
Source diginotes.in

Chapter 1

Why should you learn to write programs?

Writing programs is a very creative and rewarding activity.

You can write programs for many reasons

 ranging from making your living to solving a difficult data analysis

problem

 having fun to helping someone else solve a problem.

The hardware in our current-day computers is essentially built to continuously ask

us the question, “What would you like me to do next?”

Programmers add an operating system and a set of applications to the hardware and

we end up with a Personal Digital Assistant that is quite helpful and capable of

helping us do many different things.

Our computers are fast and have vast amounts of memory and could be very

helpful to us if we only knew the language to speak to explain to the computer

what we would like it to “do next”.

1.1 Creativity and motivation

 Building useful, elegant, and clever programs for others to use is a very creative

activity.

 Eg Your computer or Personal Digital Assistant (PDA) usually

 contains many different programs from many different groups of

 programmers, each competing for your attention and interest. They try their

 best to meet your needs and give you a great user experience in the process.

notes4free.in

Source diginotes.in

 Primary motivation is to be more productive in handling the data and

information that we will encounter in our lives

1.2 Computer hardware architecture

• The Central Processing Unit (or CPU)

 is the part of the computer that is built to be obsessed with “what is next?”

 If your computer is rated at 3.0 Gigahertz, it means that the CPU will ask “What

next?” three billion times per second.

 You are going to have to learn how to talk fast to keep up with the CPU.

• The Main Memory

 is used to store information that the CPU needs in a hurry.

 The main memory is nearly as fast as the CPU.

 But the information stored in the main memory vanishes when the computer

is turned off.

• The Secondary Memory

 is also used to store information, but it is much slower than the main

memory.

 The advantage of the secondary memory is that it can store information even

when there is no power to the computer.

 Examples of secondary memory are disk drives or flash memory (typically

found in USB sticks and portable music players).

• The Input and Output Devices

 are simply our screen, keyboard, mouse, microphone, speaker, touchpad, etc.

notes4free.in

Source diginotes.in

 They are all of the ways we interact with the computer.

• These days, most computers also have a Network Connection

 to retrieve information over a network.

 We can think of the network as a very slow place to store and retrieve data

that might not always be “up”.

 The network is a slower and at times unreliable form of Secondary Memory.

1.3 Understanding programming

You need two skills to be a programmer:

• First, you need to know the programming language (Python) -

 You need to know the vocabulary and the grammar.

 You need to be able to spell the words in this new language properly and

know how to construct well-formed “sentences” in this new language.

• Second, you need to “tell a story”.

 In writing a story, you combine words and sentences to convey an idea to the

reader.

 There is a skill and art in constructing the story, and skill in story writing is

improved by doing some writing and getting some feedback.

 In programming, our program is the “story” and the problem you are trying

to solve is the “idea”.

Once you learn one programming language such as Python, you will find it much

easier to learn a second programming language such as JavaScript or C++.

1.4 Words and sentences
The reserved words in the language where humans talk to Python include the

following:

notes4free.in

Source diginotes.in

Eg for a sentence in python

print('Hello world!')

Sentence starts with the function print followed by a string of text of our choosing

enclosed in single quotes.

1.5 Conversing with Python

 The >>> prompt is the Python interpreter’s way of asking you, “What do

you want me to do next?”

Eg >>> print('Hello world!')

 Hello world!

 >>> print('You must be the legendary god that comes from the sky')

 You must be the legendary god that comes from the sky

 >>> print('We have been waiting for you for a long time')

 We have been waiting for you for a long time

 >>> print('Our legend says you will be very tasty with mustard')

 Our legend says you will be very tasty with mustard

 >>> print 'We will have a feast tonight unless you say

 File "<stdin>", line 1

 print 'We will have a feast tonight unless you say

 ^

 SyntaxError: Missing parentheses in call to 'print'

 >>>
 Python is amazingly complex and powerful and very picky about the syntax

you use to communicate with it

 Python is not intelligent. You are really just having a conversation with

yourself, but using proper syntax.

The proper way to quit python

>>> quit()

The proper way to say “good-bye” to Python is to enter quit() at the interactive

chevron >>> prompt.

notes4free.in

Source diginotes.in

1.6 Terminology: interpreter and compiler

 The CPU understands a language we call machine language.

 Machine language is very simple and frankly very tiresome to write because

it is represented all in zeros and ones:

 001010001110100100101010000001111

 11100110000011101010010101101101

 Machine language seems quite simple on the surface, given that there are

only zeros and ones, but its syntax is even more complex and far more

intricate than Python.

 Instead we build various translators to allow programmers to write in high-

level languages like Python or JavaScript and these translators convert the

programs to machine language for actual execution by the CPU.

 Since machine language is tied to the computer hardware, machine language

is not portable across different types of hardware.

 Programs written in high-level languages can be moved between different

computers by using a different interpreter on the new machine or

recompiling the code to create a machine language version of the program

for the new machine.

These programming language translators fall into two general categories:

 (1) interpreters

 (2) compilers.

(1) Interpreters

 An interpreter reads the source code of the program as written by the

programmer, parses the source code, and interprets the instructions on the

fly.

 Python is an interpreter and when we are running Python interactively, we

can type a line of Python (a sentence) and Python processes it immediately

and is ready for us to type another line of Python.

 Some of the lines of Python tell Python that you want it to remember some

value for later.

 We need to pick a name for that value to be remembered and we can use

that symbolic name to retrieve the value later.

 We use the term variable to refer to the labels we use to refer to this stored

data.

notes4free.in

Source diginotes.in

 In this example, we ask Python to remember the value six and use the label x

so we can retrieve the value later.

 We verify that Python has actually remembered the value using print.

 Then we ask Python to retrieve x and multiply it by seven and put the newly

computed value in y.

 Then we ask Python to print out the value currently in y.

 Even though we are typing these commands into Python one line at a time,

Python is treating them as an ordered sequence of statements with later

statements able to retrieve data created in earlier statements.

 The Python interpreter is written in a high-level language called “C”.

(2) Compilers.

 A compiler needs to be handed the entire program in a file, and then it runs a

process to translate the high-level source code into machine language and

then the compiler puts the resulting machine language into a file for later

execution.

1.7 Writing a program

 When we want to write a program, we use a text editor to write the Python

instructions into a file, which is called a script.

 By convention, Python scripts have names that end with .py.

 To execute the script, you have to tell the Python interpreter the name of the

file.

 In a Unix or Windows command window, you would type python hello.py

as follows:

notes4free.in

Source diginotes.in

 The “csev$” is the operating system prompt, and the “cat hello.py” is

showing us that the file “hello.py” has a one-line Python program to print a

string.

 We call the Python interpreter and tell it to read its source code from the file

“hello.py” instead of prompting us for lines of Python code interactively.

1.8 What is a program?

 The definition of a program at its most basic is a sequence of Python

statements that have been crafted to do something. Even our simple hello.py

script is a program.

 It is a one-line program and is not particularly useful, but in the strictest

definition, it is a Python program.

 For example, look at the following text about a clown and a car.

 Look at the text and figure out the most common word and how many times

it occurs.

 the clown ran after the car and the car ran into the tent

 and the tent fell down on the clown and the car

notes4free.in

Source diginotes.in

1.9 The building blocks of programs

 input Get data from the “outside world”. This might be reading data from a

file, or even some kind of sensor like a microphone or GPS. In our initial

programs, our input will come from the user typing data on the keyboard.

 output Display the results of the program on a screen or store them in a file

or perhaps write them to a device like a speaker to play music or speak text.

 sequential execution Perform statements one after another in the order they

are encountered in the script.

 conditional execution Check for certain conditions and then execute or skip

a sequence of statements.

 repeated execution Perform some set of statements repeatedly, usually with

some variation.

 reuse Write a set of instructions once and give them a name and then reuse

those instructions as needed throughout your program.

1.10 What could possibly go wrong?

notes4free.in

Source diginotes.in

You will encounter three general types of errors:

Syntax errors

 These are the first errors you will make and the easiest to fix.

 A syntax error means that you have violated the “grammar” rules of Python.

 Python does its best to point right at the line and character where it noticed it

was confused.

 The only tricky bit of syntax errors is that sometimes the mistake that needs

fixing is actually earlier in the program than where Python noticed it was

confused.

 So the line and character that Python indicates in a syntax error may just be a

starting point for your investigation.

Logic errors

 A logic error is when your program has good syntax but there is a mistake in

the order of the statements or perhaps a mistake in how the statements relate

to one another.

 A good example of a logic error might be, “take a drink from your water

bottle, put it in your backpack, walk to the library, and then put the top back

on the bottle.”

Semantic errors

 A semantic error is when your description of the steps to take is

syntactically perfect and in the right order, but there is simply a mistake in

the program.

 The program is perfectly correct but it does not do what you intended for it

to do

notes4free.in

Source diginotes.in

Chapter 2

Variables,expressions, and statements

2.1 Values and types

 A value is one of the basic things a program works with, like a letter or a

number.

 The values we have seen so far are 1, 2, and “Hello, World!”

 These values belong to different types: 2 is an integer, and “Hello, World!”

is a string, so called because it contains a “string” of letters.

 The print statement also works for integers.

 We use the python command to start the interpreter.

 If you are not sure what type a value has, the interpreter can tell you.

 Strings belong to the type str and integers belong to the type int.

 Less obviously, numbers with a decimal point belong to a type called float,

because these numbers are represented in a format called floating point.

 When you type a large integer, you might be tempted to use commas

between groups of three digits, as in 1,000,000.

 This is not a legal integer in Python, but it is legal:

notes4free.in

Source diginotes.in

>>> print(1,000,000)

1 0 0

 Python interprets 1,000,000 as a comma separated sequence of integers,

which it prints with spaces between.

 This is the first example we have seen of a semantic error: the code runs

without producing an error message, but it doesn’t do the “right” thing.

2.2 Variables

 A variable is a name that refers to a value.

 An assignment statement creates new variables and gives them values:

 This example makes three assignments.

 The first assigns a string to a new variable named message;

 the second assigns the integer 17 to n;

 the third assigns the (approximate) value of _ to pi.

To display the value of a variable, you can use a print statement:

The type of a variable is the type of the value it refers to.

2.3 Variable names and keywords

 Programmers generally choose names for their variables that are meaningful

and document what the variable is used for.

 Variable names can be arbitrarily long.

notes4free.in

Source diginotes.in

 They can contain both letters and numbers, but they cannot start with a

number.

 It is legal to use uppercase letters, but it is a good idea to begin variable

names with a lowercase letter.

 The underscore character (_) can appear in a name. It is often used in names

with multiple words, such as my_name or airspeed_of_unladen_swallow.

 Variable names can start with an underscore character, but we generally

avoid doing this unless we are writing library code for others to use.

If you give a variable an illegal name, you get a syntax error:

 76trombones is illegal because it begins with a number. more@ is illegal

because it contains an illegal character, @.

 The class is one of Python’s keywords. The interpreter uses keywords to

recognize the structure of the program, and they cannot be used as variable

names.

2.4 Statements

 A statement is a unit of code that the Python interpreter can execute.

 We have seen two kinds of statements:

 print being an expression statement and assignment.

 When you type a statement in interactive mode, the interpreter executes it

and displays the result, if there is one.

 A script usually contains a sequence of statements.

 If there is more than one statement, the results appear one at a time as the

statements execute.

notes4free.in

Source diginotes.in

 The assignment statement produces no output.

2.5 Operators and operands

 Operators are special symbols that represent computations like addition and

multiplication.

 The values the operator is applied to are called operands.

 The operators +, -, *, /, and ** perform addition, subtraction, multiplication,

division, and exponentiation, as in the following examples:

20+32 hour-1 hour*60+minute minute/60 5**2 (5+9)*(15-7)

 There has been a change in the division operator between Python 2.x and

Python 3.x.

 In Python 3.x, the result of this division is a floating point result:

 >>> minute = 59

 >>> minute/60

 0.9833333333333333

 The division operator in Python 2.0 would divide two integers and truncate

the result to an integer:

 >>> minute = 59

 >>> minute/60

 0

 To obtain the same answer in Python 3.0 use floored (// integer) division.

notes4free.in

Source diginotes.in

 >>> minute = 59

 >>> minute//60

 0

2.6 Expressions

 An expression is a combination of values, variables, and operators.

 A value all by itself is considered an expression, and so is a variable, so the

following are all legal expressions

 17

 x

 x + 17

 If you type an expression in interactive mode, the interpreter evaluates it and

displays the result:

 >>> 1 + 1

 2

2.7 Order of operations
 When more than one operator appears in an expression, the order of

evaluation depends on the rules of precedence.

 For mathematical operators, Python follows mathematical convention.

 The acronym PEMDAS is a useful way to remember the rules:

 Parentheses

 have the highest precedence

 and can be used to force an expression to evaluate in the order you

want.

 Since expressions in parentheses are evaluated first, 2 * (3-1) is 4, and

(1+1)**(5-2) is 8.

 You can also use parentheses to make an expression easier to read, as

in (minute * 100) / 60, even if it doesn’t change the result.

 Exponentiation has the next highest precedence, so 2**1+1 is 3, not 4, and

3*1**3 is 3, not 27.

 Multiplication and Division have the same precedence, which is higher

than Addition and Subtraction, which also have the same precedence.

 So 2*3-1 is 5, not 4, and 6+4/2 is 8.0, not 5.

notes4free.in

Source diginotes.in

 Operators with the same precedence are evaluated from left to right.

 So the expression 5-3-1 is 1, not 3, because the 5-3 happens first and then 1

is subtracted from 2.

2.8 Modulus operator
 The modulus operator works on integers and yields the remainder when the

first operand is divided by the second.

 In Python, the modulus operator is a percent sign (%).

 The syntax is the same as for other operators:

 >>> quotient = 7 // 3

 >>> print(quotient)

 2

 >>> remainder = 7 % 3

 >>> print(remainder)

 1

 So 7 divided by 3 is 2 with 1 left over.

 The modulus operator turns out to be surprisingly useful. For example, you

can check whether one number is divisible by another: if x % y is zero, then

x is divisible by y.

 You can also extract the right-most digit or digits from a number.

 For example, x % 10 yields the right-most digit of x (in base 10).

 Similarly, x % 100 yields the last two digits.

2.9 String operations
 The + operator works with strings, but it is not addition in the mathematical

sense.

 Instead it performs concatenation, which means joining the strings by

linking them end to end.

 For example:

 >>> first = 10

 >>> second = 15

 >>> print(first+second)

 25

 >>> first = '100'

 >>> second = '150'

 >>> print(first + second)

 100150

 The output of this program is 100150.

notes4free.in

Source diginotes.in

2.10 Asking the user for input
 Sometimes we would like to take the value for a variable from the user via

their keyboard.

 Python provides a built-in function called input that gets input from the

keyboard.

 When this function is called, the program stops and waits for the user to type

something.

 When the user presses Return or Enter, the program resumes and input

returns what the user typed as a string.

 In Python 2.0, this function was named raw_input.

 >>> input = input()

 Some silly stuff

 >>> print(input)

 Some silly stuff

 Before getting input from the user, it is a good idea to print a prompt telling

the user what to input.

 You can pass a string to input to be displayed to the user before pausing for

input:

 >>> name = input('What is your name?\n')

 What is your name?

 Chuck

 >>> print(name)

 Chuck

 The sequence \n at the end of the prompt represents a newline, which is a

special character that causes a line break.

 That’s why the user’s input appears below the prompt.

 If you expect the user to type an integer, you can try to convert the return

value to int using the int() function:

 >>> prompt = 'What...is the airspeed velocity of an unladen

 swallow?\n'

 >>> speed = input(prompt)

 What...is the airspeed velocity of an unladen swallow?

 17

 >>> int(speed)

 17

 >>> int(speed) + 5

 22

 But if the user types something other than a string of digits, you get an error:

notes4free.in

Source diginotes.in

 >>> speed = input(prompt)

 What...is the airspeed velocity of an unladen swallow?

 What do you mean, an African or a European swallow?

 >>> int(speed)

 ValueError: invalid literal for int() with base 10:

2.11 Comments
 As programs get bigger and more complicated, they get more difficult to

read.

 Formal languages are dense, and it is often difficult to look at a piece of

code and figure out what it is doing, or why.

 For this reason, it is a good idea to add notes to your programs to explain in

natural language what the program is doing.

 These notes are called comments, and in Python they start with the # symbol:

 # compute the percentage of the hour that has elapsed

 percentage = (minute * 100) / 60

 In this case, the comment appears on a line by itself. You can also put

comments at the end of a line:

 percentage = (minute * 100) / 60 # percentage of an hour

 Everything from the \# to the end of the line is ignored; it has no effect on

the program.

 Comments are most useful when they document non-obvious features of the

code.

 It is reasonable to assume that the reader can figure out what the code does;

it is much more useful to explain why.

 This comment is redundant with the code and useless:

 v = 5 # assign 5 to v

 This comment contains useful information that is not in the code:

 v = 5 # velocity in meters/second.

 Good variable names can reduce the need for comments, but long names can

make complex expressions hard to read, so there is a trade-off.

2.12 Choosing mnemonic variable names

 As long as you follow the simple rules of variable naming, and avoid

reserved words, you have a lot of choice when you name your variables.

 In the beginning, this choice can be confusing both when you read a

program and when you write your own programs.

notes4free.in

Source diginotes.in

 For example, the following three programs are identical in terms of what

they accomplish, but very different when you read them and try to

understand them.

 The Python interpreter sees all three of these programs as exactly the same

but humans see and understand these programs quite differently.

 Humans will most quickly understand the intent of the second program

because the programmer has chosen variable names that reflect their intent

regarding what data will be stored in each variable.

 We call these wisely chosen variable names “mnemonic variable names”.

 The word mnemonic means “memory aid”.

 We choose mnemonic variable names to help us remember why we created

the variable in the first place.

2.13 Debugging
 At this point, the syntax error you are most likely to make is an illegal

variable name, like class and yield, which are keywords, or odd~job and

US$, which contain illegal characters.

 If you put a space in a variable name, Python thinks it is two operands

without an operator:

 >>> bad name = 5

 SyntaxError: invalid syntax

 >>> month = 09

 File "<stdin>", line 1

 month = 09

notes4free.in

Source diginotes.in

 ^

 SyntaxError: invalid token

 For syntax errors, the error messages don’t help much. The most common

messages are SyntaxError: invalid syntax and SyntaxError: invalid token,

neither of which is very informative.

 The runtime error you are most likely to make is a “use before def;” that is,

trying to use a variable before you have assigned a value.

 This can happen if you spell a variable name wrong:

 >>> principal = 327.68

 >>> interest = principle * rate

 NameError: name 'principle' is not defined

 Variables names are case sensitive, so LaTeX is not the same as latex.

 At this point, the most likely cause of a semantic error is the order of

operations.

 For example, to evaluate 1/2_, you might be tempted to write

 >>> 1.0 / 2.0 * pi

 But the division happens first, so you would get _/2, which is not the same

thing!

 There is no way for Python to know what you meant to write, so in this case

you don’t get an error message; you just get the wrong answer.

notes4free.in

Source diginotes.in

Chapter 3

Conditional execution

3.1 Boolean expressions

 A boolean expression is an expression that is either true or false. The

following examples use the operator ==, which compares two operands and

produces True if they are equal and False otherwise:

 >>> 5 == 5

 True

 >>> 5 == 6

 False

 {}

 True and False are special values that belong to the class bool; they are not

strings:

 >>> type(True)

 <class 'bool'>

 >>> type(False)

 <class 'bool'>

 The == operator is one of the comparison operators; the others are:

 x != y # x is not equal to y

 x > y # x is greater than y

 x < y # x is less than y

 x >= y # x is greater than or equal to y

 x <= y # x is less than or equal to y

 x is y # x is the same as y

 x is not y # x is not the same as y

 Although these operations are probably familiar to you, the Python symbols

are different from the mathematical symbols for the same operations.

 A common error is to use a single equal sign (=) instead of a double equal

sign (==).

 Remember that = is an assignment operator and == is a comparison operator.

 There is no such thing as =< or =>.

3.2 Logical operators
 There are three logical operators: and, or, and not.

 The semantics (meaning) of these operators is similar to their meaning in

English.

notes4free.in

Source diginotes.in

 For example, x > 0 and x < 10 is true only if x is greater than 0 and less than

10.

 n%2 == 0 or n%3 == 0 is true if either of the conditions is true, that is, if the

number is divisible by 2 or 3.

 Finally, the not operator negates a boolean expression, so not (x > y) is true

if x > y is false; that is, if x is less than or equal to y.

 Strictly speaking, the operands of the logical operators should be boolean

expressions, but Python is not very strict.

 Any nonzero number is interpreted as “true.”

 >>> 17 and True

 True

3.3 Conditional execution
 In order to write useful programs, we almost always need the ability to

check conditions and change the behavior of the program accordingly.

 Conditional statements give us this ability.

 The simplest form is the if statement:

 if x > 0 :

 print('x is positive')

 The boolean expression after the if statement is called the condition.

 We end the if statement with a colon character (:) and the line(s) after the if

statement are indented.

 If the logical condition is true, then the indented statement gets executed. If

the logical condition is false, the indented statement is skipped.

 if statements have the same structure as function definitions or for loops

 The statement consists of a header line that ends with the colon character (:)

followed by an indented block.

 Statements like this are called compound statements because they stretch

across more than one line.

notes4free.in

Source diginotes.in

 If you enter an if statement in the Python interpreter, the prompt will change

from three chevrons to three dots to indicate you are in the middle of a block

of statements, as shown below:

 >>> x = 3

 >>> if x < 10:

 ... print('Small')

 ...

 Small

 >>>

3.4 Alternative execution
 A second form of the if statement is alternative execution, in which there are

two possibilities and the condition determines which one gets executed. The

syntax looks like this:

 if x%2 == 0 :

 print('x is even')

 else :

 print('x is odd')

 If the remainder when x is divided by 2 is 0, then we know that x is even,

and the program displays a message to that effect.

 If the condition is false, the second set of statements is executed.

 Since the condition must either be true or false, exactly one of the

alternatives will be executed.

 The alternatives are called branches, because they are branches in the flow

of execution.

notes4free.in

Source diginotes.in

3.5 Chained conditionals
 Sometimes there are more than two possibilities and we need more than two

branches.

 One way to express a computation like that is a chained conditional:

 if x < y:

 print('x is less than y')

 elif x > y:

 print('x is greater than y')

 else:

 print('x and y are equal')

 elif is an abbreviation of “else if.” Again, exactly one branch will be

executed.

 There is no limit on the number of elif statements. If there is an else clause,

it has to be at the end

 Each condition is checked in order. If the first is false, the next is checked,

and so on.

 If one of them is true, the corresponding branch executes, and the statement

ends.

 Even if more than one condition is true, only the first true branch executes.

notes4free.in

Source diginotes.in

3.6 Nested conditionals
 One conditional can also be nested within another. We could have written

the three-branch example like this:

 The outer conditional contains two branches. The first branch contains a

simple statement.

 The second branch contains another if statement, which has two branches of

its own.

 Those two branches are both simple statements, although they could have

been conditional statements as well.

 Logical operators often provide a way to simplify nested conditional

statements.

 For example, we can rewrite the following code using a single conditional:

 if 0 < x:

 if x < 10:

 print('x is a positive single-digit number.')

 The print statement is executed only if we make it past both conditionals, so

we can get the same effect with the and operator:

 if 0 < x and x < 10:

 print('x is a positive single-digit number.')

notes4free.in

Source diginotes.in

 The print statement is executed only if we make it past both conditionals, so

we

can get the same effect with the and operator:

 if 0 < x and x < 10:

 print('x is a positive single-digit number.')

3.7 Catching exceptions using try and except
 Here is a sample program to convert a Fahrenheit temperature to a Celsius

temperature:

 inp = input('Enter Fahrenheit Temperature: ')

 fahr = float(inp)

 cel = (fahr - 32.0) * 5.0 / 9.0

 print(cel)

 If we execute this code and give it invalid input, it simply fails with an

unfriendly error message:

 python fahren.py

 Enter Fahrenheit Temperature:72

 22.22222222222222

 python fahren.py

 Enter Fahrenheit Temperature:fred

 Traceback (most recent call last):

 File "fahren.py", line 2, in <module>

 fahr = float(inp)

 ValueError: could not convert string to float: 'fred'

 There is a conditional execution structure built into Python to handle these

types of expected and unexpected errors called “try / except”.

 The idea of try and except is that you know that some sequence of

instruction(s) may have a problem and you want to add some statements to

be executed if an error occurs.

 These extra statements (the except block) are ignored if there is no error.

 We can rewrite our temperature converter as follows:

 inp = input('Enter Fahrenheit Temperature:')

 try:

 fahr = float(inp)

 cel = (fahr - 32.0) * 5.0 / 9.0

notes4free.in

Source diginotes.in

 print(cel)

 except:

 print('Please enter a number')

 Python starts by executing the sequence of statements in the try block. If all

goes well, it skips the except block and proceeds.

 If an exception occurs in the try block, Python jumps out of the try block and

executes the sequence of statements in the except block.

 python fahren2.py

 Enter Fahrenheit Temperature:72

 22.22222222222222

 python fahren2.py

 Enter Fahrenheit Temperature:fred

 Please enter a number

 Handling an exception with a try statement is called catching an exception.

 In this example, the except clause prints an error message.

 In general, catching an exception gives you a chance to fix the problem, or

try again, or at least end the program gracefully.

3.8 Short-circuit evaluation of logical expressions

 When Python is processing a logical expression such as x >= 2 and (x/y) > 2,

it evaluates the expression from left to right.

 Because of the definition of and, if x is less than 2, the expression x >= 2 is

False and so the whole expression is False regardless of whether (x/y) > 2

evaluates to True or False.

 When Python detects that there is nothing to be gained by evaluating the rest

of a logical expression, it stops its evaluation and does not do the

computations in the rest of the logical expression.

 When the evaluation of a logical expression stops because the overall value

is already known, it is called short-circuiting the evaluation.

 The short-circuit behavior leads to a clever technique called the guardian

pattern.

 Consider the following code sequence in the Python interpreter:

notes4free.in

Source diginotes.in

 The third calculation failed because Python was evaluating (x/y) and y was

zero, which causes a runtime error.

