). Give an error if <opn>

does not exist in the list of access privileges for U.

3. Make a call on iocs-read or iocs-write with the parameters internal id, record id and

<IO_area addr>.

File system actions at close

The file system performs the following actions when a process executes the statement close

statement

1. If the file has been newly created or updated

 If a file is newly created use directory FCB pointer to locate the FCB of the

directory in which the file is to exist.

 If the file has been updated and its size has changed, the directory entry of the file

is updated using directory FCB pointer

2. The FCB of the file and FCB’s of its parent and ancestor directories are erased from the

AFT.

4.9 QUESTIONS

1. Describe the different operations performed on files.

2. Explain the file system and IOCS in detail.

3. Discuss the methods of allocation of disk space with block representation.

4. Explain briefly the file control block.

5. Explain the index sequential file organization with an example.

6. What is a link? With an example, illustrate the use of a link in an acyclic graph structure

directory.

7. Compare sequential and direct file organization.

8. Describe the interface between file system and IOCS.

note
s4

fre
e.i

n

Operating System- 15EC553

Dpt. Of ECE ATMECE Page 16

9. Explain the file system actions when a file is opened and a file is closed.

4.10 FURTHER READINGS

1. https://en.wikipedia.org/wiki/File_system

2. www.tldp.org/LDP/sag/html/filesystems

3. https://en.wikipedia.org/wiki/File_system

note
s4

fre
e.i

n

 Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 1

MODULE 5

MESSAGE PASSING

 Discuss the issues of message passing.

 Explain the direct naming and indirect naming.

 Explain the implementation in message passing.

 Discuss about mailboxes.

 Discuss about deadlocks in resource allocation , deadlocks detection and prevention.

Structure

5.1 Objective

5.2 Overview of Message Passing

5.3 Implementing message passing

5.4 Mailboxes

5.5 Deadlocks

5.6 Deadlocks in resource allocation

5.7 Resource state modeling

5.8 Deadlock Prevention

OBJECTIVES

note
s4

fre
e.i

n

 Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 2

5.1 OVERVIEW OF MESSAGE PASSING

Message passing suits diverse situations where exchange of information between

processes plays a key role. One of its prominent uses is in the client server paradigm, wherein a

server process offers a service, and other processes, called its clients, send messages to it to use

its service. This paradigm is used widely a microkernel- based OS structures functionalities such

as scheduling in the form of servers, a conventional OS offer services such as printing through

servers, and, on the Internet, a variety of services are offered by Web servers.

Another prominent use of message passing is in higher-level protocols for exchange of electronic

mails and communication between tasks in parallel or distributed programs. Here, message

passing is used to exchange information, while other parts of the protocol are employed to ensure

reliability.

The key issues in message passing are how the processes that send and receive messages

identify each other, and how the kernel performs various actions related to delivery of messages

how it stores and delivers messages and whether it blocks a process that sends a

message until its message is delivered. These features are operating system specific. We describe

different message passing arrangements employed in operating systems and discuss their

significance for user processes and for the kernel. We also describe message passing in UNIX

and in Windows operating systems.

The four ways in which processes interact with one another data sharing, message

passing, synchronization, and signals. Data sharing provides means to access values of shared

data ina mutually exclusive manner. Process synchronization is performed by blocking a process

until other processes have performed certain specific actions. Capabilities of message passing

overlap those of data sharing and synchronization; however, each form of process interaction has

its own niche application area..Figure 8.1 shows an example of message passing. Process Pi

sends a message to process Pj by executing the statement send (Pj, <message>). The compiled

code of the send statement invokes the library module send. Send makes a system call send, with

Pj and the message as parameters. Execution of the statement receives (Pi, msg_area), where

msg_area is an area in Pj space, results in a system call receive.

note
s4

fre
e.i

n

 Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 3

Figure 5.1 Message passing.

The semantics of message passing are as follows: At a send call by Pi , the kernel checks

whether process Pj is blocked on a receive call for receiving a message from process Pi . If so, it

copies the message into msg_area and activates Pj. If process Pj has not already made a receive

call, the kernel arranges to deliver the message to it when Pj eventually makes a receive call.

When process Pj receives the message, it interprets the message and takes an appropriate action.

