Chapter 1
Why should you learn to write programs?

Writing programs is a very creative and rewarding activity.
You can write programs for many reasons
» ranging from making your living to solving a difficult data analysis
problem
» having fun to helping someone else solve a problem.
The hardware in our current-day computers is essentially built to continuously ask

us the question, “What would you like me to do next?”

'

e - -

WWihiat
Mext?

Wihiat Wihat
Mext? Mext?

Whiat | What - I
Mext? Mext? i
- _— L. -
LS -
Figure 1.1: THOEOSAT FQ@wn:

Programmers add an operating é'ys'te'm and a set of applications to the hardware and
we end up with a Personal Digital Assistant that is quite helpful and capable of
helping us do many different things.

l-.’.- .\-.\-l
[ -

Our computers are fast and have vast amounts of memory and could be very
helpful to us if we only knew the language to speak to explain to the computer
what we would like it to “do next”.

1.1 Creativity and motivation

> Building useful, elegant, and clever programs for others to use is a very creative
activity.
Eg Your computer or Personal Digital Assistant (PDA) usually
contains many different programs from many different groups of
programmers, each competing for your attention and interest. They try their
best to meet your needs and give you a great user experience in the process.

Source diginotes.in



» Primary motivation is to be more productive in handling the data and
information that we will encounter in our lives

1.2 Computer hardware architecture

A7 What N

Software . Mextz S

i -'r_.-""i_ - o~ e T -.'\""_"\-\._H-
Input and Central . J
Output Processing *.  Network ™
Devices Linit \ A

——

hain [ Secondary
kem oy MEl‘I‘IDI}"

n
Figure 1.3: H:’l{l . -\Art*hi{*mr{*

« The Central Processing.Uni 43{
» is the part of the coﬂtﬁtacéﬁl brcﬁeEed with “what is next?”
» If your computer is rated*at 3.0 Gigahertz; it means that the CPU will ask “What
next?” three billion times per second.
> You are going to have to learn how to talk fast to keep up with the CPU.
* The Main Memory
> is used to store information that the CPU needs in a hurry.
» The main memory is nearly as fast as the CPU.
> But the information stored in the main memory vanishes when the computer
Is turned off.
» The Secondary Memory
» is also used to store information, but it is much slower than the main
memory.
» The advantage of the secondary memory is that it can store information even
when there is no power to the computer.
» Examples of secondary memory are disk drives or flash memory (typically
found in USB sticks and portable music players).
* The Input and Output Devices
> are simply our screen, keyboard, mouse, microphone, speaker, touchpad, etc.

Source diginotes.in



» They are all of the ways we interact with the computer.

* These days, most computers also have a Network Connection
> to retrieve information over a network.
» We can think of the network as a very slow place to store and retrieve data
that might not always be “up”.
» The network is a slower and at times unreliable form of Secondary Memory.

1.3 Understanding programming
You need two skills to be a programmer:

* First, you need to know the programming language (Python) -
» You need to know the vocabulary and the grammar.
> You need to be able to spell the words in this new language properly and
know how to construct well-formed “sentences” in this new language.

* Second, you need to “tell a story”. n
> In writing a story, you combine wo nd sentences to convey an idea to the
reader.
» There is a skill and art in c nstructin story, and skill in story writing is
improved by domgf]p@/ ﬂe{ﬂf @r@feedback
» In programming, our progranp 1s; the “story.” and the problem you are trying
to solve is the “idea”.

Once you learn one programming language such as Python, you will find it much
easier to learn a second programming language such as JavaScript or C++.

1.4 Words and sentences
The reserved words in the language where humans talk to Python include the
following:

and del global not with
as elif irf or yield
assert else import pass

break except in raise

class finally is return

continme for lambda try

def from nonlocal while

Source diginotes.in



Eg for a sentence in python

print("Hello world!")

Sentence starts with the function print followed by a string of text of our choosing
enclosed in single quotes.

1.5 Conversing with Python

» The >>> prompt is the Python interpreter’s way of asking you, “What do
you want me to do next?”
Eg >>> print('Hello world!")
Hello world!