 But the second example did not fail because the first part of the expression x

>= 2 evaluated to False so the (x/y) was not ever executed due to the short-

circuit rule and there was no error.

 We can construct the logical expression to strategically place a guard

evaluation just before the evaluation that might cause an error as follows:

 In the first logical expression, x >= 2 is False so the evaluation stops at the and.

 In the second logical expression, x >= 2 is True but y != 0 is False so we never reach

(x/y).

 In the third logical expression, the y != 0 is after the (x/y) calculation so the expression

fails with an error.

 In the second expression, we say that y != 0 acts as a guard to insure that we only execute

(x/y) if y is non-zero.

notes4free.in

Source diginotes.in

Chapter 4

Functions

4.1 Function calls

 In the context of programming, a function is a named sequence of statements

that performs a computation.

 When you define a function, you specify the name and the sequence of

statements.

 Later, you can “call” the function by name.

 >>> type(32)

 <class 'int'>

 The name of the function is type.

 The expression in parentheses is called the argument of the function.

 The argument is a value or variable that we are passing into the function as

input to the function.

 The result, for the type function, is the type of the argument.

 It is common to say that a function “takes” an argument and “returns” a

result.

 The result is called the return value.

4.2 Built-in functions

 Python provides a number of important built-in functions that we can use

without needing to provide the function definition.

 The creators of Python wrote a set of functions to solve common problems

and included them in Python for us to use.

 The max and min functions give us the largest and smallest values in a list,

respectively:

 >>> max('Hello world')

 'w'

 >>> min('Hello world')

 ' '

 >>>

 The max function tells us the “largest character” in the string (which turns

out to be the letter “w”) and the min function shows us the smallest character

(which turns out to be a space).

notes4free.in

Source diginotes.in

 Another very common built-in function is the len function which tells us

how many items are in its argument.

 If the argument to len is a string, it returns the number of characters in the

string.

 >>> len('Hello world')

 11

 >>>

 These functions are not limited to looking at strings. They can operate on

any set of values

 You should treat the names of built-in functions as reserved words (i.e.,

avoid using “max” as a variable name).

4.3 Type conversion functions
 Python also provides built-in functions that convert values from one type to

another.

 The int function takes any value and converts it to an integer, if it can, or

complains otherwise:

 >>> int('32')

 32

 >>> int('Hello')

 ValueError: invalid literal for int() with base 10: 'Hello'

 int can convert floating-point values to integers, but it doesn’t round off; it

chops off the fraction part:

 >>> int(3.99999)

 3

 >>> int(-2.3)

 -2

 float converts integers and strings to floating-point numbers:

 >>> float(32)

 32.0

 >>> float('3.14159')

 3.14159

 Finally, str converts its argument to a string:

 >>> str(32)

 '32'

 >>> str(3.14159)

 '3.14159'

notes4free.in

Source diginotes.in

4.4 Random numbers
 Given the same inputs, most computer programs generate the same outputs

every time, so they are said to be deterministic.

 For some applications, though, we want the computer to be unpredictable.

 Making a program truly nondeterministic turns out to be not so easy, but

there are ways to make it at least seem nondeterministic.

 One of them is to use al- gorithms that generate pseudorandom numbers.

 Pseudorandom numbers are not truly random because they are generated by

a deterministic computation, but just by looking at the numbers it is all but

impossible to distinguish them from random.

 The random module provides functions that generate pseudorandom

numbers

 The function random returns a random float between 0.0 and 1.0 (including

0.0 but not 1.0).

 Each time you call random, you get the next number in a long series.

 The random function is only one of many functions that handle random

numbers.

 The function randint takes the parameters low and high, and returns an

integer between low and high (including both).

 >>> random.randint(5, 10)

 5

notes4free.in

Source diginotes.in

 >>> random.randint(5, 10)

 9

 To choose an element from a sequence at random, you can use choice:

 >>> t = [1, 2, 3]

 >>> random.choice(t)

 2

 >>> random.choice(t)

 3

 The random module also provides functions to generate random values from

continuous distributions including Gaussian, exponential, gamma, and a few

more.

4.5 Math functions
 Python has a math module that provides most of the familiar mathematical

functions.

 Before we can use the module, we have to import it:

 >>> print(math)

 <module 'math' (built-in)>

 The module object contains the functions and variables defined in the

module.

 To access one of the functions, you have to specify the name of the module

and the name of the function, separated by a dot (also known as a period).

 This format is called dot notation.

 >>> ratio = signal_power / noise_power

 >>> decibels = 10 * math.log10(ratio)

 >>> radians = 0.7

 >>> height = math.sin(radians)

 The first example computes the logarithm base 10 of the signal-to-noise

ratio.

 The math module also provides a function called log that computes

logarithms base e.

 The second example finds the sine of radians.

 The name of the variable is a hint that sin and the other trigonometric

functions (cos, tan, etc.) take arguments in radians.

 To convert from degrees to radians, divide by 360 and multiply by 2_:

 >>> degrees = 45

 >>> radians = degrees / 360.0 * 2 * math.pi

 >>> math.sin(radians)

 0.7071067811865476

notes4free.in

Source diginotes.in

 The expression math.pi gets the variable pi from the math module. The value

of this variable is an approximation of _, accurate to about 15 digits.

 you can check the previous result by comparing it to the square root of two

divided by two:

 >>> math.sqrt(2) / 2.0

 0.7071067811865476

4.6 Adding new functions
 So far, we have only been using the functions that come with Python, but it

is also possible to add new functions.

 A function definition specifies the name of a new function and the sequence

of statements that execute when the function is called.

 Once we define a function, we can reuse the function over and over

throughout our program.

 Here is an example:

 def print_lyrics():

 print("I'm a lumberjack, and I'm okay.")

 print('I sleep all night and I work all day.')

 def is a keyword that indicates that this is a function definition.

 The name of the function is print_lyrics.

 The rules for function names are the same as for variable names: letters,

numbers and some punctuation marks are legal, but the first character can’t

be a number.

 You can’t use a keyword as the name of a function, and you should avoid

having a variable and a function with the same name.

 The empty parentheses after the name indicate that this function doesn’t take

any arguments.

 Later we will build functions that take arguments as their inputs.

 The first line of the function definition is called the header; the rest is called

the body.

 The header has to end with a colon and the body has to be indented.

 By convention, the indentation is always four spaces.

 The body can contain any number of statements.

 The strings in the print statements are enclosed in quotes. Single quotes and

double quotes do the same thing; most people use single quotes except in

cases like this where a single quote (which is also an apostrophe) appears in

the string.

 If you type a function definition in interactive mode, the interpreter prints

ellipses (. . .) to let you know that the definition isn’t complete:

notes4free.in

Source diginotes.in

 >>> def print_lyrics():

 ... print("I'm a lumberjack, and I'm okay.")

 ... print('I sleep all night and I work all day.')

 ...

 To end the function, you have to enter an empty line

 Defining a function creates a variable with the same name.

 >>> print(print_lyrics)

 <function print_lyrics at 0xb7e99e9c>

 >>> print(type(print_lyrics))

 <class 'function'>

 The value of print_lyrics is a function object, which has type “function”.

 The syntax for calling the new function is the same as for built-in functions:

 >>> print_lyrics()

 I'm a lumberjack, and I'm okay.

 I sleep all night and I work all day.

 Once you have defined a function, you can use it inside another function.

 For example, to repeat the previous refrain, we could write a function called

repeat_lyrics:

 def repeat_lyrics():

 print_lyrics()

 print_lyrics()

 And then call repeat_lyrics:

 >>> repeat_lyrics()

 I'm a lumberjack, and I'm okay.

 I sleep all night and I work all day.

 I'm a lumberjack, and I'm okay.

 I sleep all night and I work all day.

 But that’s not really how the song goes.

4.7 Definitions and uses
Pulling together the code fragments from the previous section, the whole program

looks like this:

def print_lyrics():

print("I'm a lumberjack, and I'm okay.")

print('I sleep all night and I work all day.')

def repeat_lyrics():

print_lyrics()

print_lyrics()

4.8. FLOW OF EXECUTION 49

notes4free.in

Source diginotes.in

repeat_lyrics()

Code: http://www.py4e.com/code3/lyrics.py

This program contains two function definitions: print_lyrics and repeat_lyrics.

Function definitions get executed just like other statements, but the effect is to

create function objects. The statements inside the function do not get executed

until the function is called, and the function definition generates no output.

As you might expect, you have to create a function before you can execute it. In

other words, the function definition has to be executed before the first time it is

called.

Exercise 2: Move the last line of this program to the top, so the function call

appears before the definitions. Run the program and see what error message you

get.

Exercise 3: Move the function call back to the bottom and move the definition of

print_lyrics after the definition of repeat_lyrics. What happens when you

run this program?

4.8 Flow of execution

In order to ensure that a function is defined before its first use, you have to know

the order in which statements are executed, which is called the flow of execution.

Execution always begins at the first statement of the program. Statements are

executed one at a time, in order from top to bottom.

Function definitions do not alter the flow of execution of the program, but

remember

that statements inside the function are not executed until the function is

called.

A function call is like a detour in the flow of execution. Instead of going to the

next

statement, the flow jumps to the body of the function, executes all the statements

there, and then comes back to pick up where it left off.

That sounds simple enough, until you remember that one function can call another.

While in the middle of one function, the program might have to execute the

statements

in another function. But while executing that new function, the program

might have to execute yet another function!

Fortunately, Python is good at keeping track of where it is, so each time a function

completes, the program picks up where it left off in the function that called it.

When it gets to the end of the program, it terminates.

What’s the moral of this sordid tale? When you read a program, you don’t always

want to read from top to bottom. Sometimes it makes more sense if you follow the

flow of execution.

50 CHAPTER 4. FUNCTIONS

notes4free.in

Source diginotes.in

4.9 Parameters and arguments

Some of the built-in functions we have seen require arguments. For example, when

you call math.sin you pass a number as an argument. Some functions take more

than one argument: math.pow takes two, the base and the exponent.

Inside the function, the arguments are assigned to variables called parameters.

Here is an example of a user-defined function that takes an argument:

def print_twice(bruce):

print(bruce)

print(bruce)

This function assigns the argument to a parameter named bruce. When the function

is called, it prints the value of the parameter (whatever it is) twice.

This function works with any value that can be printed.

>>> print_twice('Spam')

Spam

Spam

>>> print_twice(17)

17

17

>>> import math

>>> print_twice(math.pi)

3.141592653589793

3.141592653589793

The same rules of composition that apply to built-in functions also apply to

user-defined functions, so we can use any kind of expression as an argument for

print_twice:

>>> print_twice('Spam '*4)

Spam Spam Spam Spam

Spam Spam Spam Spam

>>> print_twice(math.cos(math.pi))

-1.0

-1.0

The argument is evaluated before the function is called, so in the examples the

expressions “Spam ’*4andmath.cos(math.pi)‘ are only evaluated once.

You can also use a variable as an argument:

>>> michael = 'Eric, the half a bee.'

>>> print_twice(michael)

Eric, the half a bee.

Eric, the half a bee.

The name of the variable we pass as an argument (michael) has nothing to do

with the name of the parameter (bruce). It doesn’t matter what the value was

notes4free.in

Source diginotes.in

called back home (in the caller); here in print_twice, we call everybody bruce.

4.10 Fruitful functions and void functions

Some of the functions we are using, such as the math functions, yield results;

for lack of a better name, I call them fruitful functions. Other functions, like

print_twice, perform an action but don’t return a value. They are called void

functions.

When you call a fruitful function, you almost always want to do something with

the result; for example, you might assign it to a variable or use it as part of an

expression:

x = math.cos(radians)

golden = (math.sqrt(5) + 1) / 2

When you call a function in interactive mode, Python displays the result:

>>> math.sqrt(5)

2.23606797749979

But in a script, if you call a fruitful function and do not store the result of the

function in a variable, the return value vanishes into the mist!

math.sqrt(5)

This script computes the square root of 5, but since it doesn’t store the result in

a variable or display the result, it is not very useful.

Void functions might display something on the screen or have some other effect,

but they don’t have a return value. If you try to assign the result to a variable,

you get a special value called None.

>>> result = print_twice('Bing')

Bing

Bing

>>> print(result)

None

The value None is not the same as the string “None”. It is a special value that has

its own type:

>>> print(type(None))

<class 'NoneType'>

To return a result from a function, we use the return statement in our function.

For example, we could make a very simple function called addtwo that adds two

numbers together and returns a result.

52 CHAPTER 4. FUNCTIONS

def addtwo(a, b):

added = a + b

return added

x = addtwo(3, 5)

notes4free.in

Source diginotes.in

print(x)

Code: http://www.py4e.com/code3/addtwo.py

When this script executes, the print statement will print out “8” because the

addtwo function was called with 3 and 5 as arguments. Within the function, the

parameters a and b were 3 and 5 respectively. The function computed the sum of

the two numbers and placed it in the local function variable named added. Then

it used the return statement to send the computed value back to the calling code

as the function result, which was assigned to the variable x and printed out.

4.11 Why functions?

It may not be clear why it is worth the trouble to divide a program into functions.

There are several reasons:

• Creating a new function gives you an opportunity to name a group of statements,

which makes your program easier to read, understand, and debug.

• Functions can make a program smaller by eliminating repetitive code. Later,

if you make a change, you only have to make it in one place.

• Dividing a long program into functions allows you to debug the parts one at

a time and then assemble them into a working whole.

• Well-designed functions are often useful for many programs. Once you write

and debug one, you can reuse it.

Throughout the rest of the book, often we will use a function definition to explain

a concept. Part of the skill of creating and using functions is to have a function

properly capture an idea such as “find the smallest value in a list of values”. Later

we will show you code that finds the smallest in a list of values and we will present

it to you as a function named min which takes a list of values as its argument and

returns the smallest value in the list.

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 1

MODULE II

2.1 ITERATION

The while statement, Infinite loops, “Infinite loops” and break, Finishing iterations with Continue,

Definite loops using for, Loop pattern ,Counting and summing loops, Maximum and minimum loops

2.2 STRINGS

A string is a sequence, Getting the length of a string using len, Traversal through a string with a loop,

String slices, Strings are immutable, Looping and counting, The in operator, String comparison string

methods, Parsing strings, Format operator

2.3 FILES

Files, Persistence, Opening files, Text files and lines, Reading files, Searching through a file, Letting the

user choose the file name, Using try, except, and open, Writing files, Debugging

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 2

while condition:

statement_1

statement_2

…………….

statement_n

statements_after_while

MODULE II

2.1 ITERATION
Iteration is a processing of repeating some task. In a real time programming, we require a set of

statements to be repeated certain number of times and/or till a condition is met. Every programming

language provides certain constructs to achieve the repetition of tasks. In this section, various such

looping structures are discussed.

 The while Statement

The while loop has the syntax as below –

 Here, while is a keyword, the flow of execution for a while statement is as below.

 The condition is evaluated first, yielding True or False

 If the condition is false, the loop is terminated and statements after the loop will be executed.

 If the condition is true, the body will be executed which comprises of the statement_1 to

statement_n and then goes back to condition evaluation.

 Consider an example –

n=1

while n<=5:

print(n) #observe indentation

n=n+1

print("over")

The output of above code segment would be –

1

2

3

4

5

over

 In the above example, a variable n is initialized to 1. Then the condition n<=5 is being checked. As

the condition is true, the block of code containing print statement print(n) and increment statement

(n=n+1) are executed. After these two lines, condition is checked again. The procedure continues till

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 3

condition becomes false, that is when n becomes 6. Now, the while-loop is terminated and next

statement after the loop will be executed. Thus, in this example, the loop is iterated for 5 times.

 Consider another example –

n=5

while n>0:

print(n) #observe indentation

n=n-1

print("Blast off!")

The output of above code segment would be –

5

4

3

2

1

Blast off!

 Iteration is referred to each time of execution of the body of loop.

 Note that, a variable n is initialized before starting the loop and it is incremented/decremented

inside the loop. Such a variable that changes its value for every iteration and controls the total

execution of the loop is called as iteration variable or counter variable. If the count variable is

not updated properly within the loop, then the loop may not terminate and keeps executing

infinitely.

 Infinite Loops, break and continue

 A loop may execute infinite number of times when the condition is never going to become false.

 For example,

n=1

while True:

print(n)

n=n+1

 Here, the condition specified for the loop is the constant True, which will never get terminated.

Sometimes, the condition is given such a way that it will never become false and hence by

restricting the program control to go out of the loop. This situation may happen either due to

wrong condition or due to not updating the counter variable.

 In some situations, we deliberately want to come out of the loop even before the normal

termination of the loop. For this purpose break statement is used.

 The following example depicts the usage of break. Here, the values are taken from keyboard until

a negative number is entered. Once the input is found to be negative, the loop terminates.

while True:

x=int(input("Enter a number:"))

 if x>= 0:

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 4

print("You have entered ",x)

else:

print("You have entered a negative number!!")

break #terminates the loop

Output:

Enter a number:23

You have entered 23

Enter a number:12

You have entered 12

Enter a number:45

You have entered 45

Enter a number:0

You have entered 0

 Enter a number:-2

You have entered a negative number!!

 In the above example, we have used the constant True as condition for while-loop, which will

never become false. So, there was a possibility of infinite loop. This has been avoided by using

break statement with a condition.

 The condition is kept inside the loop such a way that, if the user input is a negative number, the

loop terminates. This indicates that, the loop may terminate with just one iteration (if user gives

negative number for the very first time) or it may take thousands of iteration (if user keeps on

giving only positive numbers as input). Hence, the number of iterations here is unpredictable.

 But, we are making sure that it will not be an infinite-loop, instead, the user has control on the

loop.

 Another example for usage of while with break statement: the below code takes input from the

user until they type done:

while True:

 line = input(">")

 if line == 'done':

 break

 print(line)

print('Done!')

 In the above example, since the loop condition is True, so the loop runs repeatedly until it hits the

break statement.

 Each time it prompts the user to enter the data. If the user types done, the brak statement exits the

loop. Otherwise the program echoes whatever the user types and goes back ti the top of the loop.

 Output will be:

>hello

hello

>finished

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 5

finished

>done

Done!

 Sometimes, programmer would like to move to next iteration by skipping few statements in the

loop, based on some condition with current iteration. For this purpose continue statement is used.

For example, we would like to find the sum of 5 even numbers taken as input from the keyboard.

The logic is –

 Read a number from the keyboard

 If that number is odd, without doing anything else, just move to next iteration for reading

another number

 If the number is even, add it to sum and increment the accumulator variable.

 When accumulator crosses 5, stop the program

 The program for the above task can be written as –

sum=0

count=0

while True:

 x=input("Enter a number:")

 if x%2!=0:

 continue

 else:

 sum+=x

 count+=1

 if count==5:

 break

print("Sum= ", sum)

Output:

Enter a number: 23

Enter a number: 67

Enter a number: 789

Enter a number: 78

Enter a number: 5

Enter a number: 7

Sum= 891

 Example of a loop that copies its input until the user types “done”, but treats lines that start with

the hash character as lines not to be printed

while True:

 line=input('>')

 if line[0] == '#':

 continue

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 6

for var in list/sequence:

statement_1

statement_2

………………

statement_n

statements_after_for

 if line =='done':

 break

 print(line)

print('Done!')

Output:

> hello there

hello there

> #dont print this

> print this!

print this!

> done

Done!

 Above, all lines are printed except the one that starts with „#‟ because whenth econtinue is

executed, it ends the current iteration and jumps back to the while statement to start the next

iteration, thus skipping the print statement.

 Definite Loops using for

 The while loop iterates till the condition is met and hence, the number of iterations are usually

unknown prior to the loop. Hence, it is sometimes called as indefinite loop.

 When we know total number of times the set of statements to be executed, for loop will be used.

This is called as a definite loop. The for-loop iterates over a set of numbers, a set of words, lines

in a file etc. The syntax of for-loop would be –

Here, for and in are keywords

list/sequence is a set of elements on which the loop is iterated. That is, the loop

will be executed till there is an element in list/sequence

statements constitutes body of the loop

 Example: In the below given example, a list names containing three strings has been created.

Then the counter variable x in the for-loop iterates over this list. The variable x takes the elements

in names one by one and the body of the loop is executed.

 names=["Ram", "Shyam", "Bheem"]

 for x in names:

 print("Happy New Year",x)

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 7

print('Done!')

The output would be –

Happy New Year Ram

Happy New Year Shyam

Happy New Year Bheem

Done!

NOTE: In Python, list is an important data type. It can take a sequence of elements of different types.

It can take values as a comma separated sequence enclosed within square brackets. Elements in the list

can be extracted using index (just similar to extracting array elements in C/C++ language). Various

operations like indexing, slicing, merging, addition and deletion of elements etc. can be applied on

lists. The details discussion on Lists will be done in Module 3.

 The for loop can be used to print (or extract) all the characters in a string as shown below –

for i in "Hello":

print(i, end=‟\t‟)

Output:

H e l l o

 When we have a fixed set of numbers to iterate in a for loop, we can use a function

range(). The function range() takes the following format –

range(start, end, steps)

 The start and end indicates starting and ending values in the sequence, where end is excluded in

the sequence (That is, sequence is up to end-1). The default value of start is 0. The argument steps

indicates the increment/decrement in the values of sequence with the default value as 1. Hence, the

argument steps is optional.

 Let us consider few examples on usage of range() function.

Ex1. Printing the values from 0 to 4 –

for i in range(5):

 print(i, end= „\t‟)

Output:

0 1 2 3 4

Here, 0 is the default starting value. The statement range(5) is same as range(0,5) and range(0,5,1).

Ex2. Printing the values from 5 to 1 –

for i in range(5,0,-1):

print(i, end= „\t‟)

Output:

5 4 3 2 1

The function range(5,0,-1)indicates that the sequence of values are 5 to 0(excluded) in steps of -1

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 8

(downwards).

Ex3. Printing only even numbers less than 10 –

for i in range(0,10,2):

 print(i, end= „\t‟)

Output:

0 2 4 6 8

 Loop Patterns

The while-loop and for-loop are usually used to go through a list of items or the contents of a file and

to check maximum or minimum data value. These loops are generally constructed by the following

procedure –

 Initializing one or more variables before the loop starts

 Performing some computation on each item in the loop body, possibly changing the variables

in the body of the loop

 Looking at the resulting variables when the loop completes

The construction of these loop patterns are demonstrated in the following examples.

Counting and Summing Loops: One can use the for loop for counting number of items in the list as

shown –

count = 0

for i in [4, -2, 41, 34, 25]:

count = count + 1

print(“Count:”, count)

 Here, the variable count is initialized before the loop. Though the counter variable is not being

used inside the body of the loop, it controls the number of iterations.

 The variable count is incremented in every iteration, and at the end of the loop the total number of

elements in the list is stored in it.

 One more loop similar to the above is finding the sum of elements in the list –

total = 0

for x in [4, -2, 41, 34, 25]:

total = total + x

print(“Total:”, total)

 Here, the variable total is called as accumulator because in every iteration, it accumulates the sum

of elements. In each iteration, this variable contains running total of values so far.

NOTE: In practice, both of the counting and summing loops are not necessary, because there are

built-in functions len() and sum() for the same tasks respectively.

Maximum and Minimum Loops: To find maximum element in the list, the following code can be

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 9

used –

big = None

print('Before Loop:', big)

for x in [12, 0, 21,-3]:

if big is None or x > big :

big = x

print('Iteration Variable:', x, 'Big:', big)

print('Biggest:', big)

Output:

Before Loop: None

Iteration Variable: 12 Big: 12

Iteration Variable: 0 Big: 12

Iteration Variable: 21 Big: 21

Iteration Variable: -3 Big: 21

Biggest: 21

 Here, we initialize the variable big to None. It is a special constant indicating empty.

 Hence, we cannot use relational operator == while comparing it with big. Instead, the is operator

must be used.

 In every iteration, the counter variable x is compared with previous value of big. If x > big, then x

is assigned to big.

 Similarly, one can have a loop for finding smallest of elements in the list as given below –

small = None

print('Before Loop:', small)

for x in [12, 0, 21,-3]:

if small is None or x < small :

small = x

print('Iteration Variable:', x, 'Small:', small)

print('Smallest:', small)

Output:

Before Loop: None

Iteration Variable: 12 Small: 12

Iteration Variable: 0 Small: 0

Iteration Variable: 21 Small: 0

Iteration Variable: -3 Small: -3

Smallest: -3

NOTE: In Python, there are built-in functions max() and min() to compute maximum and minimum

values among. Hence, the above two loops need not be written by the programmer explicitly. The

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 10

inbuilt function min() has the following code in Python –

def min(values):

smallest = None

for value in values:

if smallest is None or value < smallest:

 smallest = value

return smallest

2.2 STRINGS

 A string is a sequence of characters, enclosed either within a pair of single quotes or double

quotes.

 Each character of a string corresponds to an index number, starting with zero as shown below:

S= “Hello World”

character H e l l o w o r l d

index 0 1 2 3 4 5 6 7 8 9 10

 The characters of a string can be accessed using index enclosed within square brackets.

 So, H is the 0
th

 letter, e is the 1
th

 letter and l is the 2
th

 letter of “Hello world”

 For example,

>>> word1="Hello"

>>> word2='hi'

>>> x=word1[1] #2
nd

 character of word1 is extracted

>>> print(x)

 e

>>> y=word2[0] #1
st
 character of word1 is extracted

>>> print(y)

 h

 Python supports negative indexing of string starting from the end of the string as shown below:

S= “Hello World”

 The characters can be extracted using negative index also, which count backward from the end of

the string.

 For example:

character H e l l o w o r l d

Negative index -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 11

>>> var=“Hello”

>>> print(var[-1])

 o

>>> print(var[-4])

 e

 Whenever the string is too big to remember last positive index, one can use negative index to

extract characters at the end of string.

 Getting Length of a String using len()

 The len() function is a built-in function that can be used to get length of a string, which returns the

number of characters in a string

 Example:

>>> var="Hello"

>>> ln=len(var)

>>> print(ln)

 5

 The index for string varies from 0 to length-1. Trying to use the index value beyond this range

generates error.