Messages may be passed between processes that exist in the same

computer or in different computers connected to a network. Also, the processes participating in

message passing may decide on what a specific message means and what actions the receiver

process should perform on receiving it. Because of this flexibility, message passing

is used in the following applications:

Message passing is employed in the client server paradigm, which is used to

communicate between components of a microkernel-based operating system and user processes,

to provide services such as the print service to processes within an OS, or to provide Web-based

services to client processes located in other computers.

Message passing is used as the backbone of higher-level protocols employed for communicating

between computers or for providing the electronic mail facility.

Message passing is used to implement communication between tasks in a parallel or distributed

program.

In principle, message passing can be performed by using shared variables. For example,

msg_area in Figure 5.1 could be a shared variable. Pi could deposit a value or a message in it and

Pj could collect it from there. However, this approach is cumbersome because the processes

would have to create a shared variable with the correct size and share its name.

They would also have to use synchronization analogous to the producer’s consumers problem to

ensure that a receiver process accessed a message in a shared variable only after a sender process

note
s4

fre
e.i

n

 Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 4

had deposited it there. Message passing is far simpler in this situation. It is also more general,

because it can be used in a distributed system environment, where the shared the producers

consumers problem with a single buffer, a single producer process, and a

single consumer process can be implemented by message passing as shown in Figure 5.2. The

solution does not use any shared variables. Instead, process Pi, which is the producer process,

has a variable called buffer and process Pj , which is the consumer process, has a variable called

message area. The producer process produces in buffer and sends the contents of buffer in a

message to the consumer.

begin

Parbegin

var buffer : . . . ; var message_area ;

repeat repeat

{ Produce in buffer } receive (Pi , message_area);

send (Pj , buffer); { Consume from message_area }

{ Remainder of the cycle } { Remainder of the cycle }

forever; forever;

Parend;

end.

Process Pi Process Pj

Figure 5.2 Producers consumers solution using message passing

The consumer receives the message in message area and consumes it from there. The send

system call blocks the producer process until the message is delivered to the consumer, and the

receive system call blocks the consumer until a message is sent to it.

note
s4

fre
e.i

n

 Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 5

Issues in Message Passing

Two important issues in message passing are:

Naming of processes: Whether names of sender and receiver processes are explicitly indicated

in send and receive statements, or whether their identities are deduced by the kernel in some

other manner.

Delivery of messages: Whether a sender process is blocked until the message sent by it is

delivered, what the order is in which messages are delivered to the receiver process, and how

exceptional conditions are handled.

These issues dictate implementation arrangements and also influence the generality of message

passing. For example, if a sender process is required to know the identity of a receiver process,

the scope of message passing would be limited to processes in the same application. Relaxing

this requirement would extend message passing to processes indifferent applications and

processes operating in different computer systems. Similarly, providing FCFS message delivery

may be rather restrictive; processes may wish to receive

messages in some other order.

Provide good system performance, as in multiprogramming system; or provide favoured

treatment to important functions, as in a real time system.

Direct and indirect naming

In direct naming example, the send and receive statements might have the following syntax:

Send (<destination_process>,<message_length>,<message_address>);

Receive (<source_ process>,<message_area>);

Direct naming can be used in two ways: In symmetric naming, both sender and receiver which

process to receive a message from. However, it has to know the name of every process that

wishes to send it a message, which is difficult when processes of different applications wish to

communicate, or when a server wishes to receive a request from any one of a set of clients. In

asymmetric naming, the receiver does not name the process from which it wishes to receive a

message; the kernel gives it a message sent to it by some process.

In indirect naming processes do not mention the name in send and receive statements

note
s4

fre
e.i

n

 Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 6

Blocking and Non blocking Sends

A blocking send blocks a sender process until the message to be sent is delivered to the

destination process. This method of message passing is called synchronous message passing.

A non blocking send call permits a sender to continue its operation after making a send call,

irrespective of whether the message is delivered immediately; such message passing is called

asynchronous message passing. In both cases, the receive primitive is typically blocking.

Synchronous message passing provides some nice properties for user processes and simplifies

actions of the kernel. A sender process has a guarantee that the message sent by it is delivered

before it continues its operation. This feature simplifies the design of concurrent processes. The

kernel delivers the message immediately if the destination process has already made a receive

call for receiving a message; otherwise, it blocks the sender process until the destination process

makes a receive call.