>>> print("You must be the legendary god that comes from the sky')
You must be the legendary god that comes from the sky

>>> print('We have been waiting for you for a long time')

We have been waiting for Yoy for a long time

>>> print('Our legend sa Wwill be very tasty with mustard’)
Our legend says you will be very|tasty with mustard

>>> print 'We will have a Teas

i W e %

SyntaxError: Missing parentheses in call to ‘print’

orfght unless you say
I1r1EI€uﬁss you say
>>>
» Python is amazingly complex and powerful and very picky about the syntax
you use to communicate with it

» Python is not intelligent. You are really just having a conversation with
yourself, but using proper syntax.

The proper way to quit python
>>> quit()

The proper way to say “good-bye” to Python is to enter quit() at the interactive
chevron >>> prompt.

Source diginotes.in



1.6 Terminology: interpreter and compiler

» The CPU understands a language we call machine language.
» Machine language is very simple and frankly very tiresome to write because
it is represented all in zeros and ones:
001010001110100100101010000001111
11100110000011101010010101101101

» Machine language seems quite simple on the surface, given that there are
only zeros and ones, but its syntax is even more complex and far more
intricate than Python.

> Instead we build various translators to allow programmers to write in high-
level languages like Python or JavaScript and these translators convert the
programs to machine language for actual execution by the CPU.

» Since machine language is tied to the computer hardware, machine language
Is not portable across different types of hardware.

» Programs written in high- Ievel Ianguages can be moved between different
computers by using a di “*l 1 erpreter on the new machine or
recompiling the code to create hine language version of the program
for the new machine.

These programming langubge @@@@4frv@@eral categories:

(1) interpreters
(2) compilers.

(1) Interpreters

> An interpreter reads the source code of the program as written by the
programmer, parses the source code, and interprets the instructions on the
fly.

> Python is an interpreter and when we are running Python interactively, we
can type a line of Python (a sentence) and Python processes it immediately
and is ready for us to type another line of Python.

» Some of the lines of Python tell Python that you want it to remember some
value for later.

> We need to pick a name for that value to be remembered and we can use
that symbolic name to retrieve the value later.

> We use the term variable to refer to the labels we use to refer to this stored
data.

Source diginotes.in



>

x =6
print (x)

y=x*7
print (y)

In this example, we ask Python to remember the value six and use the label x
so we can retrieve the value later.

We verify that Python has actually remembered the value using print.

Then we ask Python to retrieve x and multiply it by seven and put the newly
computed value iny.

Then we ask Python to print out the value currently in y.

Even though we are typing these commands into Python one line at a time,
Python is treating them as an ordered sequence of statements with later
statements able to retrieve data created in earlier statements.

The Python interpreter is written in a high-level language called “C”.

|
(2) Compilers. ! \
A compiler needs to be hande ogram in a file, and then it runs a

r
process to translatme@q: e&%ﬁfﬁ 0 machine language and
then the compiler in a%uage into a file for later

execution.

1.7 Writing a program

>

>
>
>

When we want to write a program, we use a text editor to write the Python
instructions into a file, which is called a script.

By convention, Python scripts have names that end with .py.

To execute the script, you have to tell the Python interpreter the name of the
file.

In a Unix or Windows command window, you would type python hello.py
as follows:

csev cat hello.py
print('Hello world!")
csev§ python hello.py
Hello world!

csev$

Source diginotes.in



» The “csev$” is the operating system prompt, and the “cat hello.py” is
showing us that the file “hello.py” has a one-line Python program to print a
string.

» We call the Python interpreter and tell it to read its source code from the file
“hello.py” instead of prompting us for lines of Python code interactively.

1.8 What is a program?

» The definition of a program at its most basic is a sequence of Python
statements that have been crafted to do something. Even our simple hello.py
script is a program.

» It is a one-line program and is not particularly useful, but in the strictest
definition, it is a Python program.

» For example, look at the following text about a clown and a car.

» Look at the text and figure out the most common word and how many times
it occurs.

the clown ran after the car ai“" the car ran into the tent

and the tent fell down on the clown and the car
name = input('Enter file:'
handle = open(name, T 4f
counts = dict() n{)tles ree
| 1 n [

for line in handle:
words = line.split()
for word in words:
counts [word] = counts.get(word, 0) + 1

bigcount = None
bigword = None
for word, count in list{counts.items()):
if bigcount is None or count > bigcount:
bigword = word
bigcount = count

print (bigword, bigcount)

Source diginotes.in



1.9 The building blocks of programs

>

v V VYV VvV V

input Get data from the “outside world”. This might be reading data from a
file, or even some kind of sensor like a microphone or GPS. In our initial
programs, our input will come from the user typing data on the keyboard.
output Display the results of the program on a screen or store them in a file
or perhaps write them to a device like a speaker to play music or speak text.
sequential execution Perform statements one after another in the order they
are encountered in the script.

conditional execution Check for certain conditions and then execute or skip
a sequence of statements.

repeated execution Perform some set of statements repeatedly, usually with
some variation.

reuse Write a set of instructions once and give them a name and then reuse
those instructions as needed throughout your program.