>>> var="Hello"

>>> ln=len(var)

>>> ch=var[ln]

IndexError: string index out of range

 Traversal through String with a Loop

 Extracting every character of a string one at a time and then performing some action on that

character is known as traversal.

 A string can be traversed either using while loop or using for loop in different ways. Few of such

methods is shown here –

 Using for loop:

st="Hello"

for i in st:

print(i, end='\t')

Output:

H e l l o

 In the above example, the for loop is iterated from first to last character of the string st. That is, in

every iteration, the counter variable i takes the values as H, e, l, l and o. The loop terminates when

no character is left in st.

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 12

 Using while loop:

st="Hello"

i=0

while i<len(st):

print(st[i], end=„\t‟)

i+=1

Output:

H e l l o

 In this example, the variable i is initialized to 0 and it is iterated till the length of the string. In

every iteration, the value of i is incremented by 1 and the character in a string is extracted using i

as index.

 Example: Write a while loop that starts at the last character in the string and traverses backwards

to the first character in the string, printing each letter on separate line

str="Hello"

i=-1

while i>=-len(str):

 print(str[i])

 i-=1

 Output:

 o

l

l

e

H

 String Slices

 A segment or a portion of a string is called as slice.

 Only a required number of characters can be extracted from a string using colon (:) symbol.

 The basic syntax for slicing a string would be – st[i:j:k]

 This will extract character from i
th

 character of st till (j-1)
th

 character in steps of k.

 If first index is not present, it means that slice should start from the beginning of the string. I

 f the second index j is not mentioned, it indicates the slice should be till the end of the string.

 The third parameter k, also known as stride, is used to indicate number of steps to be incremented

after extracting first character. The default value of stride is 1.

 Consider following examples along with their outputs to understand string slicing.

st="Hello World" #refer this string for all examples

1. print("st[:] is", st[:]) #output Hello World

As both index values are not given, it assumed to be a full string.

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 13

2. print("st[0:5] is ", st[0:5]) #output is Hello

Starting from 0
th

 index to 4
th

 index (5 is exclusive), characters will be printed.

3. print("st[0:5:1] is", st[0:5:1]) #output is Hello

This code also prints characters from 0th to 4th index in the steps of 1. Comparing this

example with previous example, we can make out that when the stride value is 1, it is

optional to mention.

4. print("st[3:8] is ", st[3:8]) #output is lo Wo

Starting from 3
rd

 index to 7
th

 index (8 is exclusive), characters will be printed.

5. print("st[7:] is ", st[7:]) #output is orld

Starting from 7
th

 index to till the end of string, characters will be printed.

6. print(st[::2]) #output is HloWrd

This example uses stride value as 2. So, starting from first character, every alternative

character (char+2) will be printed.

7. print("st[4:4] is ", st[4:4]) #gives empty string

Here, st[4:4] indicates, slicing should start from 4
th

 character and end with (4-1)=3
rd

character, which is not possible. Hence the output would be an empty string.

8. print(st[3:8:2]) #output is l o

Starting from 3rd character, till 7th character, every alternative index is considered.

9. print(st[1:8:3]) #output is eoo

Starting from index 1, till 7
th

 index, every 3
rd

 character is extracted here.

10. print(st[-4:-1]) #output is orl

Refer the diagram of negative indexing given earlier. Excluding the -1st character, all

characters at the indices -4, -3 and -2 will be displayed. Observe the role of stride with

default value 1 here. That is, it is computed as -4+1 =-3, -3+1=-2 etc.

11. print(st[-1:]) #output is d

Here, starting index is -1, ending index is not mentioned (means, it takes the index

10) and the stride is default value 1. So, we are trying to print characters from -1 (which is

the last character of negative indexing) till 10
th

 character (which is also the last character in

positive indexing) in incremental order of 1. Hence, we will get only last character as output.

12. print(st[:-1]) #output is Hello Worl

Here, starting index is default value 0 and ending is -1 (corresponds to last character in

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 14

negative indexing). But, in slicing, as last index is excluded always, -1
st
 character is omitted

and considered only up to -2
nd

 character.

13. print(st[::]) #outputs Hello World

Here, two colons have used as if stride will be present. But, as we haven‟t mentioned stride

its default value 1 is assumed. Hence this will be a full string.

14. print(st[::-1]) #output is dlroW olleH

This example shows the power of slicing in Python. Just with proper slicing, we could able

to reverse the string. Here, the meaning is a full string to be extracted in the order of -1.

Hence, the string is printed in the reverse order.

15. print(st[::-2]) #output is drWolH

Here, the string is printed in the reverse order in steps of -2. That is, every alternative

character in the reverse order is printed. Compare this with example (6) given above.

By the above set of examples, one can understand the power of string slicing and of Python script.

The slicing is a powerful tool of Python which makes many task simple pertaining to data types like

strings, Lists, Tuple, Dictionary etc. (Other types will be discussed in later Modules)

 Strings are Immutable

 The objects of string class are immutable.

 That is, once the strings are created (or initialized), they cannot be modified.

 No character in the string can be edited/deleted/added.

 Instead, one can create a new string using an existing string by imposing any modification

required.

 Try to attempt following assignment –

>>> st= “Hello World”

>>> st[3]='t'

TypeError: 'str' object does not support item assignment

 The error message clearly states that an assignment of new item („t‟) is not possible on string

object(st).

 The reason for this is strings are immutable

 So, to achieve our requirement, we can create a new string using slices of existing string as below

>>> st= “Hello World”

>>> st1= st[:3]+ 't' + st[4:]

>>> print(st1)

Helto World # l is replaced by t in new string st1

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 15

 Looping and Counting

 Using loops on strings, we can count the frequency of occurrence of a character within another

string.

 The following program demonstrates such a pattern on computation called as a counter.

 Initially, we accept one string and one character (single letter). Our aim to find the total number of

times the character has appeared in string.

 A variable count is initialized to zero, and incremented each time „a‟ character is found. The

program is given below –

word="banana"

count=0

for letter in word:

 if letter =='a':

 count=count+1

print("The occurences of character 'a' is %d "%(count))

 Output:

 The occurences of character 'a' is 3

 Encapsulate the above code in a function named count and generalize it so that it accepts the string

and the letter as arguments

def count(st,ch):

 cnt=0

 for i in st:

 if i==ch:

 cnt+=1

 return cnt

st=input("Enter a string:")

ch=input("Enter a character to be counted:")

c=count(st,ch)

print("%s appeared %d times in %s"%(ch,c,st))

Output:

Enter a string: hello how are you?

Enter a character to be counted: h

h appeared 2 times in hello how are you?

 The in Operator

 The in operator of Python is a Boolean operator which takes two string operands.

 It returns True, if the first operand appears as a substring in second operand, otherwise returns

False.

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 16

 For example,

>>> 'el' in 'hello' #el is found in hello

 True

>>> 'x' in 'hello' #x is not found in hello

False

 String Comparison

 Basic comparison operators like < (less than), > (greater than), == (equals) etc. can be applied on

string objects.

 Such comparison results in a Boolean value True or False.

 Internally, such comparison happens using ASCII codes of respective characters.

 Consider following examples –

Ex1. st= “hello”

if st== „hello‟:

print(„same‟)

Output is same. As the value contained in st and hello both are same, the equality results in True.

Ex2. st= “hello”

if st<= „Hello‟:

print(„lesser‟)

else:

print(„greater‟)

Output is greater. The ASCII value of h is greater than ASCII value of H. Hence, hello

is greater than Hello.

NOTE: A programmer must know ASCII values of some of the basic characters. Here are few –

A – Z : 65 – 90

a – z : 97 – 122

0 – 9 : 48 – 57

Space : 32

Enter Key : 13

 String Methods

 String is basically a class in Python.

 When we create a string in program, an object of that class will be created.

 A class is a collection of member variables and member methods (or functions).

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 17

 When we create an object of a particular class, the object can use all the members (both variables

and methods) of that class.

 Python provides a rich set of built-in classes for various purposes. Each class is enriched with a

useful set of utility functions and variables that can be used by a Programmer.

 A programmer can create a class based on his/her requirement, which are known as user-defined

classes.

 The built-in set of members of any class can be accessed using the dot operator as shown–

objName.memberMethod(arguments)

 The dot operator always binds the member name with the respective object name. This is very

essential because, there is a chance that more than one class has members with same name. To

avoid that conflict, almost all Object oriented languages have been designed with this common

syntax of using dot operator.

 Python provides a function (or method) dir to list all the variables and methods of a particular class

object. Observe the following statements –

>>> s="hello" # string object is created with the name s

>>> type(s) #checking type of s

<class „str‟> #s is object of type class str

>>> dir(s) #display all methods and variables of object s

[' add ', ' class ', ' contains ', ' delattr ', ' dir ', ' doc ', ' eq ', ' format ', ' ge ', ' getattribute ',

' getitem ', ' getnewargs ', ' gt ', ' hash ', ' init ', ' init_subclass ', ' iter ', ' le ', ' len ', ' lt ',

' mod ', ' mul ', ' ne ', ' new ', ' reduce ', ' reduce_ex ', ' repr ', ' rmod ', ' rmul ', ' setattr

', ' sizeof ', ' str ', ' subclasshook ', 'capitalize', 'casefold', 'center', 'count', 'encode', 'endswith',

'expandtabs', 'find', 'format', 'format_map', 'index', 'isalnum', 'isalpha', 'isdecimal', 'isdigit',

'isidentifier', 'islower', 'isnumeric', 'isprintable', 'isspace', 'istitle', 'isupper', 'join', 'ljust',

'lower', 'lstrip', 'maketrans', 'partition', 'replace', 'rfind',

'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title',

'translate', 'upper', 'zfill']

 Note that, the above set of variables and methods are common for any object of string class that

we create.

 Each built-in method has a predefined set of arguments and return type.

 To know the usage, working and behavior of any built-in method, one can use the command help.

 For example, if we would like to know what is the purpose of islower() function (refer above list

to check its existence!!), how it behaves etc, we can use the statement –

>>> help(str.islower)

Help on method_descriptor:

islower(...)

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 18

S.islower() -> bool

Return True if all cased characters in S are lowercase and if there is at least one upper

cased character in S, returns False otherwise.

 This is built-in help-service provided by Python. Observe the className.memberName format

while using help.

 The methods are usually called using the object name. This is known as method invocation. We

say that a method is invoked using an object.

 Now, we will discuss some of the important methods of string class.

 capitalize(s) : This function takes one string argument s and returns a capitalized version of that

string. That is, the first character of s is converted to upper case, and all other characters to

lowercase. Observe the examples given below –

Ex1. >>> s="hello"

>>> s1=str.capitalize(s)

>>> print(s1)

Hello #1
st
 character is changed to uppercase

Ex2. >>> s="hello World"

>>> s1=str.capitalize(s)

>>> print(s1)

Hello world

Observe in Ex2 that the first character is converted to uppercase, and an in-between uppercase

letter W of the original string is converted to lowercase.

 s.upper(): This function returns a copy of a string s to uppercase. As strings are immutable, the original

string s will remain same.

>>> st= “hello”

>>> st1=st.upper()

>>> print(st1)

'HELLO'

>>> print(st) #no change in original string

 'hello'

 s.lower(): This method is used to convert a string s to lowercase. It returns a copy of original string after

conversion, and original string is intact.

>>> st='HELLO'

>>> st1=st.lower()

>>> print(st1) hello

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 19

>>> print(st) #no change in original string

 HELLO

 s.find(s1) : The find() function is used to search for a substring s1 in the string s. If found, the index

position of first occurrence of s1 in s, is returned. If s1 is not found in s, then -1 is returned.

>>> st='hello'

>>> i=st.find('l')

>>> print(i) #output is 2

>>> i=st.find('lo')

>>> print(i) #output is 3

>>> print(st.find(„x‟)) #output is -1

The find() function can take one more form with two additional arguments viz. start and end positions for

search.

>>> st="calender of Feb. cal of march"

>>> i= st.find(„cal‟)

>>> print(i) #output is 0

Here, the substring „cal‟ is found in the very first position of st, hence the result is 0.

>>> i=st.find('cal',10,20)

>>> print(i) #output is 17

Here, the substring cal is searched in the string st between 10
th

 and 20
th

 position and hence the result is 17.

>>> i=st.find('cal',10,15)

>>> print(i) #output is -1

In this example, the substring 'cal' has not appeared between 10
th

 and 15
th

 character of st. Hence,

the result is -1.

 s.strip(): Returns a copy of string s by removing leading and trailing white spaces.

>>> st=" hello world "

>>> st1 = st.strip()

>>> print(st1)

hello world

The strip() function can be used with an argument chars, so that specified chars are removed from

beginning or ending of s as shown below –

>>> st="###Hello##"

>>> st1=st.strip('#')

>>> print(st1) #all hash symbols are removed

 Hello

We can give more than one character for removal as shown below –

>>> st="Hello world"

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 20

>>> st1=st.strip("Hld")

 ello wor

 S.startswith(prefix, start, end): This function has 3 arguments of which start and end are option. This

function returns True if S starts with the specified prefix, False otherwise.

>>> st="hello world"

>>> st.startswith("he") #returns True

When start argument is provided, the search begins from that position and returns True or False based on

search result.

>>> st="hello world"

>>> st.startswith("w",6) #True because w is at 6th position

When both start and end arguments are given, search begins at start and ends at end.

>>> st="xyz abc pqr ab mn gh“

>>> st.startswith("pqr ab mn",8,12) #returns False

>>> st.startswith("pqr ab mn",8,18) #returns True

The startswith() function requires case of the alphabet to match. So, when we are not sure about the case

of the argument, we can convert it to either upper case or lowercase and then use startswith() function as

below –

>>> st="Hello"

>>> st.startswith("he") #returns False

>>> st.lower().startswith("he") #returns True

 S.count(s1, start, end): The count() function takes three arguments – string, starting position and ending

position. This function returns the number of non-overlapping occurrences of substring s1 in string S in

the range of start and end.

>>> st="hello how are you? how about you?"

>>> st.count('h') #output is 3

>>> st.count(„how‟) #output is 2

>>> st.count(„how‟,3,10) #output is 1 because of range given

Example:

st=input("Enter a string:")

ch=input("Enter a character to be counted:")

c=st.count(ch)

print("%s appeared %d times in %s"%(ch,c,st))

 Parsing Strings

 Sometimes, we may want to search for a substring matching certain criteria.

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 21

 For example, finding domain names from email-Ids in the list of messages is a useful task in some projects.

 Consider a string below and we are interested in extracting only the domain name.

“From mamatha.a@saividya.ac.in Wed Feb 21 09:14:16 2018”

Now, aim is to extract only saividya.ac.in, which is the domain name.

We can think of logic as–

o Identify the position of @, because all domain names in email IDs will be after the symbol @

o Identify a white space which appears after @ symbol, because that will be the end of domain

name.

o Extract the substring between @ and white-space.

The concept of string slicing and find() function will be useful here.

Consider the code given below –

st="From mamatha.a@saividya.ac.in Wed Feb 21 09:14:16 2018"

atpos=st.find('@') #finds the position of @

print('Position of @ is', atpos)

spacePos=st.find(„ „, atpos) #position of white-space after @

 print('Position of space after @ is', spacePos)

 host=st[atpos+1:spacePos] #slicing from @ till white-space

print(host)

Output:

Position of @ is 14

Position of space after @ is 29

saividya.ac.in

 Format Operator

 The format operator, % allows us to construct strings, replacing parts of the strings with the data stored in

variables.

 The first operand is the format string, which contains one or more format sequences that specify how the

second operand is formatted.

Syntax: “<format>” % (<values>)

 The result is a string.

>>> sum=20

>>> '%d' %sum

„20‟ #string ‘20’, but not integer 20

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 22

 Note that, when applied on both integer operands, the % symbol acts as a modulus operator. When the first

operand is a string, then it is a format operator.

 Consider few examples illustrating usage of format operator.

Ex1. >>> "The sum value %d is originally integer"%sum

 'The sum value 20 is originally integer„

Ex2. >>> '%d %f %s'%(3,0.5,'hello')

'3 0.500000 hello„

Ex3. >>> '%d %g %s'%(3,0.5,'hello')

'3 0.5 hello„

Ex4. >>> '%d'% 'hello'

TypeError: %d format: a number is required, not str

Ex5. >>> '%d %d %d'%(2,5)

TypeError: not enough arguments for format string

2.3 FILES

 File handling is an important requirement of any programming language, as it allows us to store

the data permanently on the secondary storage and read the data from a permanent source.

 Here, we will discuss how to perform various operations on files using the programming

language Python.

 Persistence

 The programs that we have considered till now are based on console I/O. That is, the input was

taken from the keyboard and output was displayed onto the monitor.

 When the data to be read from the keyboard is very large, console input becomes a laborious job.

 Also, the output or result of the program has to be used for some other purpose later, it has to be

stored permanently.

 Hence, reading/writing from/to files are very essential requirement of programming.

 We know that the programs stored in the hard disk are brought into main memory to execute

them.

 These programs generally communicate with CPU using conditional execution, iteration,

functions etc.

 But, the content of main memory will be erased when we turn-off our computer.

 Here we will discuss about working with secondary memory or files. The files stored on the

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 23

secondary memory are permanent and can be transferred to other machines using pen-drives/CD.

 Opening Files

 To perform any operation on a file, one must open a file.

 File opening involves communication with operating system.

 In Python, a file can be opened using a built-in function open().

 While opening a file, we must specify the name of the file to be opened. Also, we must inform the

OS about the purpose of opening a file, which is termed as file opening mode.

 The syntax of open() function is as below –

fhand= open(“filename”, “mode”)

 Here, filename is name of the file to be opened. This string may be just a name of the file, or it

may include pathname also. Pathname of the file is optional when the file is

stored in current working directory

mode This string indicates the purpose of opening a file. It takes a pre- defined set of

values as given in Table below

fhand It is a reference to an object of file class, which acts as a handler or tool for all

further operations on files.

 When our Python program makes a request to open a specific file in a particular mode, then OS

will try to serve the request.

 When a file gets opened successfully, then a file object is returned. This is known as file handle

and is as shown in Figure below.

 It will help to perform various operations on a file through our program. If the file cannot be

opened due to some reason, then error message (traceback) will be displayed.

Figure A File Handle

 A file opening may cause an error due to some of the reasons as listed below –

o File may not exist in the specified path (when we try to read a file)

o File may exist, but we may not have a permission to read/write a file

o File might have got corrupted and may not be in an opening state

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 24

 Since, there is no guarantee about getting a file handle from OS when we try to open a file, it is

always better to write the code for file opening using try-except block.

 This will help us to manage error situation.

Mode Meaning

r Opens a file for reading purpose. If the specified file does not exist in the

specified path, or if you don‟t have permission, error message will be displayed.

This is the default mode of open() function in Python.

w Opens a file for writing purpose. If the file does not exist, then a new file with the

given name will be created and opened for writing. If the file

already exists, then its content will be over-written.

a Opens a file for appending the data. If the file exists, the new content will

be appended at the end of existing content. If no such file exists, it will be created

and new content will be written into it.

r+ Opens a file for reading and writing.

w+ Opens a file for both writing and reading. Overwrites the existing file if the file

exists. If the file does not exist, creates a new file for reading and

writing.

a+ Opens a file for both appending and reading. The file pointer is at the end of the

file if the file exists. The file opens in the append mode. If the file does not exist,

it creates a new file for reading and

writing.

rb Opens a file for reading only in binary format

wb Opens a file for writing only in binary format

ab Opens a file for appending only in binary format

 Text Files and Lines

 A text file is a file containing a sequence of lines

 It contains only the plain text without any images, tables etc.

 Different lines of a text file are separated by a newline character \n.

 In the text files, this newline character may be invisible, but helps in identifying every line in the

file. There will be one more special entry at the end to indicate end of file (EOF).

NOTE: There is one more type of file called binary file, which contains the data in the form of bits.

These files are capable of storing text, image, video, audio etc. All these data will be stored in the

form of a group of bytes whose formatting will be known. The supporting program can interpret

these files properly, whereas when opened using normal text editor, they look like messy, unreadable

set of characters.

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 25

 Reading Files

 When we successfully open a file to read the data from it, the open() function returns the file

handle (or an object reference to file object) which will be pointing to the first character in the file.

 A text file containing lines can be iterated using a for-loop starting from the beginning with the

help of this file handle. Consider the following example of counting number of lines in a file.

NOTE: Before executing the below given program, create a text file (using Notepad or similar editor)

myfile.txt in the current working directory (The directory where you are going store your Python

program). Open this text file and add few random lines to it and then close. Now, open a Python script

file, say countLines.py and save it in the same directory as that of your text file myfile.txt. Then, type

the following code in Python script countLines.py and execute the program. (You can store text file

and Python script file in different directories. But, if you do so, you have to mention complete path of

text file in the open() function.)

Sample Text file myfile.txt:

hello how are you? I

am doing fine what

about you?

Python script file countLines.py

fhand=open('myfile.txt','r') count =0

for line in fhand:

count+=1

print("Line Number ",count, ":", line)

print("Total lines=",count)

 fhand.close()

Output:

Line Number 1 : hello how are you?

 Line Number 2 : I am doing fine

Line Number 3 : what about you?

Total lines= 3

 In the above program, initially, we will try to open the file 'myfile.txt. As we have already created

that file, the file handler will be returned and the object reference to this file will be stored in

fhand.

 Then, in the for-loop, we are using fhand as if it is a sequence of lines. For each line in the file, we

are counting it and printing the line.

 In fact, a line is identified internally with the help of new-line character present at the end of each

line.

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 26

 Though we have not typed \n anywhere in the file myfile.txt, after each line, we would have

pressed enter-key. This act will insert a \n, which is invisible when we view the file through

notepad.

 Once all lines are over, fhand will reach end-of-file and hence terminates the loop.

 Note that, when end of file is reached (that is, no more characters are present in the file), then an

attempt to read will return None or empty character „‟ (two quotes without space in between).

 Once the operations on a file is completed, it is a practice to close the file using a function close().

 Closing of a file ensures that no unwanted operations are done on a file handler.

 Moreover, when a file was opened for writing or appending, closure of a file ensures that the last

bit of data has been uploaded properly into a file and the end-of-file is maintained properly.

 If the file handler variable (in the above example, fhand) is used to assign some other file object

(using open() function), then Python closes the previous file automatically.

 If you run the above program and check the output, there will be a gap of two lines between each

of the output lines. This is because, the new-line character \n is also a part of the variable line in

the loop, and the print() function has default behavior of adding a line at the end (due to default

setting of end parameter of print()).

 To avoid this double-line spacing, we can remove the new-line character attached at the end of

variable line by using built-in string function rstrip() as below –

print("Line Number ",count, ":", line.rstrip())

 It is obvious from the logic of above program that from a file, each line is read one at a time,

processed and discarded.

 Hence, there will not be a shortage of main memory even though we are reading a very large file.

 But, when we are sure that the size of our file is quite small, then we can use read() function to

read the file contents.

 This function will read entire file content as a single string. Then, required operations can be done

on this string using built-in string functions. Consider the below given example –

fhand=open('myfile.txt')

s=fhand.read()

print(“Total number of characters:”,len(s))

 print(“String up to 20 characters:”, s[:20])

 After executing above program using previously created file myfile.txt, then the output would be –

Total number of characters:50

String up to 20 characters: hello how are you? I

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 27

 Writing Files

 To write a data into a file, we need to use the mode w in open() function.

>>> fhand=open(“mynewfile.txt","w")

>>> print(fhand)

<_io.TextIOWrapper name='mynewfile.txt' mode='w' encoding='cp1252'>

 If the file specified already exists, then the old contents will be erased and it will be ready to write

new data into it.

 If the file does not exists, then a new file with the given name will be created.

 The write() method is used to write data into a file.

 This method returns number of characters successfully written into a file. For example,

>>> s="hello how are you?"

>>> fhand.write(s)

18

 Now, the file object keeps track of its position in a file.

 Hence, if we write one more line into the file, it will be added at the end of previous line.

 Here is a complete program to write few lines into a file –

fhand=open('f1.txt','w')

for i in range(5):

line=input("Enter a line: ")

fhand.write(line+"\n")

fhand.close()

 The above program will ask the user to enter 5 lines in a loop.

 After every line has been entered, it will be written into a file. Note that, as write() method doesn‟t

add a new-line character by its own, we need to write it explicitly at the end of every line.

 Once the loop gets over, the program terminates. Now, we need to check the file f1.txt on the disk

(in the same directory where the above Python code is stored) to find our input lines that have

been written into it.

 Searching through a File

 Most of the times, we would like to read a file to search for some specific data within it.

 This can be achieved by using some string methods while reading a file. For example, we may be

interested in printing only the line which starts with a character h.

 Then we can use startswith() method.

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 28

fhand=open('myfile.txt')

for line in fhand:

if line.startswith('h'):

 print(line)

fhand.close()

 Assume the input file myfile.txt is containing the following lines –

 hello how are you?

I am doing fine

how about you?

 Now, if we run the above program, we will get the lines which starts with h –

 hello how are you?

how about you?

 Letting the User Choose the File Name

 In a real time programming, it is always better to ask the user to enter a name of the file which

he/she would like to open, instead of hard-coding the name of a file inside the program.

fname=input("Enter a file name:")

fhand=open(fname)

count =0

for line in fhand:

count+=1

print("Line Number ",count, ":", line)

print("Total lines=",count)

fhand.close()

 In this program, the user input filename is received through variable fname, and the same has

been used as an argument to open() method.

 Now, if the user input is myfile.txt (discussed before), then the result would be

Total lines=3

 Everything goes well, if the user gives a proper file name as input. But, what if the input filename

cannot be opened (Due to some reason like – file doesn‟t exists, file permission denied etc)?

 Obviously, Python throws an error. The programmer need to handle such run- time errors as

discussed in the next section.

 Using try, except to Open a File

 It is always a good programming practice to write the commands related to file opening within a

try block. Because, when a filename is a user input, it is prone to errors.