Asynchronous message passing enhances concurrency between the sender and receiver processes

by letting the sender process continue its operation. However, it also causes a synchronization

problem because the sender should not alter contents of the memory area which contains text of

the message until the message is delivered. To overcome this problem, the kernel performs

message buffering when a process makes a send call, the kernel allocates a buffer in the system

area and copies the message into the buffer. This way, the sender process is free to access the

memory area that contained text of the message.

Exceptional Conditions in Message Passing

To facilitate handling of exceptional conditions, the send and receive calls take two additional

parameters. The first parameter is a set of flags indicating how the process wants exceptional

conditions to be handled; we will call this parameter flags. The second parameter is the address

of a memory area in which the kernel provides a condition code describing the outcome of the

send or receives call; we will call this area status_area. When a process makes a send or receive

call, the kernel deposits a condition code in

status_area. It then checks flags to decide whether it should handle any exceptional conditions

and performs the necessary actions. It then returns control to the process. The process checks the

note
s4

fre
e.i

n

 Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 7

condition code provided by the kernel and handles any exceptional conditions it wished to handle

itself.

Some exceptional conditions and their handling actions are as follows:

1. The destination process mentioned in a send call does not exist.

2. In symmetric naming, the source process mentioned in a receive call does not exist.

3. A send call cannot be processed because the kernel has run out of buffer memory.

4. No message exists for a process when it makes a receive call.

5. A set of processes becomes deadlocked when a process is blocked on a receive call.

In cases 1 and 2, the kernel may abort the process that made the send or receive call and set its

termination code to describe the exceptional condition. In case 3, the sender process may be

blocked until some buffer space becomes available. Case 4 is really not an exception if receives

are blocking (they generally are!), but it may be treated as an exception so that the receiving

process has an opportunity to handle the condition if it so desires. A process may prefer the

standard action, which is that the kernel should block the process until a message arrives for it, or

it may prefer an action of its own choice, like waiting for specified amount of time before giving

up.

More severe exceptions belong to the realm of OS policies. The deadlock situation of case 5is an

example. Most operating systems do not handle this particular exception because it incurs the

overhead of deadlock detection. Difficult-to handle situations, such as a process waiting a long

time on a receive call, also belong to the realm of OS policies

5.2 IMPLEMENTING MESSAGE PASSING

Buffering of Inter process Messages

When a process Pi sends a message to some process Pj by using a non blocking send, the

kernel builds an inter process message control block (IMCB) to store all information needed To

deliver the message (see Figure 8.3). The control block contains names of the sender and

Destination processes, the length of the message, and the text of the message. The control block

is allocated a buffer in the kernel area. When process Pj makes a receive call, the kernel copies

note
s4

fre
e.i

n

 Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 8

the message from the appropriate IMCB into the message area provided by Pj .The pointer fields

of IMCBs are used to form IMCB lists to simplify message delivery. Figure 9.4 shows the

organization of IMCB lists when blocking sends and FCFS message

delivery are used. In symmetric naming, a separate list is used for every pair of communicating

processes. When a process Pi performs a receive call to receive a message from process Pj , the

IMCB list for the pair Pi Pj is used to deliver the message. In asymmetric naming, a single IMCB

list can be maintained per recipient process. When a process performs a receive, the first IMCB

in its list is processed to deliver a message.

If blocking sends are used, at most one message sent by a process can be undelivered at any

point in time. The process is blocked until the message is delivered. Hence it is not necessary to

copy the message into an IMCB.

Figure 5.3 Inter process message control block (IMCB).

Figure 5.4 Lists of IMCBs for blocking sends in (a) symmetric naming; (b) asymmetric naming

note
s4

fre
e.i

n

 Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 9

The kernel notes the address of the message text in senders memory area, and use this

information while delivering the message. This arrangement saves one copy operation on the

message.

Delivery of Inter process Messages

When a process Pi sends a message to process Pj, the kernel delivers the message to Pj

immediately if Pj is currently blocked on a receive call for a message from Pi , or from any

process. After delivering the message, the kernel must also change the state of Pj to ready.