1.10 What could possibly go wronpo” #

»>>> primt 'Hello world!'
File "<gstdin>", line 1

primt 'Hello Wﬂﬂotle S4free

SyntaxError: invalid syntﬁﬁ

>>> primt ('Hello world')

Traceback (most recent call last) |
File "<stdin>", line 1, in <module>

NameError: name 'primt' is not defined

a

I hate you Python!

File "<stdin>", line 1

I hate you Python!

SyntaxError: invalid syntax

2

if you come out of there, I would teach you a lesson

File "<stdin>", line 1

if you come out of there, I would teach you a lesson

SyntaxError: invalid syntax

2

Source diginotes.in



You will encounter three general types of errors:

Syntax errors

» These are the first errors you will make and the easiest to fix.

» A syntax error means that you have violated the “grammar” rules of Python.

» Python does its best to point right at the line and character where it noticed it
was confused.

» The only tricky bit of syntax errors is that sometimes the mistake that needs
fixing is actually earlier in the program than where Python noticed it was
confused.

» So the line and character that Python indicates in a syntax error may just be a
starting point for your investigation.

Logic errors
> A logic error is when your program has good syntax but there is a mistake in
the order of the statements or perhaps a mistake in how the statements relate
to one another.
> A good example of a logic error might be, “take a drink from your water
bottle, put it in your backpac% | J\the library, and then put the top back
on the bottle.”

Semantic errors %
> A semantic error is when ‘your “description of the steps to take is
syntactically perfect and in the right order, but there is simply a mistake in
the program.
» The program is perfectly correct but it does not do what you intended for it

to do

Source diginotes.in



Chapter 2
Variables,expressions, and statements

2.1 Values and types

> A value is one of the basic things a program works with, like a letter or a
number.

» The values we have seen so far are 1, 2, and “Hello, World!”

» These values belong to different types: 2 is an integer, and “Hello, World!”
IS a string, so called because it contains a “string” of letters.

» The print statement also works for integers.

» We use the python command to start the interpreter.

python
>>> print(4)
4

> If you are not sure what type

O ﬁrcrlnotesélfree

{class 'str'> i
>»> type(l7)
<class 'int'>

, the interpreter can tell you.

» Strings belong to the type str and integers belong to the type int.
> Less obviously, numbers with a decimal point belong to a type called float,
because these numbers are represented in a format called floating point.

>>> type(3.2)
<class 'float'>
>>> type('17")
<clazs 'str'>
>>> type('3.2")
<class 'str'>

» When you type a large integer, you might be tempted to use commas
between groups of three digits, as in 1,000,000.
» This is not a legal integer in Python, but it is legal:

Source diginotes.in



>>> print(1,000,000)

100
» Python interprets 1,000,000 as a comma separated sequence of integers,
which it prints with spaces between.
» This is the first example we have seen of a semantic error: the code runs
without producing an error message, but it doesn’t do the “right” thing.
2.2 Variables
» A variable is a name that refers to a value.
» An assignment statement creates new variables and gives them values:
>>> message = 'And now for something completely different'
»»> n = 17
>>> pi = 3.1415926535897931
» This example makes three assignments.
> The first assigns a string to a new variable named message;
> the second assigns the integer}1 %
» the third assigns the (approximi: Ue of _ to pi.

To display the value of ' ' t:
2 : ;Szr?; t {e; ;/a ue of a ﬂaﬁt}:ég Erf iu%s@emen

>>> print(pi)

3.141592653589793

The type of a variable is the type of the value it refers to.

>>> type (message)
<class 'str'>

>>> type(n)
<class 'int'>

>>> type (pi)
<class 'float'>

2.3 Variable names and keywords

>

>

Programmers generally choose names for their variables that are meaningful
and document what the variable is used for.
Variable names can be arbitrarily long.

Source diginotes.in



They can contain both letters and numbers, but they cannot start with a
number.