 Hence, one should handle it carefully. The following program illustrates this –

notes4free.in

Python Application Programming (15CS664) Module II

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 29

fname=input("Enter a file name:")

try:

fhand=open(fname)

except:

print("File cannot be opened") exit()

count =0

for line in fhand:

count+=1

print("Line Number ",count, ":", line)

print("Total lines=",count)

 fhand.close()

 In the above program, the command to open a file is kept within try block. If the specified file

cannot be opened due to any reason, then an error message is displayed saying File cannot be

opened, and the program is terminated.

 If the file could able to open successfully, then we will proceed further to perform required task

using that file.

 Debugging

 While performing operations on files, we may need to extract required set of lines or words or

characters.

 For that purpose, we may use string functions with appropriate delimiters that may exist between

the words/lines of a file.

 But, usually, the invisible characters like white-space, tabs and new-line characters are confusing

and it is hard to identify them properly. For example,

>>> s="1 2\t 3\n 4"

>>> print(s)

 1 2 3

4

 Here, by looking at the output, it may be difficult to make out where there is a space, where is a

tab etc.

 Python provides a utility function called as repr() to solve this problem.

 This method takes any object as an argument and returns a string representation of that object.

 For example, the print() in the above code snippet can be modified as –

>>> print(repr(s))

 '1 2\t3\n4'

Note that, some of the systems use \n as new-line character, and few others may use \r (carriage

return) as a new-line character. The repr() method helps in identifying that too.

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 1

MODULE III

3.1 LISTS

A list is a sequence, Lists are mutable, Traversing a list, List operations, List slices, List Methods,

Deleting elements, Lists and functions, Lists and strings, Parsing lines, Objects and values , Aliasing,

List arguments, Debugging

3.2 DICTIONARIES

Introduction, Dictionary as a set of counters, Dictionaries and files, Looping and Advanced text

parsing, Debugging

3.3 TUPLES

Tuples are immutable, Comparing tuples, Tuple assignment Dictionaries and tuples, Multiple

assignment with dictionaries, The most common words, Using tuples as keys in dictionaries, Sequences:

strings, lists, and tuples, Debugging

3.4 REGULAR EXPRESSIONS

Character matching in regular expressions, Extracting data using regular expressions, Combining searching

 and extracting Escape character, Summary, Bonus section for Unix / Linux users

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 2

MODULE III

3.1 LISTS
 A list is an ordered sequence of values.

 It is a data structure in Python. The values inside the lists can be of any type (like integer, float,

strings, lists, tuples, dictionaries etc) and are called as elements or items.

 The elements of lists are enclosed within square brackets.

 For example,

ls1=[10,-4, 25, 13]

ls2=[“Tiger”, “Lion”, “Cheetah”]

 Here, ls1 is a list containing four integers, and ls2 is a list containing three strings.

 A list need not contain data of same type.

 We can have mixed type of elements in list.

 For example,

ls3=[3.5, „Tiger‟, 10, [3,4]]

 Here, ls3 contains a float, a string, an integer and a list.

 This illustrates that a list can be nested as well.

 An empty list can be created any of the following ways –

>>> ls =[]

>>> type(ls)

<class 'list'>

or

>>> ls =list()

>>> type(ls)

<class 'list'>

 In fact, list() is the name of a method (special type of method called as constructor – which will be

discussed in Module 4) of the class list.

 Hence, a new list can be created using this function by passing arguments to it as shown below –

>>> ls2=list([3,4,1])

>>> print(ls2)

[3, 4, 1]

 Lists are Mutable
 The elements in the list can be accessed using a numeric index within square-brackets.

 It is similar to extracting characters in a string.

>>> ls=[34, 'hi', [2,3],-5]

>>> print(ls[1])

hi
>>> print(ls[2])

[2, 3]

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 3

 Observe here that, the inner list is treated as a single element by outer list. If we would like to
access the elements within inner list, we need to use double-indexing as shown below –

>>> print(ls[2][0]) 2

>>> print(ls[2][1]) 3

 Note that, the indexing for inner-list again starts from 0.

 Thus, when we are using double- indexing, the first index indicates position of inner list inside

outer list, and the second index means the position particular value within inner list.

 Unlike strings, lists are mutable. That is, using indexing, we can modify any value within list.

 In the following example, the 3
rd

 element (i.e. index is 2) is being modified –

>>> ls=[34, 'hi', [2,3],-5]

>>> ls[2]='Hello'

>>> print(ls)

[34, 'hi', 'Hello', -5]

 The list can be thought of as a relationship between indices and elements. This relationship is

called as a mapping. That is, each index maps to one of the elements in a list.

 The index for extracting list elements has following properties –

 Any integer expression can be an index.

>>> ls=[34, 'hi', [2,3],-5]

>>> print(ls[2*1])

 [2,3]

 Attempt to access a non-existing index will throw and IndexError.

>>> ls=[34, 'hi', [2,3],-5]

>>> print(ls[4])

IndexError: list index out of range

 A negative indexing counts from backwards.

>>> ls=[34, 'hi', [2,3],-5]

>>> print(ls[-1])

-5

>>> print(ls[-3])

hi

 The in operator applied on lists will results in a Boolean value.

>>> ls=[34, 'hi', [2,3],-5]

>>> 34 in ls

True

>>> -2 in ls

False

 Traversing a List
 A list can be traversed using for loop.

 If we need to use each element in the list, we can use the for loop and in operator as below

>>> ls=[34, 'hi', [2,3],-5]

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 4

>>> for item in ls:

print(item)

34

hi

[2,3]

-5

 List elements can be accessed with the combination of range() and len() functions as well –

ls=[1,2,3,4]

for i in range(len(ls)):
ls[i]=ls[i]**2

print(ls)

#output is

[1, 4, 9, 16]

 Here, we wanted to do modification in the elements of list. Hence, referring indices is suitable

than referring elements directly.

 The len() returns total number of elements in the list (here it is 4).

 Then range() function makes the loop to range from 0 to 3 (i.e. 4-1).

 Then, for every index, we are updating the list elements (replacing original value by its square).

 List Operations
 Python allows to use operators + and * on lists.

 The operator + uses two list objects and returns concatenation of those two lists.

 Whereas * operator take one list object and one integer value, say n, and returns a list by repeating

itself for n times.

>>> ls1=[1,2,3]

>>> ls2=[5,6,7]

>>> print(ls1+ls2) #concatenation using +

[1, 2, 3, 5, 6, 7]

>>> ls1=[1,2,3]

>>> print(ls1*3) #repetition using *

[1, 2, 3, 1, 2, 3, 1, 2, 3]

>>> [0]*4 #repetition using *

 [0, 0, 0, 0]

 List Slices
 Similar to strings, the slicing can be applied on lists as well. Consider a list t given below, and a

series of examples following based on this object.

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 5

t=['a','b','c','d','e']

 Extracting full list without using any index, but only a slicing operator –

>>> print(t[:])

['a', 'b', 'c', 'd', 'e']

 Extracting elements from 2
nd

 position –

>>> print(t[1:])

['b', 'c', 'd', 'e']

 Extracting first three elements –

>>> print(t[:3])

['a', 'b', 'c']

 Selecting some middle elements –

>>> print(t[2:4])

['c', 'd']

 Using negative indexing –

>>> print(t[:-2])

['a', 'b', 'c']

 Reversing a list using negative value for stride –

>>> print(t[::-1])

['e', 'd', 'c', 'b', 'a']

 Modifying (reassignment) only required set of values –

>>> t[1:3]=['p','q']

>>> print(t)

['a', 'p', 'q', 'd', 'e']

Thus, slicing can make many tasks simple.

 List Methods

There are several built-in methods in list class for various purposes. Here, we will discuss some of
them.

 append(): This method is used to add a new element at the end of a list.

>>> ls=[1,2,3]

>>> ls.append(„hi‟)

>>> ls.append(10)

>>> print(ls)

[1, 2, 3, „hi‟, 10]

 extend(): This method takes a list as an argument and all the elements in this list are added at the

end of invoking list.

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 6

>>> ls1=[1,2,3]

>>> ls2=[5,6]

>>> ls2.extend(ls1)

>>> print(ls2)

[5, 6, 1, 2, 3]

Now, in the above example, the list ls1 is unaltered.

 sort(): This method is used to sort the contents of the list. By default, the function will sort the

items in ascending order.

>>> ls=[3,10,5, 16,-2]

>>> ls.sort()

>>> print(ls)

[-2, 3, 5, 10, 16]

When we want a list to be sorted in descending order, we need to set the argument as shown

>>> ls.sort(reverse=True)

>>> print(ls)

[16, 10, 5, 3, -2]

 reverse(): This method can be used to reverse the given list.

>>> ls=[4,3,1,6]

>>> ls.reverse()

>>> print(ls)

[6, 1, 3, 4]

 count(): This method is used to count number of occurrences of a particular value within list.

>>> ls=[1,2,5,2,1,3,2,10]

>>> ls.count(2)

3 #the item 2 has appeared 3 tiles in ls

 clear(): This method removes all the elements in the list and makes the list empty.

>>> ls=[1,2,3]

>>> ls.clear()

>>> print(ls)

[]

 insert(): Used to insert a value before a specified index of the list.

>>> ls=[3,5,10]

>>> ls.insert(1,"hi")

>>> print(ls)

[3, 'hi', 5, 10]

 index(): This method is used to get the index position of a particular value in the list.

>>> ls=[4, 2, 10, 5, 3, 2, 6]

>>> ls.index(2)

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 7

1

Here, the number 2 is found at the index position 1. Note that, this function will give index of only the

first occurrence of a specified value. The same function can be used with two more arguments start

and end to specify a range within which the search should take place.

>>> ls=[15, 4, 2, 10, 5, 3, 2, 6]

>>> ls.index(2)

2

>>> ls.index(2,3,7) 6

If the value is not present in the list, it throws ValueError.

>>> ls=[15, 4, 2, 10, 5, 3, 2, 6]

>>> ls.index(53)

ValueError: 53 is not in list

Few important points about List Methods:

1. There is a difference between append() and extend() methods. The former adds the argument as it

is, whereas the latter enhances the existing list. To understand this, observe the following example

–

>>> ls1=[1,2,3]

>>> ls2=[5,6]

>>> ls2.append(ls1)

>>> print(ls2)

[5, 6, [1, 2, 3]]

Here, the argument ls1 for the append() function is treated as one item, and made as an inner list

to ls2. On the other hand, if we replace append() by extend() then the result would be –

>>> ls1=[1,2,3]

>>> ls2=[5,6]

>>> ls2.extend(ls1)

>>> print(ls2)

 [5, 6, 1, 2, 3]

2. The sort() function can be applied only when the list contains elements of compatible types. But,

if a list is a mix non-compatible types like integers and string, the comparison cannot be done.

Hence, Python will throw TypeError.

 For example,

>>> ls=[34, 'hi', -5]

>>> ls.sort()

TypeError: '<' not supported between instances of 'str' and 'int'

Similarly, when a list contains integers and sub-list, it will be an error.

>>> ls=[34,[2,3],5]

>>> ls.sort()

TypeError: '<' not supported between instances of 'list' and 'int'

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 8

Integers and floats are compatible and relational operations can be performed on them. Hence, we can
sort a list containing such items.

>>> ls=[3, 4.5, 2]

>>> ls.sort()

>>> print(ls)

[2, 3, 4.5]

3. The sort() function uses one important argument keys. When a list is containing tuples, it will be

useful. We will discuss tuples later in this Module.

4. Most of the list methods like append(), extend(), sort(), reverse() etc. modify the list object

internally and return None.

>>> ls=[2,3]

>>> ls1=ls.append(5)

>>> print(ls)

[2,3,5]

>>> print(ls1)

None

 Deleting Elements
Elements can be deleted from a list in different ways. Python provides few built-in methods for

removing elements as given below –

 pop(): This method deletes the last element in the list, by default.

>>> ls=[3,6,-2,8,10]

>>> x=ls.pop() #10 is removed from list and stored in x

>>> print(ls)

[3, 6, -2, 8]

>>> print(x)

10

When an element at a particular index position has to be deleted, then we can give that position as

argument to pop() function.

>>> t = ['a', 'b', 'c']

>>> x = t.pop(1) #item at index 1 is popped

>>> print(t)

['a', 'c']

>>> print(x) b

 remove(): When we don‟t know the index, but know the value to be removed, then this function

can be used.

>>> ls=[5,8, -12,34,2]

>>> ls.remove(34)

>>> print(ls)

[5, 8, -12, 2]

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 9

Note that, this function will remove only the first occurrence of the specified value, but not

all occurrences.

>>> ls=[5,8, -12, 34, 2, 6, 34]

>>> ls.remove(34)

>>> print(ls)

[5, 8, -12, 2, 6, 34]

Unlike pop() function, the remove() function will not return the value that has been deleted.

 del: This is an operator to be used when more than one item to be deleted at a time. Here also, we

will not get the items deleted.

>>> ls=[3,6,-2,8,1]

>>> del ls[2] #item at index 2 is deleted
>>> print(ls)

 [3, 6, 8, 1]

>>> ls=[3,6,-2,8,1]

>>> del ls[1:4] #deleting all elements from index 1 to 3

>>> print(ls)

[3, 1]

Example: Deleting all odd indexed elements of a list –

>>> t=[„a‟, „b‟, „c‟, „d‟, „e‟]

>>> del t[1::2]

>>> print(t)

['a', 'c', 'e']

 Lists and Functions
 The utility functions like max(), min(), sum(), len() etc. can be used on lists.

 Hence most of the operations will be easy without the usage of loops.

>>> ls=[3,12,5,26, 32,1,4]

>>> max(ls) # prints 32

>>> min(ls) # prints 1

>>> sum(ls) # prints 83

>>> len(ls) # prints 7

>>> avg=sum(ls)/len(ls)

>>> print(avg)

11.857142857142858

 When we need to read the data from the user and to compute sum and average of those numbers,

we can write the code as below –

ls= list()

while (True):

x= input('Enter a number: ')

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 10

if x== 'done':

break

x= float(x)

ls.append(x)

average = sum(ls) / len(ls)

print('Average:', average)

 In the above program, we initially create an empty list.

 Then, we are taking an infinite while- loop.

 As every input from the keyboard will be in the form of a string, we need to convert x into float

type and then append it to a list.

 When the keyboard input is a string „done‟, then the loop is going to get terminated.

 After the loop, we will find the average of those numbers with the help of built-in functions sum()

and len().

 Lists and Strings
 Though both lists and strings are sequences, they are not same.

 In fact, a list of characters is not same as string.

 To convert a string into a list, we use a method list() as below –

>>> s="hello"
>>> ls=list(s)
>>> print(ls)

['h', 'e', 'l', 'l', 'o']

 The method list() breaks a string into individual letters and constructs a list.

 If we want a list of words from a sentence, we can use the following code –

>>> s="Hello how are you?"
>>> ls=s.split()
>>> print(ls)

['Hello', 'how', 'are', 'you?']

 Note that, when no argument is provided, the split() function takes the delimiter as white space.

 If we need a specific delimiter for splitting the lines, we can use as shown in following example –

>>> dt="20/03/2018"

>>> ls=dt.split('/')
>>> print(ls)

['20', '03', '2018']

 There is a method join() which behaves opposite to split() function.

 It takes a list of strings as argument, and joins all the strings into a single string based on the

delimiter provided.

 For example –

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 11

>>> ls=["Hello", "how", "are", "you"]

>>> d=' '

>>> d.join(ls)

'Hello how are you'

 Here, we have taken delimiter d as white space. Apart from space, anything can be taken as
delimiter. When we don‟t need any delimiter, use empty string as delimiter.

 Parsing Lines
 In many situations, we would like to read a file and extract only the lines containing required

pattern. This is known as parsing.

 As an illustration, let us assume that there is a log file containing details of email communication

between employees of an organization.

 For all received mails, the file contains lines as –

From stephen.marquard@uct.ac.za Fri Jan 5 09:14:16 2018

From georgek@uct.ac.za Sat Jan 6 06:12:51 2018
………………

 Apart from such lines, the log file also contains mail-contents, to-whom the mail has been sent etc.

 Now, if we are interested in extracting only the days of incoming mails, then we can go for parsing.

 That is, we are interested in knowing on which of the days, the mails have been received. The code

would be –

fhand = open(„logFile.txt‟)

for line in fhand:

line = line.rstrip()
if not line.startswith('From '):

 continue

words = line.split()
print(words[2])

 Obviously, all received mails starts from the word From. Hence, we search for only such lines and

then split them into words.

 Observe that, the first word in the line would be From, second word would be email-ID and the

3
rd

 word would be day of a week. Hence, we will extract words[2] which is 3
rd

 word.

 Objects and Values
 Whenever we assign two variables with same value, the question arises – whether both the

variables are referring to same object, or to different objects.

 This is important aspect to know, because in Python everything is a class object.

 There is nothing like elementary data type.

Consider a situation –

a= “hi”
b= “hi”

 Now, the question is whether both a and b refer to the same string.

 There are two possible states –

notes4free.in

mailto:stephen.marquard@uct.ac.za
mailto:georgek@uct.ac.za

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 12

hi b

hi a a

hi

b

 In the first situation, a and b are two different objects, but containing same value. The

modification in one object is nothing to do with the other.

 Whereas, in the second case, both a and b are referring to the same object.

 That is, a is an alias name for b and vice- versa. In other words, these two are referring to same

memory location.

 To check whether two variables are referring to same object or not, we can use is operator.

>>> a= “hi”

>>> b= “hi”
>>> a is b #result is True
>>> a==b #result is True

 When two variables are referring to same object, they are called as identical objects.

 When two variables are referring to different objects, but contain a same value, they are known as

equivalent objects.

 For example,

>>> s1=input(“Enter a string:”) #assume you entered hello

>>> s2= input(“Enter a string:”) #assume you entered hello

>>> s1 is s2 #check s1 and s2 are identical False

>>> s1 == s2 #check s1 and s2 are equivalent True

Here s1 and s2 are equivalent, but not identical.

 If two objects are identical, they are also equivalent, but if they are equivalent, they are not
necessarily identical.

 String literals are interned by default. That is, when two string literals are created in the program

with a same value, they are going to refer same object. But, string variables read from the key-

board will not have this behavior, because their values are depending on the user‟s choice.

 Lists are not interned. Hence, we can see following result –

>>> ls1=[1,2,3]
>>> ls2=[1,2,3]
>>> ls1 is ls2 #output is False

>>> ls1 == ls2 #output is True

 Aliasing
 When an object is assigned to other using assignment operator, both of them will refer to same

object in the memory.

 The association of a variable with an object is called as reference.

>>> ls1=[1,2,3]

>>> ls2= ls1
>>> ls1 is ls2 #output is True

 Now, ls2 is said to be reference of ls1. In other words, there are two references to the same object

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 13

in the memory.

 An object with more than one reference has more than one name, hence we say that object is

aliased. If the aliased object is mutable, changes made in one alias will reflect the other.

>>> ls2[1]= 34

>>> print(ls1) #output is [1, 34, 3]

Strings are safe in this regards, as they are immutable.

 List Arguments
 When a list is passed to a function as an argument, then function receives reference to this list.

 Hence, if the list is modified within a function, the caller will get the modified version.

 Consider an example –

def del_front(t):
del t[0]

ls = ['a', 'b', 'c']

del_front(ls)

print(ls)

output is

['b', 'c']

 Here, the argument ls and the parameter t both are aliases to same object.

 One should understand the operations that will modify the list and the operations that create a new

list.

 For example, the append() function modifies the list, whereas the + operator creates a new list.

>>> t1 = [1, 2]

>>> t2 = t1.append(3)
>>> print(t1) #output is [1 2 3]
>>> print(t2) #prints None

>>> t3 = t1 + [5]

>>> print(t3) #output is [1 2 3 5]

>>> t2 is t3 #output is False

 Here, after applying append() on t1 object, the t1 itself has been modified and t2 is not going to

get anything.

 But, when + operator is applied, t1 remains same but t3 will get the updated result.

 The programmer should understand such differences when he/she creates a function intending to

modify a list.

 For example, the following function has no effect on the original list –

def test(t):
t=t[1:]

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 14

ls=[1,2,3]
test(ls)
print(ls) #prints [1, 2, 3]

 One can write a return statement after slicing as below –

def test(t):

return t[1:]

ls=[1,2,3]

ls1=test(ls)
print(ls1) #prints [2, 3]
print(ls) #prints [1, 2, 3]

 In the above example also, the original list is not modified, because a return statement always creates

a new object and is assigned to LHS variable at the position of function call.

3.2 DICTIONARIES

 A dictionary is a collection of unordered set of key:value pairs, with the requirement that keys are

unique in one dictionary.

 Unlike lists and strings where elements are accessed using index values (which are integers), the

values in dictionary are accessed using keys.

 A key in dictionary can be any immutable type like strings, numbers and tuples. (The tuple can be

made as a key for dictionary, only if that tuple consist of string/number/ sub-tuples).

 As lists are mutable – that is, can be modified using index assignments, slicing, or using methods

like append(), extend() etc, they cannot be a key for dictionary.

 One can think of a dictionary as a mapping between set of indices (which are actually keys) and a

set of values.

 Each key maps to a value.

 An empty dictionary can be created using two ways –

d= {}
 OR

d=dict()

 To add items to dictionary, we can use square brackets as –

>>> d={}

>>> d["Mango"]="Fruit"

>>> d["Banana"]="Fruit"
>>> d["Cucumber"]="Veg"

>>> print(d)

{'Mango': 'Fruit', 'Banana': 'Fruit', 'Cucumber': 'Veg'}

 ,,To initialize a dictionary at the time of creation itself, one can use the code like –

>>> tel_dir={'Tom': 3491, 'Jerry':8135}

>>> print(tel_dir)

{'Tom': 3491, 'Jerry': 8135}

>>> tel_dir['Donald']=4793

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 15

>>> print(tel_dir)
{'Tom': 3491, 'Jerry': 8135, 'Donald': 4793}

NOTE that the order of elements in dictionary is unpredictable. That is, in the above example, don‟t

assume that 'Tom': 3491 is first item, 'Jerry': 8135 is second item etc. As dictionary members are not

indexed over integers, the order of elements inside it may vary. However, using a key, we can extract

its associated value as shown below –

>>> print(tel_dir['Jerry']) 8135

 Here, the key 'Jerry' maps with the value 8135, hence it doesn‟t matter where exactly it is inside the
dictionary.

 If a particular key is not there in the dictionary and if we try to access such key, then the KeyError is

generated.
>>> print(tel_dir['Mickey']) KeyError:

'Mickey'

 The len() function on dictionary object gives the number of key-value pairs in that object.

>>> print(tel_dir)
{'Tom': 3491, 'Jerry': 8135, 'Donald': 4793}

>>> len(tel_dir)

3

 The in operator can be used to check whether any key (not value) appears in the dictionary object.

>>> 'Mickey' in tel_dir #output is False
>>> 'Jerry' in tel_dir #output is True
>>> 3491 in tel_dir #output is False

 We observe from above example that the value 3491 is associated with the key 'Tom' in tel_dir.

But, the in operator returns False.

 The dictionary object has a method values() which will return a list of all the values associated

with keys within a dictionary.

 If we would like to check whether a particular value exist in a dictionary, we can make use of it as

shown below –

>>> 3491 in tel_dir.values() #output is True

 The in operator behaves differently in case of lists and dictionaries as explained hereunder:

 When in operator is used to search a value in a list, then linear search algorithm is used internally.

That is, each element in the list is checked one by one sequentially. This is considered to be

expensive in the view of total time taken to process.

 Because, if there are 1000 items in the list, and if the element in the list which we are search for is

in the last position (or if it does not exists), then before yielding result of search (True or False),

we would have done 1000 comparisons.

 In other words, linear search requires n number of comparisons for the input size of n elements.

 Time complexity of the linear search algorithm is O(n).

 The keys in dictionaries of Python are basically hashable elements.

 The concept of hashing is applied to store (or maintain) the keys of dictionaries.

 Normally hashing techniques have the time complexity as O(log n) for basic operations like

insertion, deletion and searching.

 Hence, the in operator applied on keys of dictionaries works better compared to that on lists.

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 16

 Dictionary as a Set of Counters
 Assume that we need to count the frequency of alphabets in a given string. There are different

methods to do it –

 Create 26 variables to represent each alphabet. Traverse the given string and increment the

corresponding counter when an alphabet is found.

 Create a list with 26 elements (all are zero in the beginning) representing alphabets. Traverse

the given string and increment corresponding indexed position in the list when an alphabet is

found.

 Create a dictionary with characters as keys and counters as values. When we find a character

for the first time, we add the item to dictionary. Next time onwards, we increment the value

of existing item.

 Each of the above methods will perform same task, but the logic of implementation will be

different. Here, we will see the implementation using dictionary.

s=input("Enter a string:") #read a string

d=dict() #create empty dictionary

for ch in s: #traverse through string

 if ch not in d: #if new character found

d[ch]=1 #initialize counter to 1

 else: #otherwise, increment counter

d[ch]+=1

print(d) #display the dictionary

The sample output would be –

Enter a string:

Hello World

{'H': 1, 'e': 1, 'l': 3, 'o': 2, ' ': 1, 'W': 1, 'r': 1, 'd': 1}

 It can be observed from the output that, a dictionary is created here with characters as keys and
frequencies as values. Note that, here we have computed histogram of counters.

 Dictionary in Python has a method called as get(), which takes key and a default value as two
arguments. If key is found in the dictionary, then the get() function returns corresponding value,
otherwise it returns default value.

 For example,
>>> tel_dir={'Tom': 3491, 'Jerry':8135, 'Mickey':1253}

>>> print(tel_dir.get('Jerry',0))

 8135

>>> print(tel_dir.get('Donald',0))

 0

 In the above example, when the get() function is taking 'Jerry' as argument, it returned

corresponding value, as 'Jerry' is found in tel_dir .

 Whereas, when get() is used with 'Donald' as key, the default value 0 (which is provided by us) is

returned.

 The function get() can be used effectively for calculating frequency of alphabets in a string.

 Here is the modified version of the program –

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 17

s=input("Enter a string:")

d=dict()

for ch in s:

d[ch]=d.get(ch,0)+1

print(d)

 In the above program, for every character ch in a given string, we will try to retrieve a value.

When the ch is found in d, its value is retrieved, 1 is added to it, and restored.

 If ch is not found, 0 is taken as default and then 1 is added to it.