Ifprocess Pj has not already performed a receive call, the kernel must arrange to deliver

themessage when Pj performs a receive call later. Thus, message delivery actions occur at both

send and receive calls. The kernel uses an event control block (ECB) to note actions that should

be performed when an anticipated event occurs. The ECB contains three fields:

 Description of the anticipated event

 Id of the process that awaits the event

 An ECB pointer for forming ECB lists

Figure 5.5 shows use of ECBs to implement message passing with symmetric naming and

blocking sends. When Pi makes a send call, the kernel checks whether an ECB exists for the

send call by Pi , i.e., whether Pj had made a receive call and was waiting for Pi to send a

message. If it is not the case, the kernel knows that the receive call would occur sometime in

future, so it creates an ECB for the event Pi by Pj Pi as the process that will be affected by the

event. Process Pi is put into the blocked state and the address of the ECB is put in the event info

field of its PCB [see Figure 8.5(a)].

Figure 5.5 ECBs to implement symmetric naming and blocking sends (a) at send; (b) at receive

note
s4

fre
e.i

n

 Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 10

Figure 5.5(b) illustrates the case when process Pj makes a receive call before Pi makes a send

call. An ECB for a send to Pj by Pi event is now created. The id of Pj is put in the ECB to

indicate that the state of Pj will be affected when the send event occurs

5.3 MAILBOXES

A mailbox is a repository for inter process messages. It has a unique name. The owner of

a mailbox is typically the process that created it. Only the owner process can receive messages

from a mailbox. Any process that knows the name of a mailbox can send messages to it. Thus,

sender and receiver processes use the name of a mailbox, rather than each other’s names, in send

and receive statements; it is an instance of indirect naming.

Figure 8.6llustrates message passing using a mailbox named sample. Process Pi creates the

mailbox, using the statement create_mailbox. Process Pj sends a message to the mailbox, using

the mailbox name in its send statement. If Pi has not already executed a receive statement, the

kernel would store the message in a buffer. The kernel may associate a fixed set of buffers with

each mailbox, or it may allocate buffers from a common pool of buffers when a message is sent.

Both create_mailbox and send statements return with condition codes.

The kernel may provide a fixed set of mailbox names, or it may permit user processes to assign

mailbox names of their choice. In the former case, confidentiality of communication between a

pair of processes cannot be guaranteed because any process can use a mailbox.

Confidentiality greatly improves when processes can assign mailbox names of their own

choice. To exercise control over creation and destruction of mailboxes, the kernel may require a

process for explicitly connect to a mailbox before using it and to disconnect when it finishes

using it.

note
s4

fre
e.i

n

 Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 11

Figure 5.6 Creation and use of mailbox sample.

Use of a mailbox has following advantages:

Anonymity of receiver: A process sending a message to request a service may have no interest in

the identity of the receiver process, as long as the receiver process can perform the needed

function. A mailbox relieves the sender process of the need to know the identity of the receiver.

Additionally, if the OS permits the ownership of a mailbox to be changed dynamically, one

process can readily take over the service of another.

Classification of messages: A process may create several mailboxes, and use each mailbox to

receive messages of a specific kind. This arrangement permits easy classification of messages.

note
s4

fre
e.i

n

 Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 12

DEADLOCKS

A deadlock is a situation concerning a set of processes in which each process in the set

waits for an event that must be caused by another process in the set.

5.4 DEADLOCKS IN RESOURCE ALLOCATION

 Resource allocation in a system entails three kinds of events- request for resource, actual

allocation of the resource and release of the resource.

A process may utilize the resources in only the following sequences:

 Request:-If the request is not granted immediately then the requesting process must

wait it can acquire the resources.

 Use:-The process can operate on the resource.

 Release:-The process releases the resource after using it.

5.4.1 CONDITIONS FOR RESOURCE ALLOCATION

A deadlock situation can occur if the following 4 conditions occur simultaneously in

a system:-

 Mutual Exclusion:Only one process must hold the resource at a time. If any other

note
s4

fre
e.i

n

 Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 13

process requests for the resource, the requesting process must be delayed until the

resource has been released

 Hold and Wait:-A process must be holding at least one resource and waiting to

acquire additional resources that are currently being held by the other process.

 No Preemption:-Resources can’t be preempted i.e., only the process holding the

resources must release it after the process has completed its task.