 Looping and Dictionaries
 When a for-loop is applied on dictionaries, it will iterate over the keys of dictionary.

 If we want to print key and values separately, we need to use the statements as shown

tel_dir={'Tom': 3491, 'Jerry':8135, 'Mickey':1253}

 for k in tel_dir:

print(k, tel_dir[k])

Output would be –

Tom 3491

Jerry 8135

Mickey 1253

 Note that, while accessing items from dictionary, the keys may not be in order. If we want to print

the keys in alphabetical order, then we need to make a list of the keys, and then sort that list.

 We can do so using keys() method of dictionary and sort() method of lists.

 Consider the following code –

tel_dir={'Tom': 3491, 'Jerry':8135, 'Mickey':1253}

ls=list(tel_dir.keys())

print("The list of keys:",ls)

ls.sort()

print("Dictionary elements in alphabetical order:")

for k in ls:

print(k, tel_dir[k])

The output would be –

The list of keys: ['Tom', 'Jerry', 'Mickey']

Dictionary elements in alphabetical order:

Jerry 8135

Mickey 1253
Tom 3491

Note: The key-value pair from dictionary can be together accessed with the help of a method items()

as shown

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 18

>>> d={'Tom':3412, 'Jerry':6781, 'Mickey':1294}

>>> for k,v in d.items():
print(k,v)

Output:

Tom 3412
Jerry 6781
Mickey 1294

The usage of comma-separated list k,v here is internally a tuple (another data structure in Python,

which will be discussed later).

 Dictionaries and Files
 A dictionary can be used to count the frequency of words in a file.

 Consider a file myfile.txt consisting of following text:

hello, how are you?

I am doing fine.

How about you?

 Now, we need to count the frequency of each of the word in this file. So, we need to take an outer

loop for iterating over entire file, and an inner loop for traversing each line in a file.

 Then in every line, we count the occurrence of a word, as we did before for a character.

 The program is given as below –

fname=input("Enter file name:")

try:

fhand=open(fname)

except:

print("File cannot be opened")

exit()

d=dict()

for line in fhand:

for word in line.split():

d[word]=d.get(word,0)+1

print(d)

The output of this program when the input file is myfile.txt would be –

Enter file name: myfile.txt

{'hello,': 1, 'how': 1, 'are': 1, 'you?': 2, 'I': 1, 'am': 1,
'doing': 1, 'fine.': 1, 'How': 1, 'about': 1}

 Few points to be observed in the above output –
 The punctuation marks like comma, full point, question mark etc. are also considered as a

part of word and stored in the dictionary. This means, when a particular word appears in a

file with and without punctuation mark, then there will be multiple entries of that word.

 The word „how‟ and „How‟ are treated as separate words in the above example because of
uppercase and lowercase letters.

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 19

 While solving problems on text analysis, machine learning, data analysis etc. such kinds of

treatment of words lead to unexpected results. So, we need to be careful in parsing the text and we

should try to eliminate punctuation marks, ignoring the case etc. The procedure is discussed in the

next section.

 Advanced Text Parsing
 As discussed in the previous section, during text parsing, our aim is to eliminate punctuation

marks as a part of word.

 The string module of Python provides a list of all punctuation marks as shown:

>>> import string

>>> string.punctuation
'!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'

 The str class has a method maketrans() which returns a translation table usable for another

method translate().

 Consider the following syntax to understand it more clearly:

line.translate(str.maketrans(fromstr, tostr, deletestr))

 The above statement replaces the characters in fromstr with the character in the same position in

tostr and delete all characters that are in deletestr.

 The fromstr and tostr can be empty strings and the deletestr parameter can be omitted.

 Using these functions, we will re-write the program for finding frequency of words in a file.

import string

fname=input("Enter file name:")

try:

fhand=open(fname)

 except:

print("File cannot be opened")

 exit()

d=dict()

for line in fhand:

line=line.rstrip()

line=line.translate(line.maketrans('','',string.punctuation))

line=line.lower()

for word in line.split():

d[word]=d.get(word,0)+1

print(d)

Now, the output would be –

Enter file name:myfile.txt

{'hello': 1, 'how': 2, 'are': 1, 'you': 2, 'i': 1, 'am': 1, 'doing': 1, 'fine': 1, 'about': 1}

 Comparing the output of this modified program with the previous one, we can make out that all

the punctuation marks are not considered for parsing and also the case of the alphabets are

ignored.

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 20

 Debugging

 When we are working with big datasets (like file containing thousands of pages), it is difficult to

debug by printing and checking the data by hand. So, we can follow any of the following procedures

for easy debugging of the large datasets –

 Scale down the input: If possible, reduce the size of the dataset. For example if the program reads a

text file, start with just first 10 lines or with the smallest example you can find. You can either edit

the files themselves, or modify the program so it reads only the first n lines. If there is an error, you

can reduce n to the smallest value that manifests the error, and then increase it gradually as you

correct the errors.

 Check summaries and types: Instead of printing and checking the entire dataset, consider printing

summaries of the data: for example, the number of items in a dictionary or the total of a list of

numbers. A common cause of runtime errors is a value that is not the right type. For debugging this

kind of error, it is often enough to print the type of a value.

 Write self-checks: Sometimes you can write code to check for errors automatically. For example, if

you are computing the average of a list of numbers, you could check that the result is not greater than the

largest element in the list or less than the smallest. This is called a sanity check because it detects results that

are “completely illogical”. Another kind of check compares the results of two different computations to see if

they are consistent. This is called a consistency check.

 Pretty print the output: Formatting debugging output can make it easier to spot an error.

3.3 TUPLES
 A tuple is a sequence of items, similar to lists.

 The values stored in the tuple can be of any type and they are indexed using integers.

 Unlike lists, tuples are immutable. That is, values within tuples cannot be modified/reassigned.

Tuples are comparable and hashable objects.

 Hence, they can be made as keys in dictionaries.

 A tuple can be created in Python as a comma separated list of items – may or may not be enclosed

within parentheses.

>>> t='Mango', 'Banana', 'Apple' #without parentheses
>>> print(t)

('Mango', 'Banana', 'Apple')

>>> t1=('Tom', 341, 'Jerry') #with parentheses

>>> print(t1)

('Tom', 341, 'Jerry')

 Observe that tuple values can be of mixed types.

 If we would like to create a tuple with single value, then just a parenthesis will not suffice.

 For example,

>>> x=(3) #trying to have a tuple with single item

>>> print(x)
3 #observe, no parenthesis found

>>> type(x)
<class 'int'> #not a tuple, it is integer!!

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 21

 Thus, to have a tuple with single item, we must include a comma after the item. That is,

>>> t=3, #or use the statement t=(3,)

>>> type(t) #now this is a tuple
<class 'tuple'>

 An empty tuple can be created either using a pair of parenthesis or using a function tuple() as below

>>> t1=()

>>> type(t1)
<class 'tuple'>

>>> t2=tuple()

>>> type(t2)

<class 'tuple'>

 If we provide an argument of type sequence (a list, a string or tuple) to the method tuple(), then a
tuple with the elements in a given sequence will be created:

 Create tuple using string:

>>> t=tuple('Hello')
>>> print(t)

('H', 'e', 'l', 'l', 'o')

 Create tuple using list:

>>> t=tuple([3,[12,5],'Hi'])

>>> print(t)
(3, [12, 5], 'Hi')

 Create tuple using another tuple:

>>> t=('Mango', 34, 'hi')

>>> t1=tuple(t)

>>> print(t1)
('Mango', 34, 'hi')

>>> t is t1

True

Note that, in the above example, both t and t1 objects are referring to same memory location. That is,

t1 is a reference to t.

 Elements in the tuple can be extracted using square-brackets with the help of indices.

 Similarly, slicing also can be applied to extract required number of items from tuple.

>>> t=('Mango', 'Banana', 'Apple')
>>> print(t[1])

Banana

>>> print(t[1:])
('Banana', 'Apple')

>>> print(t[-1])

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 22

 Apple

 Modifying the value in a tuple generates error, because tuples are immutable –

>>> t[0]='Kiwi'

TypeError: 'tuple' object does not support item assignment

 We wanted to replace „Mango‟ by „Kiwi‟, which did not work using assignment.

 But, a tuple can be replaced with another tuple involving required modifications –

>>> t=('Kiwi',)+t[1:]
>>> print(t)

('Kiwi', 'Banana', 'Apple')

 Comparing Tuples
 Tuples can be compared using operators like >, <, >=, == etc.

 The comparison happens lexicographically.

 For example, when we need to check equality among two tuple objects, the first item in first tuple

is compared with first item in second tuple.

 If they are same, 2
nd

 items are compared.

 The check continues till either a mismatch is found or items get over.

 Consider few examples –

>>> (1,2,3)==(1,2,5)

False
>>> (3,4)==(3,4)

True

 The meaning of < and > in tuples is not exactly less than and greater than, instead, it means

comes before and comes after.

 Hence in such cases, we will get results different from checking equality (==).

>>> (1,2,3)<(1,2,5)

True

>>> (3,4)<(5,2)
True

 When we use relational operator on tuples containing non-comparable types, then TypeError will

be thrown.

>>> (1,'hi')<('hello','world')

TypeError: '<' not supported between instances of 'int' and 'str'

 The sort() function internally works on similar pattern – it sorts primarily by first element, in case

of tie, it sorts on second element and so on. This pattern is known as DSU –

 Decorate a sequence by building a list of tuples with one or more sort keys preceding the

elements from the sequence,

 Sort the list of tuples using the Python built-in sort(), and

 Undecorate by extracting the sorted elements of the sequence.

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 23

 Consider a program of sorting words in a sentence from longest to shortest, which illustrates DSU
property.

txt = 'Ram and Seeta went to forest with Lakshman'

words = txt.split()

t = list()

for word in words:

t.append((len(word), word))

print(„The list is:‟,t)

t.sort(reverse=True)

res = list()

for length, word in t:
res.append(word)

print(„The sorted list:‟,res)

The output would be –

The list is:

 [(3, 'Ram'), (3, 'and'), (5, 'Seeta'), (4, 'went'), (2, 'to'), (6, 'forest'), (4, 'with'), (8, 'Lakshman')]

The sorted list:['Lakshman', 'forest', 'Seeta', 'went', 'with',

'and', 'Ram', 'to']

 In the above program, we have split the sentence into a list of words.

 Then, a tuple containing length of the word and the word itself are created and are appended to a

list.

 Observe the output of this list – it is a list of tuples. Then we are sorting this list in descending

order.

 Now for sorting, length of the word is considered, because it is a first element in the tuple.

 At the end, we extract length and word in the list, and create another list containing only the

words and print it.

 Tuple Assignment
 Tuple has a unique feature of having it at LHS of assignment operator.

 This allows us to assign values to multiple variables at a time.

>>> x,y=10,20

>>> print(x) #prints 10
>>> print(y) #prints 20

 When we have list of items, they can be extracted and stored into multiple variables as below –

>>> ls=["hello", "world"]

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 24

>>> x,y=ls
>>> print(x) #prints hello

>>> print(y) #prints world

 This code internally means that –

x= ls[0]

 y= ls[1]

 The best known example of assignment of tuples is swapping two values as below –

>>> a=10
>>> b=20
>>> a, b = b, a

>>> print(a, b) #prints 20 10

 In the above example, the statement a, b = b, a is treated by Python as – LHS is a set of variables,

and RHS is set of expressions.

 The expressions in RHS are evaluated and assigned to respective variables at LHS.

 Giving more values than variables generates ValueError –

>>> a, b=10,20,5
ValueError: too many values to unpack (expected 2)

 While doing assignment of multiple variables, the RHS can be any type of sequence like list,

string or tuple. Following example extracts user name and domain from an email ID.

>>> email='mamathaa@ieee.org'
>>> usrName, domain = email.split('@')

>>> print(usrName) #prints mamathaa

>>> print(domain) #prints ieee.org

 Dictionaries and Tuples
 Dictionaries have a method called items() that returns a list of tuples, where each tuple is a key-

value pair as shown below –

>>> d = {'a':10, 'b':1, 'c':22}
>>> t = list(d.items())
>>> print(t)

[('b', 1), ('a', 10), ('c', 22)]

 As dictionary may not display the contents in an order, we can use sort() on lists and then print in
required order as below –

>>> d = {'a':10, 'b':1, 'c':22}
>>> t = list(d.items())

>>> print(t)

[('b', 1), ('a', 10), ('c', 22)]
>>> t.sort()
>>> print(t)

[('a', 10), ('b', 1), ('c', 22)]

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 25

 Multiple Assignment with Dictionaries
 We can combine the method items(), tuple assignment and a for-loop to get a pattern for traversing

dictionary:

d={'Tom': 1292, 'Jerry': 3501, 'Donald': 8913}

for key, val in list(d.items()):

print(val,key)

The output would be –

1292 Tom

3501 Jerry
8913 Donald

 This loop has two iteration variables because items() returns a list of tuples.

 And key, val is a tuple assignment that successively iterates through each of the key-value pairs in

the dictionary.

 For each iteration through the loop, both key and value are advanced to the next key-value pair in

the dictionary in hash order.

 Once we get a key-value pair, we can create a list of tuples and sort them:

d={'Tom': 9291, 'Jerry': 3501, 'Donald': 8913}

ls=list()
for key, val in d.items():

ls.append((val,key)) #observe inner parentheses

print("List of tuples:",ls)

ls.sort(reverse=True)

print("List of sorted tuples:",ls)

The output would be –

List of tuples: [(9291, 'Tom'), (3501, 'Jerry'), (8913, 'Donald')]

List of sorted tuples: [(9291, 'Tom'), (8913, 'Donald'), (3501, 'Jerry')]

 In the above program, we are extracting key, val pair from the dictionary and appending it to the

list ls.

 While appending, we are putting inner parentheses to make sure that each pair is treated as a

tuple.

 Then, we are sorting the list in the descending order.

 The sorting would happen based on the telephone number (val), but not on name (key), as first

element in tuple is telephone number (val).

 The Most Common Words
 We will apply the knowledge gained about strings, tuple, list and dictionary till here to solve a

problem – write a program to find most commonly used words in a text file.

 The logic of the program is –

 Open a file

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 26

 Take a loop to iterate through every line of a file.

 Remove all punctuation marks and convert alphabets into lower case

 Take a loop and iterate over every word in a line.

 If the word is not there in dictionary, treat that word as a key, and initialize its value as 1. If that

 word already there in dictionary, increment the value.

 Once all the lines in a file are iterated, you will have a dictionary containing distinct words

and their frequency. Now, take a list and append each key-value (word- frequency) pair into it.

 Sort the list in descending order and display only 10 (or any number of) elements from the

 list to get most frequent words.

import string
fhand = open('test.txt')

counts = dict()

for line in fhand:

line = line.translate(str.maketrans('', '',string.punctuation))

line = line.lower()

for word in line.split():

if word not in counts:

counts[word] = 1

 else:

counts[word] += 1

lst = list()
for key, val in list(counts.items()):

lst.append((val, key))

lst.sort(reverse=True)

for key, val in lst[:10]:

print(key, val)

Run the above program on any text file of your choice and observe the output.

 Using Tuples as Keys in Dictionaries
 As tuples and dictionaries are hashable, when we want a dictionary containing composite keys, we

will use tuples.

 For Example, we may need to create a telephone directory where name of a person is Firstname-

last name pair and value is the telephone number.

 Our job is to assign telephone numbers to these keys.

 Consider the program to do this task –

names=(('Tom','Cat'),('Jerry','Mouse'), ('Donald', 'Duck'))
number=[3561, 4014, 9813]

telDir={}

for i in range(len(number)):

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 27

telDir[names[i]]=number[i]

for fn, ln in telDir:

print(fn, ln, telDir[fn,ln])

The output would be –

Tom Cat 3561

Jerry Mouse 4014

Donald Duck 9813

 Summary on Sequences: Strings, Lists and Tuples
 Till now, we have discussed different types of sequences viz. strings, lists and tuples.

 In many situations these sequences can be used interchangeably.

 Still, due their difference in behavior and ability, we may need to understand pros and cons of

each of them and then to decide which one to use in a program.

 Here are few key points –

1. Strings are more limited compared to other sequences like lists and Tuples. Because, the

elements in strings must be characters only. Moreover, strings are immutable. Hence, if we

need to modify the characters in a sequence, it is better to go for a list of characters than a

string.

2. As lists are mutable, they are most common compared to tuples. But, in some situations as

given below, tuples are preferable.

a. When we have a return statement from a function, it is better to use tuples rather than

lists.

b. When a dictionary key must be a sequence of elements, then we must use immutable

type like strings and tuples

c. When a sequence of elements is being passed to a function as arguments, usage of

tuples reduces unexpected behavior due to aliasing.

3. As tuples are immutable, the methods like sort() and reverse() cannot be applied on them. But,

Python provides built-in functions sorted() and reversed() which will take a sequence as an

argument and return a new sequence with modified results.

 Debugging
 Lists, Dictionaries and Tuples are basically data structures.

 In real-time programming, we may require compound data structures like lists of tuples,

dictionaries containing tuples and lists etc.

 But, these compound data structures are prone to shape errors – that is, errors caused when a data

structure has the wrong type, size, composition etc.

 For example, when your code is expecting a list containing single integer, but you are giving a

plain integer, then there will be an error.

 When debugging a program to fix the bugs, following are the few things a programmer can try –

 Reading: Examine your code, read it again and check that it says what you meant to say.

 Running: Experiment by making changes and running different versions. Often if you display

the right thing at the right place in the program, the problem becomes obvious, but sometimes

you have to spend some time to build scaffolding.

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 28

 Ruminating: Take some time to think! What kind of error is it: syntax, runtime, semantic?

What information can you get from the error messages, or from the output of the program?

What kind of error could cause the problem you‟re seeing? What did you change last, before

the problem appeared?

 Retreating: At some point, the best thing to do is back off, undoing recent changes, until you

get back you can start rebuilding.

3.4 REGULAR EXPRESSIONS
 Searching for required patterns and extracting only the lines/words matching the pattern is a very

common task in solving problems programmatically.

 We have done such tasks earlier using string slicing and string methods like split(), find() etc.

 As the task of searching and extracting is very common, Python provides a powerful library called

regular expressions to handle these tasks elegantly.

 Though they have quite complicated syntax, they provide efficient way of searching the patterns.

 The regular expressions are themselves little programs to search and parse strings.

 To use them in our program, the library/module re must be imported.

 There is a search() function in this module, which is used to find particular substring within a string.

 Consider the following example –

import re

fhand = open('myfile.txt')

for line in fhand:

line = line.rstrip()
if re.search('how', line):

 print(line)

 By referring to file myfile.txt that has been discussed in previous Chapters, the output would be

 hello, how are you?

how about you?

 In the above program, the search() function is used to search the lines containing a word how.

 One can observe that the above program is not much different from a program that uses find() function

of strings. But, regular expressions make use of special characters with specific meaning.

 In the following example, we make use of caret (^) symbol, which indicates beginning of the line.

import re

hand = open('myfile.txt')

for line in hand:

line = line.rstrip()

if re.search('^how', line):

print(line)

The output would be –

how about you?

 Here, we have searched for a line which starts with a string how.

 Again, this program will not makes use of regular expression fully.

 Because, the above program would have been written using a string function startswith(). Hence,

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 29

in the next section, we will understand the true usage of regular expressions.

 Character Matching in Regular Expressions
 Python provides a list of meta-characters to match search strings.

 Table below shows the details of few important metacharacters.

 Some of the examples for quick and easy understanding of regular expressions are given in next

Table.

Table : List of Important Meta-Characters

Character Meaning
^ (caret) Matches beginning of the line
$ Matches end of the line

. (dot) Matches any single character except newline. Using option m, then

newline also can be matched

[…] Matches any single character in brackets
[^…] Matches any single character NOT in brackets
re* Matches 0 or more occurrences of preceding expression.

re+ Matches 1 or more occurrence of preceding expression.

re? Matches 0 or 1 occurrence of preceding expression.

re{ n} Matches exactly n number of occurrences of preceding expression.
re{ n,} Matches n or more occurrences of preceding expression.
re{ n, m} Matches at least n and at most m occurrences of preceding expression.
a| b Matches either a or b.
(re) Groups regular expressions and remembers matched text.
\d Matches digits. Equivalent to [0-9].
\D Matches non-digits.
\w Matches word characters.
\W Matches non-word characters.
\s Matches whitespace. Equivalent to [\t\n\r\f].
\S Matches non-whitespace.
\A Matches beginning of string.

\Z Matches
newline.

end of string. If a newline exists, it matches just before

\z Matches end of string.
\b Matches the empty string, but only at the start or end of a word.
\B Matches the empty string, but not at the start or end of a word.

() When parentheses are added to a regular expression, they are ignored for the

purpose of matching, but allow you to extract a particular subset of the

matched string rather than the whole string when using
findall()

Table : Examples for Regular Expressions

Expression Description
[Pp]ython Match "Python" or "python"

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 30

rub[ye] Match "ruby" or "rube"
[aeiou] Match any one lowercase vowel
[0-9] Match any digit; same as [0123456789]
[a-z] Match any lowercase ASCII letter
[A-Z] Match any uppercase ASCII letter
[a-zA-Z0-9] Match any of uppercase, lowercase alphabets and digits
[^aeiou] Match anything other than a lowercase vowel
[^0-9] Match anything other than a digit

 Most commonly used metacharacter is dot, which matches any character.

 Consider the following example, where the regular expression is for searching lines which starts

with I and has any two characters (any character represented by two dots) and then has a character

m.

import re

fhand = open('myfile.txt')

for line in fhand:
line = line.rstrip()

if re.search('^I..m', line):

print(line)

 The output would be –

I am doing fine.

 Note that, the regular expression ^I..m not only matches „I am‟, but it can match „Isdm‟, „I*3m‟

and so on.

 That is, between I and m, there can be any two characters.

 In the previous program, we knew that there are exactly two characters between I and m. Hence,

we could able to give two dots.

 But, when we don‟t know the exact number of characters between two characters (or strings), we

can make use of dot and + symbols together.

 Consider the below given program –

import re

hand = open('myfile.txt')

for line in hand:

line = line.rstrip()

if re.search('^h.+u', line):

print(line)

The output would be –

hello, how are you?

how about you?

 Observe the regular expression ^h.+u here.

 It indicates that, the string should be starting with h and ending with u and there may by any

number of (dot and +) characters in- between.

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 31

Few examples:

 To understand the behavior of few basic meta characters, we will see some examples.

 The file used for these examples is mbox-short.txt which can be downloaded from –
https://www.py4e.com/code3/mbox-short.txt

 Use this as input and try following examples –

 Pattern to extract lines starting with the word From (or from) and ending with edu:

import re

fhand = open('mbox-short.txt')

 for line in fhand:

line = line.rstrip()

pattern = „^[Ff]rom.*edu$‟

if re.search(pattern, line):

print(line)

Here the pattern given for regular expression indicates that the line should start with either From

or from. Then there may be 0 or more characters, and later the line should end with edu.

 Pattern to extract lines ending with any digit:

Replace the pattern by following string, rest of the program will remain the same.

pattern = „[0-9]$‟

 Using Not :

pattern = „^[^a-z0-9]+‟

Here, the first ^ indicates we want something to match in the beginning of a line. Then, the ^

inside square-brackets indicate do not match any single character within bracket. Hence, the

whole meaning would be – line must be started with anything other than a lower-case alphabets

and digits. In other words, the line should not be started with lowercase alphabet and digits.

 Start with upper case letters and end with digits:

pattern = '^[A-Z].*[0-9]$'

Here, the line should start with capital letters, followed by 0 or more characters, but must end

with any digit.

 Extracting Data using Regular Expressions
 Python provides a method findall() to extract all of the substrings matching a regular expression.

 This function returns a list of all non-overlapping matches in the string.

 If there is no match found, the function returns an empty list.

 Consider an example of extracting anything that looks like an email address from any line.

import re

s = 'A message from csev@umich.edu to cwen@iupui.edu about meeting @2PM'

notes4free.in

https://www.py4e.com/code3/mbox-short.txt
mailto:csev@umich.edu
mailto:cwen@iupui.edu

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 32

lst = re.findall('\S+@\S+', s)

print(lst)

The output would be –

['csev@umich.edu', 'cwen@iupui.edu']

 Here, the pattern indicates at least one non-white space characters (\S) before @ and at least one
non-white space after @.

 Hence, it will not match with @2pm, because of a white- space before @.

 Now, we can write a complete program to extract all email-ids from the file.

import re

fhand = open('mbox-short.txt')

for line in fhand:

line = line.rstrip()

x = re.findall('\S+@\S+', line)

if len(x) > 0:

print(x)

 Here, the condition len(x) > 0 is checked because, we want to print only the line which contain an

email-ID. If any line do not find the match for a pattern given, the findall() function will return an

empty list. The length of empty list will be zero, and hence we would like to print the lines only

with length greater than 0.

The output of above program will be something as below –

['stephen.marquard@uct.ac.za'] ['<postmaster@collab.sakaiproject.org>']

['<200801051412.m05ECIaH010327@nakamura.uits.iupui.edu>']

['<source@collab.sakaiproject.org>;'] ['<source@collab.sakaiproject.org>;']

['<source@collab.sakaiproject.org>;'] ['apache@localhost)']
……………………………….
………………………………..

 Note that, apart from just email-ID‟s, the output contains additional characters (<, >, ; etc)

attached to the extracted pattern. To remove all that, refine the pattern. That is, we want email-ID

to be started with any alphabets or digits, and ending with only alphabets. Hence, the statement

would be –

x = re.findall('[a-zA-Z0-9]\S*@\S*[a-zA-Z]', line)

 Combining Searching and Extracting
 Assume that we need to extract the data in a particular syntax.

 For example, we need to extract the lines containing following format –

X-DSPAM-Confidence: 0.8475

X-DSPAM-Probability: 0.0000

notes4free.in

mailto:postmaster@collab.sakaiproject.org
mailto:200801051412.m05ECIaH010327@nakamura.uits.iupui.edu
mailto:source@collab.sakaiproject.org
mailto:source@collab.sakaiproject.org
mailto:source@collab.sakaiproject.org

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 33

 The line should start with X-, followed by 0 or more characters. Then, we need a colon and white-

space. They are written as it is.