 Circular Wait:-A set {P0,P1……..Pn} of waiting process must exist such that P0 is

waiting for a resource i.e., held by P1, P1 is waiting for a resource i.e., held by P2.

Pn-1 is waiting for resource held by process Pn and Pn is waiting for the resource

i.e., held by P1. All the four conditions must hold for a deadlock to occur.

5.5 MODELLING RESOURCE ALLOCATION STATE

 Deadlocks are described by using a directed graph called system resource

allocation graph. The graph consists of set of vertices (v) and set of edges (e). The set of

vertices (v) can be described into two different types of nodes P={P1,P2……..Pn} i.e.,

set consisting of all active processes and R={R1,R2……….Rn}i.e., set consisting of all

resource types in the system. A directed edge from process Pi to resource type Rj

denoted by Pi->Ri indicates that Pi requested an instance of resource Rj and is

waiting.This edge is called Request edge. A directed edge Ri-> Pj signifies that resource

Rj is held by process Pi. This is called Assignment edge

 If the graph contain no cycle, then no process in the system is deadlock. If the graph

contains a cycle then a deadlock may exist. If each resource type has exactly one instance

than a cycle implies that a deadlock has occurred. If each resource has several instances

then a cycle do not necessarily implies that a deadlock has occurred.

R1 R3

note
s4

fre
e.i

n

 Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 14

 R2 R4

Figure 5.6 Resource State Modelling

5.6 DEADLOCK PREVENTION

For a deadlock to occur each of the four necessary conditions must hold. If at least one of the

there condition does not hold then we can prevent occurrence of deadlock.

 Non – Shareable Rescource : This holds for non-sharable resources. Eg:-A printer

can be used by only one process at a time. Mutual exclusion is not possible in

sharable resources and thus they cannot be involved in deadlock. Read-only files are

good examples for sharable resources. A process never waits for accessing a

sharable resource. So we cannot prevent deadlock by denying the mutual exclusion

condition in non-sharable resources

 Hold and Wait:This condition can be eliminated by forcing a process to release all

its resources held by it when it request a resource i.e., not available.x One protocol

can be used is that each process is allocated with all of its resources before its start

execution. Eg:-consider a process that copies the data from a tape drive to the disk,

sorts the file and then prints the results to a printer. If all the resources are allocated

at the beginning then the tape drive, disk files and printer are assigned to the

process. The main problem with this is it leads to low resource utilization because

note
s4

fre
e.i

n

 Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 15

it requires printer at the last and is allocated with it from the beginning so that no

other process can use it. x Another protocol that can be used is to allow a process

to request a resource when the process has none. i.e., the process is allocated with

tape drive and disk file. It performs the required operation and releases both. Then

the process once again request for disk file and the printer and the problem and

with this is starvation is possible.

 No Preemption:To ensure that this condition never occurs the resources must be

preempted. The following protocol can be used. x If a process is holding some

resource and request another resource that cannot be immediately allocated to it,

then all the resources currently held by the requesting process are preempted and

added to the list of resources for which other processes may be waiting. The

process will be restarted only when it regains the old resources and the new

resources that it is requesting. x When a process request resources, we check

whether they are available or not. If they are available we allocate them else we

check that whether they are allocated to some other waiting process. If so we

preempt the resources from the waiting process and allocate them to the requesting

process. The requesting process must wait.

 Circular Wait:-The fourth and the final condition for deadlock is the circular wait

condition. One way to ensure that this condition never, is to impose ordering on all

resource types and each process requests resource in an increasing order.

Let R={R1,R2,………Rn} be the set of resource types. We assign each

resource type with a unique integer value. This will allows us to compare two

resources and determine whether one precedes the other in ordering. Eg:-we can

define a one to one function

-F(disk drive)=5 F(printer)=12 F(tape drive)=1

Deadlock can be prevented by using the following protocol:x Each process can request the

resource in increasing order. A process can request any number of instances of resource type say Ri

and it can request instances of resource type Rj only F(Rj) > F(Ri). x Alternatively when a process

requests an instance of resource type Rj, it has released any resource Ri such that F(Ri) >= F(Rj). If

note
s4

fre
e.i

n

 Operating System-15EC553

Dpt. Of ECE,ATMECE,Mysuru Page 16

these two protocol are used then the circular wait can’t hold.

note
s4

fre
e.i

n