 Then there must be a number containing one or more digits with or without a decimal point. Note

that, we want dot as a part of our pattern string, but not as meta character here. The pattern for

regular expression would be –

^X-.*: [0-9.]+

The complete program is –

import re

hand = open('mbox-short.txt')

for line in hand:

line = line.rstrip()

if re.search('^X\S*: [0-9.]+', line):

print(line)

The output lines will as below –

X-DSPAM-Confidence: 0.8475

X-DSPAM-Probability: 0.0000
X-DSPAM-Confidence: 0.6178
X-DSPAM-Probability: 0.0000
X-DSPAM-Confidence: 0.6961

X-DSPAM-Probability: 0.0000
……………………………………………………
……………………………………………………

 Assume that, we want only the numbers (representing confidence, probability etc) in the above

output.

 We can use split() function on extracted string. But, it is better to refine regular expression. To

do so, we need the help of parentheses.

 When we add parentheses to a regular expression, they are ignored when matching the string. But

when we are using findall(), parentheses indicate that while we want the whole expression to

match, we only are interested in extracting a portion of the substring that matches the regular

expression.

import re

hand = open('mbox-short.txt')

for line in hand:

line = line.rstrip()

x = re.findall('^X-\S*: ([0-9.]+)', line)

if len(x) > 0:

print(x)

 Because of the parentheses enclosing the pattern above, it will match the pattern starting with X-

and extracts only digit portion. Now, the output would be –

['0.8475']

['0.0000']

['0.6178']

['0.0000']

notes4free.in

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 34

['0.6961']
…………………

………………..

 Another example of similar form: The file mbox-short.txt contains lines like –

Details: http://source.sakaiproject.org/viewsvn/?view=rev&rev=39772

 We may be interested in extracting only the revision numbers mentioned at the end of these

lines. Then, we can write the statement –

x = re.findall('^Details:.*rev=([0-9.]+)', line)

 The regex here indicates that the line must start with Details:, and has something with rev= and

then digits.

 As we want only those digits, we will put parenthesis for that portion of expression.

 Note that, the expression [0-9] is greedy, because, it can display very large number. It keeps

grabbing digits until it finds any other character than the digit.

 The output of above regular expression is a set of revision numbers as given below –

['39772']

['39771']

['39770']

['39769']

………………………

………………………

 Consider another example – we may be interested in knowing time of a day of each email. The

file mbox-short.txt has lines like –

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

 Here, we would like to extract only the hour 09. That is, we would like only two digits

representing hour. Hence, we need to modify our expression as –

x = re.findall('^From .* ([0-9][0-9]):', line)

 Here, [0-9][0-9] indicates that a digit should appear only two times.

 The alternative way of writing this would be -

x = re.findall('^From .* ([0-9]{2}):', line)

 The number 2 within flower-brackets indicates that the preceding match should appear exactly two

times.

 Hence [0-9]{2} indicates there can be exactly two digits.

 Now, the output would be –

['09']

['18']
['16']

['15']

…………………

…………………

 Escape Character
 As we have discussed till now, the character like dot, plus, question mark, asterisk, dollar etc. are

meta characters in regular expressions.

notes4free.in

http://source.sakaiproject.org/viewsvn/?view=rev&rev=39772
mailto:stephen.marquard@uct.ac.za

Python Application Programming (15CS664) Module III

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 35

 Sometimes, we need these characters themselves as a part of matching string.

 Then, we need to escape them using a back- slash.

 For example,

import re

x = 'We just received $10.00 for cookies.'

y = re.findall('\$[0-9.]+',x)

Output:

['$10.00']

 Here, we want to extract only the price $10.00. As, $ symbol is a metacharacter, we need to use

\ before it.

 So that, now $ is treated as a part of matching string, but not as metacharacter.

 Bonus Section for Unix/Linux Users
 Support for searching files using regular expressions was built into the Unix OS.

 There is a command-line program built into Unix called grep (Generalized Regular Expression

Parser) that behaves similar to search() function.

$ grep '^From:' mbox-short.txt
 Output:

From: stephen.marquard@uct.ac.za From:

louis@media.berkeley.edu From:

zqian@umich.edu

From: rjlowe@iupui.edu

 Note that, grep command does not support the non-blank character \S, hence we need to use

 [^] indicating not a white-space.

notes4free.in

mailto:stephen.marquard@uct.ac.za
mailto:louis@media.berkeley.edu
mailto:zqian@umich.edu
mailto:rjlowe@iupui.edu

Python Application Programming (15CS664) Module IV

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 1

MODULE IV

4.1 CLASSES AND OBJECTS

Programmer defined types, Attributes, Rectangles, Copying, Debugging

4.2 CLASSES AND FUNCTIONS

Time, Pure Functions, Modifiers, Prototyping vs Planning, Debugging

4.3 CLASSES AND METHODS

Object Oriented Features, The init Method and str Method, Operator Overloading, Type-based dispatch,

Polymorphism, Interface and Implementation, Debugging

notes4free.in

Python Application Programming (15CS664) Module IV

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 2

MODULE IV

4.1 CLASSES AND OBJECTS
 Python is an object-oriented programming language, and class is a basis for any object oriented

programming language.

 Class is a user-defined data type which binds data and functions together into single entity.

 Class is just a prototype (or a logical entity/blue print) which will not consume any memory.

 An object is an instance of a class and it has physical existence.

 One can create any number of objects for a class.

 A class can have a set of variables (also known as attributes, member variables) and member

functions (also known as methods).

 Programmer-defined Types
 A class in Python can be created using a keyword class.

 Here, we are creating an empty class without any members by just using the keyword pass within it.

class Point:

pass

print(Point)

The output would be –

<class ' main .Point'>

 The term main indicates that the class Point is in the main scope of the current module.

 In other words, this class is at the top level while executing the program.

 Now, a user-defined data type Point got created, and this can be used to create any number of
objects of this class.

 Observe the following statements:

p=Point()

 Now, a reference (for easy understanding, treat reference as a pointer) to Point object is created

and is returned. This returned reference is assigned to the object p.

 The process of creating a new object is called as instantiation and the object is instance of a

class.

 When we print an object, Python tells which class it belongs to and where it is stored in the

memory.

print(p)

The output would be –

< main .Point object at 0x003C1BF0>

notes4free.in

Python Application Programming (15CS664) Module IV

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 2

 The output displays the address (in hexadecimal format) of the object in the memory.

 It is now clear that, the object occupies the physical space, whereas the class does not.

 Attributes
 An object can contain named elements known as attributes.

 One can assign values to these attributes using dot operator.

 For example, keeping coordinate points in mind, we can assign two attributes x and y for the

object of a class Point as below

p.x =10.0

p.y =20.0

 A state diagram that shows an object and its attributes is called as object diagram.

 For the object p, the object diagram is shown in Figure below.

Point

p

Figure : Object Diagram

 The diagram indicates that a variable (i.e. object) p refers to a Point object, which contains two

attributes.

 Each attributes refers to a floating point number.

 One can access attributes of an object as shown –

>>> print(p.x)

10.0

>>> print(p.y)

20.0

 Here, p.x means “Go to the object p refers to and get the value of x”.

 Attributes of an object can be assigned to other variables

>>> x= p.x

>>> print(x)
10.0

 Here, the variable x is nothing to do with attribute x.

 There will not be any name conflict between normal program variable and attributes of an object.

 A complete program: Write a class Point representing a point on coordinate system. Implement
following functions –

 A function read_point() to receive x and y attributes of a Point object as user input.

10.0

20.0
x

y

notes4free.in

Python Application Programming (15CS664) Module IV

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 3

 A function distance() which takes two objects of Point class as arguments and computes the
Euclidean distance between them.

 A function print_point() to display one point in the form of ordered-pair.

Program:

import math

class Point:

""" This is a class Point representing a coordinate point"""

def read_point(p):
p.x=float(input("x coordinate:"))

p.y=float(input("y coordinate:"))

def print_point(p):

print("(%g,%g)"%(p.x, p.y))

def distance(p1,p2):

d=math.sqrt((p1.x-p2.x)**2+(p1.y-p2.y)**2)

return d

p1=Point() #create first object
print("Enter First point:")

read_point(p1) #read x and y for p1

p2=Point() #create second object

print("Enter Second point:")

read_point(p2) #read x and y for p2

dist=distance(p1,p2) #compute distance

print("First point is:")

print_point(p1) #print p1

print("Second point is:")

print_point(p2) #print p2

print("Distance is: %g" %(distance(p1,p2))) #print d

The sample output of above program would be –

Enter First point:

 x coordinate:10

y coordinate:20

Enter Second point:

 x coordinate:3

y coordinate:5
First point is: (10,20)

notes4free.in

Python Application Programming (15CS664) Module IV

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 4

Second point is:(3,5)
Distance is: 16.5529

Let us discuss the working of above program thoroughly –

 The class Point contains a string enclosed within 3 double-quotes. This is known as
docstring. Usually, a string literal is written within 3 consecutive double-quotes inside a
class, module or function definition. It is an important part of documentation and is to help

someone to understand the purpose of the said class/module/function. The docstring becomes
a value for the special attribute viz. doc available for any class (and objects of that class).

To get the value of docstring associated with a class, one can use the statements like –

>>> print(Point. doc)

This is a class Point representing a coordinate point

>>> print(p1. doc)

This is a class Point representing a coordinate point

Note that, you need to type two underscores, then the word doc and again two underscores.In
the above program, there is no need of docstring and we would have just used pass to

indicate an empty class. But, it is better to understand the professional way of writing user-
defined types and hence, introduced docstring.

 The function read_point() take one argument of type Point object. When we use the

statements like,

read_point(p1)

the parameter p of this function will act as an alias for the argument p1. Hence, the

modification done to the alias p reflects the original argument p1. With the help of this
function, we are instructing Python that the object p1 has two attributes x and y.

 The function print_point() also takes one argument and with the help of format- strings, we

are printing the attributes x and y of the Point object as an ordered-pair (x,y).

 As we know, the Euclidean distance between two points (x1,y1) and (x2,y2) is

In this program, we have Point objects as (p1.x, p1.y) and (p2.x, p2.y). Apply the formula on

these points by passing objects p1 and p2 as parameters to the function distance(). And then

return the result.

Thus, the above program gives an idea of defining a class, instantiating objects, creating attributes,

defining functions that takes objects as arguments and finally, calling (or invoking) such functions

whenever and wherever necessary.

x1 x22
 y1 y22

notes4free.in

Python Application Programming (15CS664) Module IV

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 5

NOTE: User-defined classes in Python have two types of attributes viz. class attributes and instance

attributes. Class attributes are defined inside the class (usually, immediately after class header). They

are common to all the objects of that class. That is, they are shared by all the objects created from that

class. But, instance attributes defined for individual objects. They are available only for that instance

(or object). Attributes of one instance are not available for another instance of the same class.

For example, consider the class Point as discussed earlier –

class Point:
pass

p1= Point() #first object of the class
p1.x=10.0 #attributes for p1

p1.y=20.0

print(p1.x, p1.y) #prints 10.0 20.0

p2= Point() #second object of the class
print(p2.x) #displays error as below

AttributeError: 'Point' object has no attribute 'x'

This clearly indicates that the attributes x and y created are available only for the object p1, but not
for p2. Thus, x and y are instance attributes but not class attributes.

We will discuss class attributes late in-detail. But, for the understanding purpose, observe the

following example –

class Point:

x=2

y=3

p1=Point() #first object of the class

print(p1.x, p1.y) # prints 2 3

p2=Point() #second object of the class

print(p2.x, p2.y) # prints 2 3

Here, the attributes x and y are defined inside the definition of the class Point itself. Hence, they are

available to all the objects of that class.

 Rectangles
 It is possible to make an object of one class as an attribute to other class.

 To illustrate this, consider an example of creating a class called as Rectangle.

 A rectangle can be created using any of the following data –

 By knowing width and height of a rectangle and one corner point (ideally, a bottom- left

corner) in a coordinate system

 By knowing two opposite corner points

 Let us consider the first technique and implement the task: Write a class Rectangle containing

notes4free.in

Python Application Programming (15CS664) Module IV

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 6

numeric attributes width and height.

 This class should contain another attribute corner which is an instance of another class Point.

Implement following functions –

 A function to print corner point as an ordered-pair

 A function find_center() to compute center point of the rectangle

 A function resize() to modify the size of rectangle

The program is as given below –

class Point:

""" This is a class Point representing coordinate point"""

class Rectangle:

""" This is a class Rectangle. Attributes: width, height and Corner Point """

def find_center(rect):

p=Point()

p.x = rect.corner.x + rect.width/2

p.y = rect.corner.y + rect.height/2

return p

def resize(rect, w, h):

rect.width +=w

rect.height+=h

def print_point(p):

print("(%g,%g)"%(p.x, p.y))

box=Rectangle() #create Rectangle object

box.corner=Point() #define an attribute corner for box

box.width=100 #set attribute width to box

box.height=200 #set attribute height to box

box.corner.x=0 #corner itself has two attributes x and y

box.corner.y=0 #initialize x and y to 0

print("Original Rectangle is:")

print("width=%g, height=%g"%(box.width, box.height))

center=find_center(box)

print("The center of rectangle is:")

print_point(center)

resize(box,50,70)

print("Rectangle after resize:")

print("width=%g, height=%g"%(box.width, box.height))

notes4free.in

Python Application Programming (15CS664) Module IV

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 7

center=find_center(box)

print("The center of resized rectangle is:")

print_point(center)

A sample output would be:

Original Rectangle is: width=100, height=200

The center of rectangle is: (50,100)

 Rectangle after resize: width=150, height=270

 The center of resized rectangle is: (75,135)

The working of above program is explained in detail here –

 Two classes Point and Rectangle have been created with suitable docstrings. As of now, they
do not contain any class-level attributes.

 The following statement instantiates an object of Rectangle class.

box=Rectangle()

The statement

box.corner=Point()
indicates that corner is an attribute for the object box and this attribute itself is an object of
the class Point. The following statements indicate that the object box has two more attributes

box.width=100 #give any numeric value

box.height=200 #give any numeric value

In this program, we are treating the corner point as the origin in coordinate system and

hence the following assignments –

box.corner.x=0 box.corner.y=0

(Note that, instead of origin, any other location in the coordinate system can be given as

corner point.) Based on all above statements, an object diagram can be drawn as –

Rectangle

box

The expression box.corner.x means, “Go to the object box refers to and select the attribute

named corner; then go to that object and select the attribute named x.”

 The function find_center() takes an object rect as an argument. So, when a call is made using

the statement –

center=find_center(box)

width

height

100
200

Point

corner
0

0
x

y

notes4free.in

Python Application Programming (15CS664) Module IV

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 8

(x+ half of width, y+ half of height)

the object rect acts as an alias for the argument box.

A local object p of type Point has been created inside this function. The attributes of p are x

and y, which takes the values as the coordinates of center point of rectangle. Center of a

rectangle can be computed with the help of following diagram.

Half of height

(x,y)

 Half of width

The function find_center() returns the computed center point. Note that, the return value of a

function here is an instance of some class. That is, one can have an instance as return values

from a function.

 The function resize() takes three arguments: rect – an instance of Rectangle class and two
numeric variables w and h. The values w and h are added to existing attributes width and

height. This clearly shows that objects are mutable. State of an object can be changed by
modifying any of its attributes. When this function is called with a statement –

resize(box,50,70)

the rect acts as an alias for box. Hence, width and height modified within the function will
reflect the original object box.

Thus, the above program illustrates the concepts: Object of one class is made as attribute for object of

another class, returning objects from functions and objects are mutable.

 Copying

 An object will be aliased whenever there an object is assigned to another object of same class.

This may happen in following situations –

 Direct object assignment (like p2=p1)

 When an object is passed as an argument to a function

 When an object is returned from a function

 The last two cases have been understood from the two programs in previous sections.

 Let us understand the concept of aliasing more in detail using the following program

>>> class Point:

pass

>>> p1=Point()

>>> p1.x=10
>>> p1.y=20
>>> p2=p1

notes4free.in

Python Application Programming (15CS664) Module IV

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 9

10

20
x

y

x
y

10
20

x

y

10

20

>>> print(p1)
< main .Point object at 0x01581BF0>

>>> print(p2)
< main .Point object at 0x01581BF0>

 Observe that both p1 and p2 objects have same physical memory. It is clear now that the object p2

is an alias for p1.

 So, we can draw the object diagram as below –

p1 p2

 Hence, if we check for equality and identity of these two objects, we will get following result.

>>> p1 is p2

True
>>> p1==p2

True

 But, the aliasing is not good always. For example, we may need to create a new object using an

existing object such that – the new object should have a different physical memory, but it must

have same attribute (and their values) as that of existing object. Diagrammatically, we need

something as below –

p1 p2

 In short, we need a copy of an object, but not an alias.

 To do this, Python provides a module called copy and a method called copy(). Consider the below

given program to understand the concept.

>>> class Point:
pass

>>> p1=Point()
>>> p1.x=10
>>> p1.y=20

>>> import copy #import module copy

>>> p3=copy.copy(p1) #use the method copy()

>>> print(p1)

notes4free.in

Python Application Programming (15CS664) Module IV

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 10

< main .Point object at 0x01581BF0>

>>> print(p3)
< main .Point object at 0x02344A50>

>>> print(p3.x,p3.y)

10 20

 Observe that the physical address of the objects p1 and p3 are now different.

 But, values of attributes x and y are same. Now, use the following statements –

>>> p1 is p3

False

>>> p1 == p3
False

 Here, the is operator gives the result as False for the obvious reason of p1 and p3 are being two

different entities on the memory.

 But, why == operator is generating False as the result, though the contents of two objects are

same? The reason is p1 and p3 are the objects of user-defined type.

 And, Python cannot understand the meaning of equality on the new data type. The default

behavior of equality (==) is identity (is operator) itself. Hence, Python applies this default

behavior on p1 == p3 and results in False.

NOTE: If we need to define the meaning of equality (==) operator explicitly on user-defined data

types (i.e. on class objects), then we need to override the method eq () inside the class. This will be

discussed later in detail.

 The copy() method of copy module duplicates the object.

 The content (i.e. attributes) of one object is copied into another object as we have discussed till

now.

 But, when an object itself is an attribute inside another object, the duplication will result in a

strange manner.

 To understand this concept, try to copy Rectangle object (created in previous section) as given

below

import copy class

Point:

""" This is a class Point representing coordinate point"""

class Rectangle:

""" This is a class Rectangle.Attributes: width, height and Corner Point """

box1=Rectangle()

box1.corner=Point()

box1.width=100

box1.height=200

box1.corner.x=0

box1.corner.y=0

notes4free.in

Python Application Programming (15CS664) Module IV

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 11

box2=copy.copy(box1)

print(box1 is box2) #prints False

print(box1.corner is box2.corner) #prints True

 Now, the question is – why box1.corner and box2.corner are same objects, when box1 and box2

are different? Whenever the statement is executed,

box2=copy.copy(box1)

 The contents of all the attributes of box1 object are copied into the respective attributes of box2

object.

 That is, box1.width is copied into box2.width, box1.height is copied into box2.height.

 Similarly, box1.corner is copied into box2.corner.

 Now, recollect the fact that corner is not exactly the object itself, but it is a reference to the object

of type Point (Read the discussion done for Figure at the beginning of this Chapter).

 Hence, the value of reference (that is, the physical address) stored in box1.corner is copied into

box2.corner.

 Thus, the physical object to which box1.corner and box2.corner are pointing is only one.

 This type of copying the objects is known as shallow copy.

 To understand this behavior, observe the following diagram

Rectangle

Point

 Now, the attributes width and height for two objects box1 and box2 are independent.

 Whereas, the attribute corner is shared by both the objects.

 Thus, any modification done to box1.corner will reflect box2.corner as well.

 Obviously, we don’t want this to happen, whenever we create duplicate objects. That is, we want

two independent physical objects.

 Python provides a method deepcopy() for doing this task.

 This method copies not only the object but also the objects it refers to, and the objects they refer

to, and so on.

box3=copy.deepcopy(box1)

print(box1 is box3) #prints False

print(box1.corner is box3.corner) #prints False

x

y

0

0

Rectangle

box1 width 100
 height

corner

200

width 100 box2

height

corner

200

notes4free.in

Python Application Programming (15CS664) Module IV

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 12

Thus, the objects box1 and box3 are now completely independent.

 Debugging

 While dealing with classes and objects, we may encounter different types of errors.

 For example, if we try to access an attribute which is not there for the object, we will get

AttributeError. For example –

>>> p= Point()

>>> p.x = 10

>>> p.y = 20
>>> print(p.z)

AttributeError: 'Point' object has no attribute 'z'

 To avoid such error, it is better to enclose such codes within try/except as given below –

try:
z = p.x

except AttributeError: z = 0

 When we are not sure, which type of object it is, then we can use type() as –

>>> type(box1)

<class ' main .Rectangle'>

 Another method isinstance() helps to check whether an object is an instance of a particular class

>>> isinstance(box1,Rectangle)

True

 When we are not sure whether an object has a particular attribute or not, use a function hasattr() –

>>> hasattr(box1, 'width')

True

 Observe the string notation for second argument of the function hasattr(). Though the attribute

width is basically numeric, while giving it as an argument to function hasattr(), it must be

enclosed within quotes.

4.2 CLASSES AND FUNCTIONS
 Though Python is object oriented programming languages, it is possible to use it as functional

programming. There are two types of functions viz. pure functions and modifiers.

 A pure function takes objects as arguments and does some work without modifying any of the

original argument.

 On the other hand, as the name suggests, modifier function modifies the original argument.

 In practical applications, the development of a program will follow a technique called as prototype

and patch.

 That is, solution to a complex problem starts with simple prototype and incrementally dealing with

the complications.

notes4free.in

Python Application Programming (15CS664) Module IV

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 13

 Pure Functions

 To understand the concept of pure functions, let us consider an example of creating a class called

Time. An object of class Time contains hour, minutes and seconds as attributes.

 Write a function to print time in HH:MM:SS format and another function to add two time objects.

 Note that, adding two time objects should yield proper result and hence we need to check whether

number of seconds exceeds 60, minutes exceeds 60 etc, and take appropriate action.

class Time:

"""Represents the time of a day Attributes: hour, minute, second """

def printTime(t):

print("%.2d:%.2d:%.2d"%(t.hour,t.minute,t.second))

def add_time(t1,t2):

sum=Time()

sum.hour = t1.hour + t2.hour

sum.minute = t1.minute + t2.minute

sum.second = t1.second + t2.second

if sum.second >= 60:

sum.second -= 60

sum.minute += 1

 if sum.minute >= 60:

sum.minute -= 60

sum.hour += 1

return sum

t1=Time()

t1.hour=10

t1.minute=34

t1.second=25

print("Time1 is:")

printTime(t1)

t2=Time()

t2.hour=2

t2.minute=12

t2.second=41

print("Time2 is :")

printTime(t2)

t3=add_time(t1,t2)

print("After adding two time objects:")

printTime(t3)

notes4free.in

Python Application Programming (15CS664) Module IV

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 14

The output of this program would be :
Time1 is: 10:34:25

Time2 is : 02:12:41

After adding two time objects: 12:47:06

 Here, the function add_time() takes two arguments of type Time, and returns a Time object,

whereas, it is not modifying contents of its arguments t1 and t2.

 Such functions are called as pure functions.

 Modifiers
 Sometimes, it is necessary to modify the underlying argument so as to reflect the caller.

 That is, arguments have to be modified inside a function and these modifications should be

available to the caller.

 The functions that perform such modifications are known as modifier function.

 Assume that, we need to add few seconds to a time object, and get a new time.

 Then, we can write a function as below

def increment(t, seconds):
t.second += seconds

while t.second >= 60:
 t.second -= 60

t.minute += 1

while t.minute >= 60:

 t.minute -= 60

t.hour += 1

 In this function, we will initially add the argument seconds to t.second.

 Now, there is a chance that t.second is exceeding 60.

 So, we will increment minute counter till t.second becomes lesser than 60.

 Similarly, till the t.minute becomes lesser than 60, we will decrement minute counter.

 Note that, the modification is done on the argument t itself. Thus, the above function is a

modifier.

 Prototyping v/s Planning

 Whenever we do not know the complete problem statement, we may write the program initially, and

then keep of modifying it as and when requirement (problem definition) changes. This methodology

is known as prototype and patch.

 That is, first design the prototype based on the information available and then perform patch-work as

and when extra information is gathered.

 But, this type of incremental development may end-up in unnecessary code, with many special cases

and it may be unreliable too.

 An alternative is designed development, in which high-level insight into the problem can make the

programming much easier.

 For example, if we consider the problem of adding two time objects, adding seconds to time object

notes4free.in

Python Application Programming (15CS664) Module IV

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 15

etc. as a problem involving numbers with base 60 (as every hour is 60 minutes and every minute is

60 seconds), then our code can be improved.

 Such improved versions are discussed later in this chapter.

 Debugging

 In the program written inabove, we have treated time objects as valid values.

 But, what if the attributes (second, minute, hour) of time object are given as wrong values like

negative number, or hours with value more than 24, minutes/seconds with more than 60 etc? So, it

is better to write error-conditions in such situations to verify the input.

 We can write a function similar to as given below –

def valid_time(time):

if time.hour < 0 or time.minute < 0 or time.second < 0:

return False

if time.minute >= 60 or time.second >= 60:

return False

return True

 Now, at the beginning of add_time() function, we can put a condition as –

def add_time(t1, t2):
if not valid_time(t1) or not valid_time(t2):

raise ValueError('invalid Time object in add_time')

 #remaining statements of add_time() functions

 Python provides another debugging statement assert.

 When this keyword is used, Python evaluates the statement following it.

 If the statement is True, further statements will be evaluated sequentially. But, if the statement is

False, then AssertionError exception is raised.

 The usage of assert is shown here –

def add_time(t1, t2):
assert valid_time(t1) and valid_time(t2)

#remaining statements of add_time() functions

 The assert statement clearly distinguishes the normal conditional statements as a part of the logic

of the program and the code that checks for errors.

4.3 CLASSES AND METHODS
 The classes that have been considered till now were just empty classes without having any

definition.

 But, in a true object oriented programming, a class contains class-level attributes, instance-level

attributes, methods etc.

notes4free.in

Python Application Programming (15CS664) Module IV

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 16

 There will be a tight relationship between the object of the class and the function that operate on

those objects. Hence, the object oriented nature of Python classes will be discussed here.

 Object-Oriented Features
As an object oriented programming language, Python possess following characteristics:

 Programs include class and method definitions.

 Most of the computation is expressed in terms of operations on objects.

 Objects often represent things in the real world, and methods often correspond to the ways
objects in the real world interact.

 To establish relationship between the object of the class and a function, we must define a function

as a member of the class. \

 function which is associated with a particular class is known as a method.

 Methods are semantically the same as functions, but there are two syntactic differences:

 Methods are defined inside a class definition in order to make the relationship

between the class and the method explicit.

 The syntax for invoking a method is different from the syntax for calling a function.

 Now onwards, we will discuss about classes and methods.

 The __init__() Method
 A method init () has to be written with two underscores before and after the word init

 Python provides a special method called as init () which is similar to constructor method in other

programming languages like C++/Java.

 The term init indicates initialization.

 As the name suggests, this method is invoked automatically when the object of a class is created.

Consider the example given here –

import math

class Point:

def init (self,a,b):

self.x=a

self.y=b

def dist(self,p2):

d=math.sqrt((self.x-p2.x)**2 + (self.y-p2.y)**2)

 return d

def str (self):

return "(%d,%d)"%(self.x, self.y)

p1=Point(10,20) # init () is called automatically

p2=Point(4,5) # init () is called automatically

print("P1 is:",p1) # str () is called automatically

 print("P2 is:",p2) # str () is called automatically

notes4free.in

Python Application Programming (15CS664) Module IV

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 17

d=p1.dist(p2) #explicit call for dist()

print("The distance is:",d)

The sample output is –

P1 is: (10,20)
P2 is: (4,5)

Distance is: 16.15549442140351

 Let us understand the working of this program and the concepts involved:

 Keep in mind that every method of any class must have the first argument as self. The

argument self is a reference to the current object. That is, it is reference to the object which
invoked the method. (Those who know C++, can relate self with this pointer). The object

which invokes a method is also known as subject.

 The method init () inside the class is an initialization method, which will be invoked

automatically when the object gets created. When the statement like –

p1=Point(10,20)

is used, the init () method will be called automatically. The internal meaning of the above
line is –

p1. init (10,20)

Here, p1 is the object which is invoking a method. Hence, reference to this object is created

and passed to init () as self. The values 10 and 20 are passed to formal parameters a and b of

init () method. Now, inside init () method, we have statements

self.x=10

self.y=20

This indicates, x and y are instance attributes. The value of x for the object p1 is 10 and, the

value of y for the object p1 is 20.

When we create another object p2, it will have its own set of x and y. That is, memory
locations of instance attributes are different for every object.

Thus, state of the object can be understood by instance attributes.

 The method dist() is an ordinary member method of the class Point. As mentioned earlier, its

first argument must be self. Thus, when we make a call as –

d=p1.dist(p2)

a reference to the object p1 is passed as self to dist() method and p2 is passed explicitly as a

second argument. Now, inside the dist()method, we are calculating distance between two

point (Euclidian distance formula is used) objects. Note that, in this method, we cannot use

the name p1, instead we will use self which is a reference (alias) to p1.

notes4free.in

Python Application Programming (15CS664) Module IV

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 18

 The next method inside the class is str (). It is a special method used for string

representation of user-defined object. Usually, print() is used for printing basic types in

Python. But, user-defined types (class objects) have their own meaning and a way of

representation. To display such types, we can write functions or methods like print_point() as

we did in previous section But, more polymorphic way is to use str () so that, when we

write just print() in the main part of the program, the str () method will be invoked

automatically. Thus, when we use the statement like –

print("P1 is:",p1)

the ordinary print() method will print the portion “P1 is:” and the remaining portion is taken

care by str () method. In fact, str () method will return the string format what we have given

inside it, and that string will be printed by print() method.

 Operator Overloading
 Ability of an existing operator to work on user-defined data type (class) is known as operator

overloading.

 It is a polymorphic nature of any object oriented programming.

 Basic operators like +, -, * etc. can be overloaded.

 To overload an operator, one needs to write a method within user-defined class.

 Python provides a special set of methods which have to be used for overloading required

operator.

 The method should consist of the code what the programmer is willing to do with the operator.

Following table shows gives a list of operators and their respective Python methods for

overloading.

Operator Special Function

in Python

Operator Special Function

in Python

+ add () <= le ()

- sub () >= ge ()

* mul () == eq ()

/ truediv () != ne ()

% mod () in contains ()

< lt () len len ()

> gt () str str ()

notes4free.in

Python Application Programming (15CS664) Module IV

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 19

 Let us consider an example of Point class considered earlier.

 Using operator overloading, we can try to add two point objects. Consider the program given

below –

class Point:
def _init_ (self,a=0,b=0):

self.x=a

self.y=b

def __add__(self, p2):

p3=Point()

p3.x=self.x+p2.x

p3.y=self.y+p2.y

 return p3

def __str (self):
return "(%d,%d)"%(self.x, self.y)

p1=Point(10,20)

p2=Point(4,5)

print("P1 is:",p1)

print("P2 is:",p2)
p4=p1+p2 #call for add () method

print("Sum is:",p4)

The output would be –

P1 is: (10,20)
P2 is: (4,5)
Sum is: (14,25)

 In the above program, when the statement p4 = p1+p2 is used, it invokes a special method _add__
() written inside the class. Because, internal meaning of this statement is–

p4 = p1.__add (p4)

Here, p1 is the object invoking the method. Hence, self inside _add () is the reference (alias) of p1.

And, p4 is passed as argument explicitly.

In the definition of __add__(), we are creating an object p3 with the statement –

p3=Point()

The object p3 is created without initialization. Whenever we need to create an object with and without

initialization in the same program, we must set arguments of init () for some default values. Hence, in

the above program arguments a and b of init () are made as default arguments with values as zero.

Thus, x and y attributes of p3 will be now zero. In the add () method, we are adding respective attributes

of self and p2 and storing in p3.x and p3.y. Then the object p3 is returned. This returned object is

received as p4 and is printed.

notes4free.in

Python Application Programming (15CS664) Module IV

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 20

NOTE that, in a program containing operator overloading, the overloaded operator behaves in a

normal way when basic types are given. That is, in the above program, if we use the statements

m= 3+4
print(m)

it will be usual addition and gives the result as 7. But, when user-defined types are used as operands,

then the overloaded method is invoked.

 Let us consider a more complicated program involving overloading. Consider a problem of

creating a class called Time, adding two Time objects, adding a number to Time object etc. that

we had considered in previous section. Here is a complete program with more of OOP concepts.

class Time:
def init (self, h=0,m=0,s=0):

self.hour=h

self.min=m
self.sec=s

def time_to_int(self):

minute=self.hour*60+self.min

seconds=minute*60+self.sec
return seconds

def int_to_time(self, seconds):

t=Time()

minutes, t.sec=divmod(seconds,60)

 t.hour, t.min=divmod(minutes,60)

return t

def _str (self):
return "%.2d:%.2d:%.2d"%(self.hour,self.min,self.sec)

def _ eq (self,t):
return self.hour==t.hour and self.min==t.min and self.sec==t.sec

def __add (self,t):
if isinstance(t, Time):

return self.addTime(t)

else:
return self.increment(t)

def addTime(self, t):

seconds=self.time_to_int()+t.time_to_int()

return self.int_to_time(seconds)

def increment(self, seconds):

seconds += self.time_to_int() return

notes4free.in

Python Application Programming (15CS664) Module IV

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 21

self.int_to_time(seconds)

def radd (self,t):

return self. add (t)

T1=Time(3,40)
T2=Time(5,45)

print("T1 is:",T1)

print("T2 is:",T2)
print("Whether T1 is same as T2?",T1==T2) #call for eq ()

T3=T1+T2 #call for add ()

print("T1+T2 is:",T3)

T4=T1+75 #call for add ()

print("T1+75=",T4)

T5=130+T1 #call for radd ()

print("130+T1=",T5)

T6=sum([T1,T2,T3,T4])
print("Using sum([T1,T2,T3,T4]):",T6)

The output would be –

T1 is: 03:40:00

T2 is: 05:45:00
Whether T1 is same as T2? False

 T1+T2 is: 09:25:00

T1+75= 03:41:15
130+T1= 03:42:10
Using sum([T1,T2,T3,T4]): 22:31:15

 Working of above program is explained hereunder –

 The class Time has init () method for initialization of instance attributes hour, min and

sec. The default values of all these are being zero.

 The method time_to_int() is used convert a Time object (hours, min and sec) into single integer
representing time in number of seconds.

 The method int_to_time() is written to convert the argument seconds into time object in the form
of hours, min and sec. The built-in method divmod() gives the quotient as well as remainder

after dividing first argument by second argument given to it.

 Special method eq () is for overloading equality (==) operator. We can say one Time object is

equal to the other Time object if underlying hours, minutes and seconds are equal respectively.
Thus, we are comparing these instance attributes individually and returning either True of

False.

 When we try to perform addition, there are 3 cases –

o Adding two time objects like T3=T1+T2.

notes4free.in

Python Application Programming (15CS664) Module IV

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 22

o Adding integer to Time object like T4=T1+75

o Adding Time object to an integer like T5=130+T1

 Each of these cases requires different logic. When first two cases are considered, the first

argument will be T1 and hence self will be created and passed to add () method.

 Inside this method, we will check the type of second argument using isinstance() method.

 If the second argument is Time object, then we call addTime() method. In this method, we will

first convert both Time objects to integer (seconds) and then the resulting sum into Time object

again

 So, we make use time_to_int() and int_to_time() here. When the 2
nd

 argument is an integer it is

obvious that it is number of seconds. Hence, we need to call increment() method.

 Thus, based on the type of argument received in a method, we take appropriate action. This
is known as type-based dispatch.

 In the 3
rd

 case like T5=130+T1, Python tries to convert first argument 130 into self, which is
not possible. Hence, there will be an error. This indicates that for Python, T1+5 is not same

as 5+T1 (Commutative law doesn’t hold good!!).
 To avoid the possible error, we need to implement right-side addition method radd ().

Inside this method, we can call overloaded method add ().

 The beauty of Python lies in surprising the programmer with more facilities!! As we have
implemented add () method (that is, overloading of + operator), the built- in sum() will is

capable of adding multiple objects given in a sequence. This is due to Polymorphism in
Python.

 Consider a list containing Time objects, and then call sum() on that list as –

T6=sum([T1,T2,T3,T4])

 The sum() internally calls add () method multiple times and hence gives the appropriate

result. Note down the square-brackets used to combine Time objects as a list and then

passing it to sum().

 Thus, the program given here depicts many features of OOP concepts.

 Debugging

 We have seen earlier that hasattr() method can be used to check whether an object has particular

attribute.

 There is one more way of doing it using a method vars(). This method maps attribute names and

their values as a dictionary.

 For example, for the Point class defined earlier, use the statements

>>> p = Point(3, 4)
>>> vars(p) #output is {'y': 4, 'x': 3}

 For purposes of debugging, you might find it useful to keep this function handy:

def print_attributes(obj):

for attr in vars(obj):

print(attr, getattr(obj, attr))

 Here, print_attributes() traverses the dictionary and prints each attribute name and its
corresponding value.

 The built-in function getattr() takes an object and an attribute name (as a string) and returns the
attribute values

notes4free.in

Python Application Programming (15CS664) Module V

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 1

MODULE V

5.1 NETWORKED PROGRAMS

In this era of internet, it is a requirement in many situations to retrieve the data from web and to

process it. In this section, we will discuss basics of network protocols and Python libraries available

to extract data from web.

 HyperText Transfer Protocol (HTTP)

 HTTP (HyperText Transfer Protocol) is the media through which we can retrieve web- based data.

 The HTTP is an application protocol for distributed and hypermedia information systems.

 HTTP is the foundation of data communication for the World Wide Web.

 Hypertext is structured text that uses logical links (hyperlinks) between nodes containing text.

HTTP is the protocol to exchange or transfer hypertext.

 Consider a situation:

 you try to read a socket, but the program on the other end of the socket has not sent any data,

then you need to wait.

 If the programs on both ends of the socket simply wait for some data without sending

anything, they will wait for a very long time.

 So an important part of programs that communicate over the Internet is to have some sort of

protocol. A protocol is a set of precise rules that determine

 Who will send request for what purpose

 What action to be taken

 What response to be given

 To send request and to receive response, HTTP uses GET and POST methods.

NOTE: To test all the programs in this section, you must be connected to internet.

 The World’s Simplest Web Browser

 The built-in module socket of Python facilitates the programmer to make network connections and to

retrieve data over those sockets in a Python program.

 Socket is bidirectional data path to a remote system.

 A socket is much like a file, except that a single socket provides a two-way connection between

two programs.

 You can both read from and write to the same socket.

 If you write something to a socket, it is sent to the application at the other end of the socket.

 If you read from the socket, you are given the data which the other application has sent.

 Consider a simple program to retrieve the data from a web page. To understand the program given

below, one should know the meaning of terminologies used there.

notes4free.in

Python Application Programming (15CS664) Module V

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 2

 AF_INET is an address family (IP) that is used to designate the type of addresses that your

socket can communicate with.When you create a socket, you have to specify its address

family, and then you can use only addresses of that type with the socket.

 SOCK_STREAM is a constant indicating the type of socket (TCP). It works as a file stream

and is most reliable over the network.

 Port is a logical end-point. Port 80 is one of the most commonly used port numbers in the

Transmission Control Protocol (TCP) suite.

 The command to retrieve the data must use CRLF(Carriage Return Line Feed) line endings, and

it must end in \r\n\r\n (line break in protocol specification).

 encode() method applied on strings will return bytes-representation of the string. Instead of

encode() method, one can attach a character b at the beginning of the string for the same effect.

 decode() method returns a string decoded from the given bytes.

Figure : A Socket Connection

 A socket connection between the user program and the webpage is shown in Figure below

 Now, observe the following program –

import socket

mysock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 mysock.connect(('data.pr4e.org', 80))

cmd='GET http://data.pr4e.org/romeo.txt HTTP/1.0\r\n\r\n'.encode()

mysock.send(cmd)

while True:

data = mysock.recv(512)

if (len(data) < 1):

break

print(data.decode(),end='')

mysock.close()

notes4free.in

http://data.pr4e.org/romeo.txt

Python Application Programming (15CS664) Module V

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 3

 When we run above program, we will get some information related to web-server of the website

which we are trying to scrape.

 Then, we will get the data written in that web-page. In this program, we are extracting 512 bytes

of data at a time. (One can use one‟s convenient number here). The extracted data is decoded and

printed. When the length of data becomes less than one (that is, no more data left out on the web

page), the loop is terminated.

 Retrieving an Image over HTTP

 In the previous section, we retrieved the text data from the webpage. Similar logic can be used to

extract images on the webpage using HTTP.

 In the following program, we extract the image data in the chunks of 5120 bytes at a time, store

that data in a string, trim off the headers and then store the image file on the disk.

import socket

import time

HOST = 'data.pr4e.org' #host name

PORT = 80 #port number

mysock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

mysock.connect((HOST, PORT))

mysock.sendall(b'GET http://data.pr4e.org/cover3.jpg HTTP/1.0\r\n\r\n')

count = 0

picture = b"" #empty string in binary format

while True:

data = mysock.recv(5120) #retrieve 5120 bytes at a time

 if (len(data) < 1):

break

time.sleep(0.25) #programmer can see data retrieval easily

 count = count + len(data)

print(len(data), count) #display cumulative data retrieved

picture = picture + data

mysock.close()

pos = picture.find(b"\r\n\r\n") #find end of the header (2 CRLF)

notes4free.in

http://data.pr4e.org/cover3.jpg

Python Application Programming (15CS664) Module V

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 4

print('Header length', pos)

print(picture[:pos].decode())

Skip past the header and save the picture data

picture = picture[pos+4:]

fhand = open("stuff.jpg", "wb") #image is stored as stuff.jpg

fhand.write(picture) fhand.close()

 When we run the above program, the amount of data (in bytes) retrieved from the internet is

displayed in a cumulative format.

 At the end, the image file „stuff.jpg‟ will be stored in the current working directory. (One has to

verify it by looking at current working directory of the program).

 Retrieving Web Pages with urllib

 Python provides simpler way of webpage retrieval using the library urllib.

 Here, webpage is treated like a file. urllib handles all of the HTTP protocol and header details.

 Following is the code equivalent to the program given above.

import urllib.request

fhand = urllib.request.urlopen('http://data.pr4e.org/romeo.txt')

for line in fhand:

print(line.decode().strip())

 Once the web page has been opened with urllib.urlopen, we can treat it like a file and read through

it using a for-loop.

 When the program runs, we only see the output of the contents of the file.

 The headers are still sent, but the urllib code consumes the headers and only returns the data to us.

 Following is the program to retrieve the data from the file romeo.txt which is residing at

www.data.pr4e.org, and then to count number of words in it.

import urllib.request

fhand = urllib.request.urlopen('http://data.pr4e.org/romeo.txt')

counts = dict()

for line in fhand:

words = line.decode().split()

for word in words:

counts[word] = counts.get(word, 0) + 1

print(counts)

notes4free.in

http://data.pr4e.org/romeo.txt%27)
http://www.data.pr4e.org/
http://data.pr4e.org/romeo.txt%27)

Python Application Programming (15CS664) Module V

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 5

 Reading Binary Files using urllib

 Sometimes you want to retrieve a non-text (or binary) file such as an image or video file.

 The data in these files is generally not useful to print out, but you can easily make a copy of a

URL to a local file on your hard disk using urllib.

 Above, we have seen how to retrieve image file from the web using sockets.

 Now, here is an equivalent program using urllib.

import urllib.request img=urllib.request.urlopen('http://data.pr4e.org/cover3.jpg').read()

fhand = open('cover3.jpg', 'wb')

fhand.write(img)

 fhand.close()

 Once we execute the above program, we can see a file cover3.jpg in the current working

directory in our computer.

 The program reads all of the data in at once across the network and stores it in the variable img

in the main memory of your computer, then opens the file cover.jpg and writes the data out to

your disk.

 This will work if the size of the file is less than the size of the memory (RAM) of your

computer.

 However, if this is a large audio or video file, this program may crash or at least run extremely

slowly when your computer runs out of memory.

 In order to avoid memory overflow, we retrieve the data in blocks (or buffers) and then write

each block to your disk before retrieving the next block.

 This way the program can read any size file without using up all of the memory you have in

your computer.

 Following is another version of above program, where data is read in chunks and then stored

onto the disk.

import urllib.request

img=urllib.request.urlopen('http://data.pr4e.org/cover3.jpg')

fhand = open('cover3.jpg', 'wb')

size = 0

while True:

info = img.read(100000) if

len(info) < 1:

break

size = size + len(info)

fhand.write(info)

notes4free.in

http://data.pr4e.org/cover3.jpg%27).read()
http://data.pr4e.org/cover3.jpg%27)

Python Application Programming (15CS664) Module V

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 6

print(size, 'characters copied.') fhand.close()

 Once we run the above program, an image file cover3.jpg will be stored on to the current

working directory.

 Parsing HTML and Scraping the Web

 One of the common uses of the urllib capability in Python is to scrape the web.

 Web scraping is when we write a program that pretends to be a web browser and retrieves pages,

then examines the data in those pages looking for patterns.

 Example: a search engine such as Google will look at the source of one web page and extract the

links to other pages and retrieve those pages, extracting links, and so on.

 Using this technique, Google spiders its way through nearly all of the pages on the web.

 Google also uses the frequency of links from pages it finds to a particular page as one measure of

how “important” a page is and how high the page should appear in its search results.

 Parsing HTML using Regular Expressions

 Sometimes, we may need to parse the data on the web which matches a particular pattern.

 For this purpose, we can use regular expressions. Now, we will consider a program that extracts

all the hyperlinks given in a particular webpage.

 To understand the Python program for this purpose, one has to know the pattern of an HTML file.

 Here is a simple HTML file –

<h1>The First Page</h1>

<p>

</p>

If you like, you can switch to the

 Second Page.

 Here,

<h1> and </h1> are the beginning and end of header tags

<p> and </p> are the beginning and end of paragraph tags

<a> and are the beginning and end of anchor tag which is used for giving links

href is the attribute for anchor tag which takes the value as the link for another page.

 The above information clearly indicates that if we want to extract all the hyperlinks in a webpage,

we need a regular expression which matches the href attribute. Thus, we can create a regular

expression as –

href="http://.+?"

 Here, the question mark in .+? indicate that the match should find smallest possible matching

string.

 Now, consider a Python program that uses the above regular expression to extract all hyperlinks

notes4free.in

http://www.dr-chuck.com/page2.htm

Python Application Programming (15CS664) Module V

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 7

from the webpage given as input.

import urllib.request import re

url = input('Enter - ') #give URL of any website

html = urllib.request.urlopen(url).read()

links = re.findall(b'href="(http://.*?)"', html)

for link in links:

print(link.decode())

ctx.check_hostname = False

ctx.verify_mode = ssl.CERT_NONE

url = input('Enter - ')

html = urlopen(url, context=ctx).read()

soup = BeautifulSoup(html, "html.parser")

 tags = soup('a')

for tag in tags:

print('TAG:', tag)

print('URL:', tag.get('href', None))

print('Contents:', tag.contents[0])

print('Attrs:', tag.attrs)

The sample output would be –

Enter - http://www.dr-chuck.com/page1.htm

TAG: Second Page

URL: http://www.dr-chuck.com/page2.htm

Contents: Second Page

Attrs: {'href': 'http://www.dr-chuck.com/page2.htm'}

5.2 USING WEB SERVICES

 There are two common formats that are used while exchanging data across the web.

 One is HTML and the other is XML (eXtensible Markup Language).

 In the previous section we have seen how to retrieve the data from a web-page which is in the form

of HTML.

 Now, we will discuss the retrieval of data from web-page designed using XML.

 XML is best suited for exchanging document-style data.

 When programs just want to exchange dictionaries, lists, or other internal information with each

other, they use JavaScript Object Notation or JSON (refer www.json.org).

 We will look at both formats.

notes4free.in

http://www.dr-chuck.com/page1.htm
http://www.dr-chuck.com/page2.htm
http://www.dr-chuck.com/page2.htm
http://www.dr-chuck.com/page2.htm%27
http://www.json.org/

Python Application Programming (15CS664) Module V

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 8

 eXtensible Markup Language (XML)

 XML looks very similar to HTML, but XML is more structured than HTML. Here is a sample of

an XML document:

<person>

<name>Chuck</name>

<phone type="intl"> +1 734 303 4456

</phone>

<email hide="yes"/>

</person>

 Often it is helpful to think of an XML document as a tree structure where there is a top tag person

and other tags such as phone are drawn as children of their parent nodes.

 Figure is the tree structure for above given XML code.

Figure : Tree Representation of XML

 Parsing XML

 Python provides library xml.etree.ElementTree to parse the data from XML files.

 One has to provide XML code as a string to built-in method fromstring() of ElementTree class.

 ElementTree acts as a parser and provides a set of relevant methods to extract the data.

 Hence, the programmer need not know the rules and the format of XML document syntax.

 The fromstring() method will convert XML code into a tree-structure of XML nodes.

 When the XML is in a tree format, Python provides several methods to extract data from XML.

 Consider the following program.

import xml.etree.ElementTree as ET

#XML code embedded in a string format

data = '''

<person>

<name>Chuck</name>

notes4free.in

Python Application Programming (15CS664) Module V

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 9

<phone type="intl"> +1 734 303 4456

</phone>

<email hide="yes"/>

</person>'''

tree = ET.fromstring(data)

print('Attribute for tag email:', tree.find('email').get('hide'))

print('Attribute for tag phone:', tree.find('phone').get('type'))

The output would be –

Name: Chuck

Attribute for the tag email: yes Attribute for the

tag phone: intl

 When we run this program, it prompts for user input.

 We need to give a valid URL of any website. Then all the hyperlinks on that website will be

displayed.

 Parsing HTML using BeautifulSoup

 There are a number of Python libraries which can help you parse HTML and extract data from the

pages.

 Each of the libraries has its strengths and weaknesses and you can pick one based on your needs.

 BeautifulSoup library is one of the simplest libraries available for parsing.

 To use this, download and install the BeautifulSoup code from:

http://www.crummy.com/software/

 Consider the following program which uses urllib to read the page and uses BeautifulSoup to

extract href attribute from the anchor tag.

import urllib.request from bs4

import BeautifulSoup

import ssl #Secure Socket Layer

ctx = ssl.create_default_context()

ctx.check_hostname = False

 ctx.verify_mode = ssl.CERT_NONE

url = input('Enter - ')

html = urllib.request.urlopen(url,context=ctx).read()

 soup = BeautifulSoup(html, 'html.parser')

notes4free.in

http://www.crummy.com/software/

Python Application Programming (15CS664) Module V

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 10

tags = soup('a')

for tag in tags:

print(tag.get('href', None))

A sample output would be –

Enter - http://www.dr-chuck.com/page1.htm

http://www.dr-chuck.com/page2.htm

 The above program prompts for a web address, then opens the web page, reads the data and

passes the data to the BeautifulSoup parser, and then retrieves all of the anchor tags and prints

out the href attribute for each tag.

 The BeautifulSoup can be used to extract various parts of each tag as shown below –

from urllib.request import urlopen from bs4

import BeautifulSoup import ssl

ctx = ssl.create_default_context()

 In the above example, fromstring() is used to convert XML code into a tree.

 The find() method searches XML tree and retrieves a node that matches the specified tag.

 The get() method retrieves the value associated with the specified attribute of that tag. Each node

can have some text, some attributes (like hide), and some “child” nodes. Each node can be the

parent for a tree of nodes.

 Looping Through Nodes

 Most of the times, XML documents are hierarchical and contain multiple nodes.

 To process all the nodes, we need to loop through all those nodes.

 Consider following example as an illustration.

import xml.etree.ElementTree as ET

input = '''

<stuff>

<users>

<user x="2">

<id>001</id>

<name>Chuck</name>

</user>

<user x="7">

<id>009</id>

<name>Brent</name>

</user>

notes4free.in

http://www.dr-chuck.com/page1.htm
http://www.dr-chuck.com/page2.htm

Python Application Programming (15CS664) Module V

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 11

</users>

</stuff>'''

stuff = ET.fromstring(input)

lst = stuff.findall('users/user')

print('User count:', len(lst))

for item in lst:

print('Name', item.find('name').text)

print('Id', item.find('id').text)

print('Attribute', item.get("x"))

The output would be –

User count: 2

Name Chuck

 Id 001

Attribute 2

Name Brent

 Id 009

Attribute 7

 The findall() method retrieves a Python list of subtrees that represent the user structures in the

XML tree.

 Then we can write a for-loop that extracts each of the user nodes, and prints the name and id,

which are text elements as well as the attribute x from the user node.

 JavaScript Object Notation (JSON)

 The JSON format was inspired by the object and array format used in the JavaScript language.

 But since Python was invented before JavaScript, Python‟s syntax for dictionaries and lists

influenced the syntax of JSON.

 So the format of JSON is a combination of Python lists and dictionaries.

 Following is the JSON encoding that is roughly equivalent to the XML code (the string data)

given in the program of previous.

{

"name" : "Chuck",

"phone": {"type" : "intl", "number" : "+1 734 303 4456"}, "email": {"hide" : "yes"}

}

 Observe the differences between XML code and JSON code:

 In XML, we can add attributes like “intl” to the “phone” tag. In JSON, we simply have key-

value pairs.

notes4free.in

Python Application Programming (15CS664) Module V

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 12

 XML uses tag “person”, which is replaced by a set of outer curly braces in JSON.

 In general, JSON structures are simpler than XML because JSON has fewer capabilities than

XML.

 But JSON has the advantage that it maps directly to some combination of dictionaries and lists.

And since nearly all programming languages have something equivalent to Python‟s dictionaries

and lists

 JSON is a very natural format to have two compatible programs exchange data. JSON is quickly

becoming the format of choice for nearly all data exchange between applications because of its

relative simplicity compared to XML.

 Parsing JSON

 Python provides a module json to parse the data in JSON pages.

 Consider the following program which uses JSON equivalent of XML string written in previous

Section.

 Note that, the JSON string has to embed a list of dictionaries.

import json

data = ''' [

{ "id" : "001",

"x" : "2",

"name" : "Chuck" } ,

{ "id" : "009",

"x" : "7",

 "name" : "Chuck"

}

]'''

info = json.loads(data) print('User count:',

len(info))

for item in info:

print('Name', item['name'])

print('Id', item['id'])

print('Attribute', item['x'])

The output would be –

User count: 2

Name Chuck

notes4free.in

Python Application Programming (15CS664) Module V

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 13

Id 001

Attribute 2

Name Chuck Id

009

Attribute 7

 Here, the string data contains a list of users, where each user is a key-value pair. The method

loads() in the json module converts the string into a list of dictionaries.

 Now onwards, we don‟t need anything from json, because the parsed data is available in Python

native structures.

 Using a for-loop, we can iterate through the list of dictionaries and extract every element (in the

form of key-value pair) as if it is a dictionary object. That is, we use index operator (a pair of

square brackets) to extract value for a particular key.

NOTE: Current IT industry trend is to use JSON for web services rather than XML. Because, JSON

is simpler than XML and it directly maps to native data structures we already have in the

programming languages. This makes parsing and data extraction simpler compared to XML. But

XML is more self descriptive than JSON and so there are some applications where XML retains an

advantage. For example, most word processors store documents internally using XML rather than

JSON.

 Application Programming Interface (API)

 Till now, we have discussed how to exchange data between applications using HTTP, XML and

JSON.

 The next step is to understand API. Application Programming Interface defines and documents

the contracts between the applications.

 When we use an API, generally one program makes a set of services available for use by other

applications and publishes the APIs (i.e., the “rules”) that must be followed to access the services

provided by the program.

 When we begin to build our programs where the functionality of our program includes access to

services provided by other programs, we call the approach a Service-Oriented

Architecture(SOA).

 A SOA approach is one where our overall application makes use of the services of other

applications.

 A non-SOA approach is where the application is a single stand-alone application which contains

all of the code necessary to implement the application.

 Consider an example of SOA: Through a single website, we can book flight tickets and hotels.

The data related to hotels is not stored in the airline servers. Instead, airline servers contact the

services on hotel servers and retrieve the data from there and present it to the user.

 When the user agrees to make a hotel reservation using the airline site, the airline site uses another

notes4free.in

Python Application Programming (15CS664) Module V

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 14

web service on the hotel systems to actually make the reservation.

 Similarly, to reach airport, we may book a cab through a cab rental service.

 And when it comes time to charge your credit card for the whole transaction, still other computers

become involved in the process. This process is depicted in Figure.

Figure : Server Oriented Architecture

 SOA has following major advantages:

 we always maintain only one copy of data (this is particularly important for things like hotel

reservations where we do not want to over-commit)

 the owners of the data can set the rules about the use of their data.

 With these advantages, an SOA system must be carefully designed to have good performance and

meet the user‟s needs. When an application makes a set of services in its API available over the

web, then it is called as web services.

 Google Geocoding Web Service

 Google has a very good web service which allows anybody to use their large database of

geographic information.

 We can submit a geographic search string like “Rajarajeshwari Nagar” to their geocoding API.

 Then Google returns the location details of the string submitted.

 The following program asks the user to provide the name of a location to be searched for.

 Then, it will call Google geocoding API and extracts the information from the returned JSON.

import urllib.request, urllib.parse, urllib.error

import json

notes4free.in

Python Application Programming (15CS664) Module V

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 15

serviceurl = 'http://maps.googleapis.com/maps/api/geocode/json?'

 address = input('Enter location: ')

if len(address) < 1:

exit()

url = serviceurl + urllib.parse.urlencode({'address': address})

print('Retrieving', url)

uh = urllib.request.urlopen(url)

data = uh.read().decode()

print('Retrieved', len(data), 'characters')

try:

js = json.loads(data)

except:

js = None

if not js or 'status' not in js or js['status'] != 'OK':

print('==== Failure To Retrieve ====')

print(data)

print(json.dumps(js, indent=4))

lat = js["results"][0]["geometry"]["location"]["lat"]

lng = js["results"][0]["geometry"]["location"]["lng"]

print('lat', lat, 'lng', lng)

location = js['results'][0]['formatted_address']

print(location)

(Students are advised to run the above program and check the output, which will contain

several lines of Google geographical data).

 The above program retrieves the search string and then encodes it. This encoded string along with

Google API link is treated as a URL to fetch the data from the internet. The data retrieved from

the internet will be now passed to JSON to put it in JSON object format.

 If the input string (which must be an existing geographical location like Channasandra,

Malleshwaram etc!!) cannot be located by Google API either due to bad internet or due to

unknown location, we just display the message as „Failure to Retrieve‟.

 If Google successfully identifies the location, then we will dump that data in JSON object.

 Then, using indexing on JSON (as JSON will be in the form of dictionary), we can retrieve the

location address, longitude, latitude etc.

notes4free.in

http://maps.googleapis.com/maps/api/geocode/json?%27

Python Application Programming (15CS664) Module V

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 16

 Security and API Usage

 Public APIs can be used by anyone without any problem.

 But, if the API is set up by some private vendor, then one must have API key to use that API.

 If API key is available, then it can be included as a part of POST method or as a parameter on the

URL while calling API.

 Sometimes, vendor wants more security and expects the user to provide cryptographically signed

messages using shared keys and secrets.

 The most common protocol used in the internet for signing requests is OAuth.

 As the Twitter API became increasingly valuable, Twitter went from an open and public API to

an API that required the use of OAuth signatures on each API request.

 But, there are still a number of convenient and free OAuth libraries so you can avoid writing an

OAuth implementation from scratch by reading the specification.

 These libraries are of varying complexity and have varying degrees of richness.

 The OAuth web site has information about various OAuth libraries.

5.3 USING DATABASES AND SQL

 A structured set of data stored in a permanent storage is called as database.

 Most of the databases are organized like a dictionary – that is, they map keys to values.

 Unlike dictionaries, databases can store huge set of data as they reside on permanent storage like

hard disk of the computer.

 There are many database management softwares like Oracle, MySQL, Microsoft SQL Server,

PostgreSQL, SQLite etc.

 They are designed to insert and retrieve data very fast, however big the dataset is.

 Database software builds indexes as data is added to the database so as to provider quicker access to

particular entry.

 In this course of study, SQLite is used because it is already built into Python. SQLite is a C library

that provides a lightweight disk-based database that doesn‟t require a separate server process and

allows accessing the database using a non-standard variant of the SQL query language.

 SQLite is designed to be embedded into other applications to provide database support within the

application.

 For example, the Firefox browser also uses the SQLite database internally.

 SQLite is well suited to some of the data manipulation problems in Informatics such as the Twitter

spidering application etc.

 Database Concepts

 For the first look, database seems to be a spreadsheet consisting of multiple sheets.

 The primary data structures in a database are tables, rows and columns.

 In a relational database terminology, tables, rows and columns are referred as relation, tuple and

attribute respectively.

notes4free.in

Python Application Programming (15CS664) Module V

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 17

 Typical structure of a database table is as shown below.

 Each table may consist of n number of attributes and m number of tuples (or records).

 Every tuple gives the information about one individual.

 Every cell(i, j) in the table indicates value of j
th

 attribute for i
th

 tuple.

Tuple1

Tuple2

…………..

………….

Tuple_m

 Consider the problem of storing details of students in a database table. The format may look like –

Student1

Student2

…………..

………….

Student_m

 Thus, table columns indicate the type of information to be stored, and table rows gives record

pertaining to every student.

 We can create one more table say addressTable consisting of attributes like DoorNo,

StreetName, Locality, City, PinCode. To relate this table with a respective student stored in

studentTable, we need to store RollNo also in addressTable (Note that, RollNo will be unique for

every student, and hence there won‟t be any confusion).

 Thus, there is a relationship between two tables in a single database. There are softwares that can

maintain proper relationships between multiple tables in a single database and are known as

Relational Database Management Systems (RDBMS).

 Structured Query Language (SQL) Summary

 To perform operations on databases, one should use structured query language.

 SQL is a standard language for storing, manipulating and retrieving data in databases.

 Irrespective of RDBMS software (like Oracle, MySQL, MS Access, SQLite etc) being used, the

syntax of SQL remains the same.

 The usage of SQL commands may vary from one RDBMS to the other and there may be little

syntactical difference.

 Also, when we are using some programming language like Python as a front-end to perform

database applications, the way we embed SQL commands inside the program source-code is as

Attribute1 Attribute2 ……………… Attribute_n

V11 V12 ……………… V1n

V21 V22 ……………… V2n

……… ……. ……………… ……….

………… ………. …………….. ………..

Vm1 Vm2 …………….. Vmn

RollNo Name DoB Marks

1 Ram 22/10/2001 82.5
2 Shyam 20/12/2000 81.3

……… ……. ……………… ……….

………… ………. …………….. ………..

………….. ………. ……………. …………

notes4free.in

Python Application Programming (15CS664) Module V

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 18

per the syntax of respective programming language.

 Still, the underlying SQL commands remain the same. Hence, it is essential to understand basic

commands of SQL.

 There are some clauses like FROM, WHERE, ORDER BY, INNER JOIN etc. that are used with

SQL commands, which we will study in a due course.

 The following table gives few of the SQL commands.

Command Meaning

CREATE DATABASE creates a new database

ALTER DATABASE modifies a database

CREATE TABLE creates a new table

ALTER TABLE modifies a table

DROP TABLE deletes a table

SELECT extracts data from a database

INSERT INTO inserts new data into a database

UPDATE updates data in a database

DELETE deletes data from a database

 As mentioned earlier, every RDBMS has its own way of storing the data in tables. Each of

RDBMS uses its own set of data types for the attribute values to be used. SQLite uses the data

types as mentioned in the following table –

Data Type Description

NULL The value is a NULL value.

INTEGER The value is a signed integer, stored in 1, 2, 3, 4, 6, or 8 bytes depending on

the magnitude of the value.

REAL The value is a floating point value, stored as an 8-byte floating point number

TEXT The value is a text string, stored using the database encoding (UTF- 8,

UTF-16BE or UTF-16LE)

BLOB The value is a blob (Binary Large Object) of data, stored exactly as it was

input

notes4free.in

Python Application Programming (15CS664) Module V

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 19

 Note that, SQL commands are case-insensitive. But, it is a common practice to write commands

and clauses in uppercase alphabets just to differentiate them from table name and attribute names.

 Now, let us see some of the examples to understand the usage of SQL statements –

 CREATE TABLE Tracks (title TEXT, plays INTEGER)

This command creates a table called as Tracks with the attributes title and plays

where title can store data of type TEXT and plays can store data of type INTEGER.

 INSERT INTO Tracks (title, plays) VALUES ('My Way', 15)

This command inserts one record into the table Tracks where values for the attributes

title and plays are „My Way‟ and 15 respectively.

 SELECT * FROM Tracks

Retrieves all the records from the table Tracks

 SELECT * FROM Tracks WHERE title = 'My Way‟

Retrieves the records from the table Tracks having the value of attribute title as „My

Way‟

 SELECT title, plays FROM Tracks ORDER BY title

The values of attributes title and plays are retrieved from the table

Tracks with the records ordered in ascending order of title.

 UPDATE Tracks SET plays = 16 WHERE title = 'My Way„

Whenever we would like to modify the value of any particular attribute in the table,

we can use UPDATE command. Here, the value of attribute plays is assigned to a

new value for the record having value of title as „My Way‟.

 DELETE FROM Tracks WHERE title = 'My Way'

A particular record can be deleted from the table using DELETE command. Here, the

record with value of attribute title as „My Way‟ is deleted from the table Tracks.

 Database Browser for SQLite

 Many of the operations on SQLite database files can be easily done with the help of software

called Database Browser for SQLite which is freely available from:

http://sqlitebrowser.org/

 Using this browser, one can easily create tables, insert data, edit data, or run simple SQL queries

on the data in the database.

 This database browser is similar to a text editor when working with text files.

notes4free.in

http://sqlitebrowser.org/

Python Application Programming (15CS664) Module V

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 20

 When you want to do one or very few operations on a text file, you can just open it in a text editor

and make the changes you want.

 When you have many changes that you need to do to a text file, often you will write a simple

Python program.

 You will find the same pattern when working with databases. You will do simple operations in the

database manager and more complex operations will be most conveniently done in Python.

 Creating a Database Table

 When we try to create a database table, we must specify the names of table columns and the type

of data to be stored in those columns.

 When the database software knows the type of data in each column, it can choose the most

efficient way to store and look up the data based on the type of data.

 Here is the simple code to create a database file and a table named Tracks with two columns in the

database:

Ex1.

import sqlite3

conn = sqlite3.connect('music.sqlite')

 cur = conn.cursor()

cur.execute('DROP TABLE IF EXISTS Tracks')

cur.execute('CREATE TABLE Tracks (title TEXT, plays INTEGER)') conn.close()

 The connect() method of sqlite3 makes a “connection” to the database stored in the file

music.sqlite3 in the current directory.

 If the file does not exist, it will be created.

 Sometimes, the database is stored on a different database server from the server on which we are

running our program.

 But, all the examples that we consider here will be local file in the current working directory of

Python code.

 A cursor() is like a file handle that we can use to perform operations on the data stored in the

database. Calling cursor() is very similar conceptually to calling open() when dealing with text

files.

 Hence, once we get a cursor, we can execute the commands on the contents of database using

execute() method.

notes4free.in

Python Application Programming (15CS664) Module V

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 21

Figure : A Database Cursor

 In the above program, we are trying to remove the database table Tracks, if at all it existed in the

current working directory.

 The DROP TABLE command deletes the table along with all its columns and rows.

 This procedure will help to avoid a possible error of trying to create a table with same name.

 Then, we are creating a table with name Tracks which has two columns viz. title, which can take

TEXT type data and plays, which can take INTEGER type data.

 Once our job with the database is over, we need to close the connection using close() method.

 In the previous example, we have just created a table, but not inserted any records into it

 So, consider below given program, which will create a table and then inserts two rows and finally

delete records based on some condition.

Ex2.

import sqlite3

conn = sqlite3.connect('music.sqlite')

cur = conn.cursor()

cur.execute('DROP TABLE IF EXISTS Tracks')

cur.execute('CREATE TABLE Tracks (title TEXT, plays INTEGER)')

cur.execute(“INSERT INTO Tracks (title, plays) VALUES ('Thunderstruck', 20)”)

cur.execute(“INSERT INTO Tracks (title, plays) VALUES (?, ?)”, ('My Way', 15))

conn.commit()

print('Tracks:')

cur.execute('SELECT title, plays FROM Tracks')

for row in cur:

print(row)

cur.execute('DELETE FROM Tracks WHERE plays < 100')

 cur.close()

notes4free.in

Python Application Programming (15CS664) Module V

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 22

 In the above program, we are inserting first record with the SQL command –

“INSERT INTO Tracks (title, plays) VALUES('Thunderstruck', 20)”

 Note that, execute() requires SQL command to be in string format. But, if the value to be store in

the table is also a string (TEXT type), then there may be a conflict of string representation using

quotes.

 Hence, in this example, the entire SQL is mentioned within double-quotes and the value to be

inserted in single quotes. If we would like to use either single quote or double quote everywhere,

then we need to use escape-sequences like \‟ or \”.

 While inserting second row in a table, SQL statement is used with a little different syntax –

“INSERT INTO Tracks (title, plays) VALUES (?, ?)”,('My Way', 15)

 Here, the question mark acts as a place-holder for particular value.

 This type of syntax is useful when we would like to pass user-input values into database table.

 After inserting two rows, we must use commit() method to store the inserted records permanently

on the database table.

 If this method is not applied, then the insertion (or any other statement execution) will be

temporary and will affect only the current run of the program.

 Later, we use SELECT command to retrieve the data from the table and then use for-loop to

display all records.

 When data is retrieved from database using SELECT command, the cursor object gets those data as

a list of records.

 Hence, we can use for-loop on the cursor object. Finally, we have used a DELETE command to

delete all the records WHERE plays is less than 100.

Let us consider few more examples –

Ex3.

import sqlite3

from sqlite3 import Error

def create_connection():

""" create a database connection to a database that resides in the memory"""

try:

conn = sqlite3.connect(':memory:')

print("SQLite Version:",sqlite3.version)

notes4free.in

Python Application Programming (15CS664) Module V

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 23

except Error as e:

print(e)

finally:

conn.close()

create_connection()

Few points about above program:

 Whenever we try to establish a connection with database, there is a possibility of error due to

non-existing database, authentication issues etc. So, it is always better to put the code for

connection inside try-except block.

 While developing real time projects, we may need to create database connection and close it

every now-and-then. Instead of writing the code for it repeatedly, it is better to write a

separate function for establishing connection and call that function whenever and wherever

required.

 If we give the term :memory: as an argument to connect() method, then the further operations

(like table creation, insertion into tables etc) will be on memory (RAM) of the computer, but

not on the hard disk.

Ex4. Write a program to create a Student database with a table consisting of student name and age.

Read n records from the user and insert them into database. Write queries to display all records and

to display the students whose age is 20.

import sqlite3 conn=sqlite3.connect('StudentDB.db') c=conn.cursor()

c.execute('CREATE TABLE tblStudent(name text, age Integer)')

n=int(input(“Enter number of records:”)) for i in range(n):

nm=input("Enter Name:")

ag=int(input("Enter age:"))

c.execute("INSERT INTO tblStudent VALUES(?,?)",(nm,ag))

conn.commit()

c.execute("select * from tblStudent ") print(c.fetchall())

c.execute("select * from tblStudent where age=20") print(c.fetchall())

conn.close()

In the above program we take a for-loop to get user-input for student‟s name and age. These data are

inserted into the table. Observe the question mark acting as a placeholder for user-input variables.

Later we use a method fetchall() that is used to display all the records form the table in the form of a

list of tuples. Here, each tuple is one record from the table.

notes4free.in

Python Application Programming (15CS664) Module V

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 24

 Three Kinds of Keys

Sometimes, we need to build a data model by putting our data into multiple linked tables and linking

the rows of those tables using some keys. There are three types of keys used in database model:

 A logical key is a key that the “real world” might use to look up a row. It defines the

relationship between primary keys and foreign keys. Most of the times, a UNIQUE constraint

is added to a logical key. Since the logical key is how we look up a row from the outside

world, it makes little sense to allow multiple rows with the same value in the table.

 A primary key is usually a number that is assigned automatically by the database. It generally

has no meaning outside the program and is only used to link rows from different tables

together. When we want to look up a row in a table, usually searching for the row using the

primary key is the fastest way to find the row. Since primary keys are integer numbers, they

take up very little storage and can be compared or sorted very quickly.

 A foreign key is usually a number that points to the primary key of an associated row in a

different table.

 Consider a table consisting of student details like RollNo, name, age, semester and address as

shown below –

RollNo Name Age Sem Address

1 Ram 29 6 Bangalore

2 Shyam 21 8 Mysore

3 Vanita 19 4 Sirsi

4 Kriti 20 6 Tumkur

 In this table, RollNo can be considered as a primary key because it is unique for every student in

that table. Consider another table that is used for storing marks of students in all the three tests as

below

RollNo Sem M1 M2 M3

1 6 34 45 42.5

2 6 42.3 44 25

3 4 38 44 41.5

4 6 39.4 43 40

2 8 37 42 41

 To save the memory, this table can have just RollNo and marks in all the tests. There is no need to

store the information like name, age etc of the students as these information can be retrieved from

first table. Now, RollNo is treated as a foreign key in the second table.

notes4free.in

Python Application Programming (15CS664) Module V

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 25

 Basic Data Modeling

 The relational database management system (RDBMS) has the power of linking multiple tables.

The act of deciding how to break up your application data into multiple tables and establishing the

relationships between the tables is called data modeling.

 The design document that shows the tables and their relationships is called a data model. Data

modeling is a relatively sophisticated skill.

 The data modeling is based on the concept of database normalization which has certain set of

rules.

 In a raw-sense, we can mention one of the basic rules as never put the same string data in the

database more than once. If we need the data more than once, we create a numeric key (primary

key) for the data and reference the actual data using this key.

 This is because string requires more space on the disk compared to integer, and data retrieval (by

comparing) using strings is difficult compared to that with integer.

 Consider the example of Student database discussed above.

 We can create a table using following SQL command –

CREATE TABLE tblStudent

(RollNo INTEGER PRIMARY KEY, Name TEXT, age INTEGER, sem INTEGER, address

TEXT)

Here, RollNo is a primary key and by default it will be unique in one table. Now, another take can

be created as –

CREATE TABLE tblMarks

(RollNo INTEGER, sem INTEGER, m1 REAL, m2 REAL, m3 REAL,

UNIQUE(RollNo,sem))

 Now, in the tblMarks consisting of marks of 3 tests of all the students, RollNo and sem are

together unique. Because, in one semester, only one student can be there having a particular

RollNo. Whereas in another semester, same RollNo may be there.

 Such types of relationships are established between various tables in RDBMS and that will help

better management of time and space.

 Using JOIN to Retrieve Data

 When we follow the rules of database normalization and have data separated into multiple tables,

linked together using primary and foreign keys, we need to be able to build a SELECT that

reassembles the data across the tables.

 SQL uses the JOIN clause to reconnect these tables. In the JOIN clause you specify the fields that

are used to reconnect the rows between the tables.

notes4free.in

Python Application Programming (15CS664) Module V

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 26

 Consider the following program which creates two tables tblStudent and tblMarks as discussed in

the previous section.

 Few records are inserted into both the tables. Then we extract the marks of students who are

studying in 6
th

 semester.

import sqlite3

conn=sqlite3.connect('StudentDB.db')

c=conn.cursor()

c.execute('CREATE TABLE tblStudent

(RollNo INTEGER PRIMARY KEY, Name TEXT, age INTEGER, sem

INTEGER, address TEXT)')

c.execute('CREATE TABLE tblMarks

(RollNo INTEGER, sem INTEGER, m1 REAL, m2 REAL, m3 REAL,

UNIQUE(RollNo,sem))')

c.execute("INSERT INTO tblstudent VALUES(?,?,?,?,?)",

(1,'Ram',20,6,'Bangalore'))

c.execute("INSERT INTO tblstudent VALUES(?,?,?,?,?)",

(2,'Shyam',21,8,'Mysore'))

c.execute("INSERT INTO tblstudent VALUES(?,?,?,?,?)",

(3,'Vanita',19,4,'Sirsi')) c.execute("INSERT

INTO tblstudent VALUES(?,?,?,?,?)",

(4,'Kriti',20,6,'Tumkur'))

c.execute("INSERT INTO tblMarks VALUES(?,?,?,?,?)",(1,6,34,45,42.5))

c.execute("INSERT INTO tblMarks VALUES(?,?,?,?,?)",(2,6,42.3,44,25))

c.execute("INSERT INTO tblMarks VALUES(?,?,?,?,?)",(3,4,38,44,41.5))

c.execute("INSERT INTO tblMarks VALUES(?,?,?,?,?)",(4,6,39.4,43,40))

c.execute("INSERT INTO tblMarks VALUES(?,?,?,?,?)",(2,8,37,42,41))

conn.commit()

query="SELECT tblStudent.RollNo, tblStudent.Name, tblMarks.sem, tblMarks.m1,

tblMarks.m2, tblMarks.m3 FROM tblStudent JOIN tblMarks ON tblStudent.sem =

tblMarks.sem AND tblStudent.RollNo = tblMarks.RollNo WHERE tblStudent.sem=6"

c.execute(query)

notes4free.in

Python Application Programming (15CS664) Module V

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 27

for row in c:

print(row)

conn.close()

The output would be –

(1, 'Ram', 6, 34.0, 45.0, 42.5)

(4, 'Kriti', 6, 39.4, 43.0, 40.0)

The query joins two tables and extracts the records where RollNo and sem matches in both the tables,

and sem must be 6.

notes4free.in