It is legal to use uppercase letters, but it is a good idea to begin variable
names with a lowercase letter.

The underscore character (_) can appear in a name. It is often used in names
with multiple words, such as my_name or airspeed_of unladen_swallow.
Variable names can start with an underscore character, but we generally
avoid doing this unless we are writing library code for others to use.

v V V VY

If you give a variable an illegal name, you get a syntax error:

>>> T6trombones = 'big parade'
SyntaxError: invalid syntax

>>> more@ = 1000000

SyntaxError: invalid syntax

>>> class = 'Advanced Theoretical Zymurgy'
SyntaxError: invalid syntax

> T76trombones is illegal becauge A Jjins with a number. more@ is illegal
because it contains an illegal ¢haracter,|@.

» The class is one of Python’s=ke s. The interpreter uses keywords to
recognize the Strucﬁtfjtf @)gazlf?hg @mot be used as variable
names.

All im one
2.4 Statements

> A statement is a unit of code that the Python interpreter can execute.
» We have seen two kinds of statements:
e print being an expression statement and assignment.
» When you type a statement in interactive mode, the interpreter executes it
and displays the result, if there is one.
e A script usually contains a sequence of statements.
> If there is more than one statement, the results appear one at a time as the
statements execute.

Source diginotes.in



For example, the script

print (1)
x =2

print (x)

produces the output

1
2

The assignment statement produces no output.

2.5 Operators and operands

>

>
>

20+32

>

>

Operators are special symbols tha rﬁi }sent computations like addition and

multiplication. Q ﬁcﬁ ?@
The values the operator IS app o are’cal rands.

The operators +, -, *, /, and ** perform addltlon subtraction, multiplication,
division, and exponentlatlon as in the following examples:

hour-1  hour*60+minute  minute/60 S B (5+9)*(15-7)

There has been a change in the division operator between Python 2.x and
Python 3.x.

In Python 3.x, the result of this division is a floating point result:

>>> minute = 59

>>> minute/60

0.9833333333333333

The division operator in Python 2.0 would divide two integers and truncate
the result to an integer:

>>> minute = 59

>>> minute/60

0

To obtain the same answer in Python 3.0 use floored ( // integer) division.

Source diginotes.in



>>> minute = 59
>>> minute//60
0

2.6 Expressions

> An expression is a combination of values, variables, and operators.
> A value all by itself is considered an expression, and so is a variable, so the
following are all legal expressions

17
X
X+ 17
> If you type an expression in interactive mode, the interpreter evaluates it and

displays the result:
u‘

>>>1 + 1
2.7 Order of operatlonsn()te S4fre e

2
» When more than one operator appears -in an expression, the order of
evaluation depends on the rules of precedence.
For mathematical operators, Python follows mathematical convention.
The acronym PEMDAS is a useful way to remember the rules:
Parentheses
¢ have the highest precedence
e and can be used to force an expression to evaluate in the order you
want.
e Since expressions in parentheses are evaluated first, 2 * (3-1) is 4, and
(1+1)**(5-2) is 8.
e You can also use parentheses to make an expression easier to read, as
in (minute * 100) / 60, even if it doesn’t change the result.
» Exponentiation has the next highest precedence, so 2**1+1 is 3, not 4, and
3*1**3 is 3, not 27.
» Multiplication and Division have the same precedence, which is higher
than Addition and Subtraction, which also have the same precedence.
» S0 2*3-11is5, not 4, and 6+4/2 is 8.0, not 5.

Y V V

Source diginotes.in



>
>

Operators with the same precedence are evaluated from left to right.
So the expression 5-3-1 is 1, not 3, because the 5-3 happens first and then 1
Is subtracted from 2.

2.8 Modulus operator

>

>
>

\4

The modulus operator works on integers and yields the remainder when the
first operand is divided by the second.
In Python, the modulus operator is a percent sign (%).
The syntax is the same as for other operators:

>>> quotient=7// 3

>>> print(quotient)

2

>>> remainder = 7 % 3

>>> print(remainder)

1
So 7 divided by 3 is 2 with 1 left over.
The modulus operator turns out to be surprisingly useful. For example, you
can check whether one number s divisible by another: if x %y is zero, then
x is divisible by y.
You can also extract the rightii:ost digit or digits from a number.
For example, x % 10 yields the nght-@F digit of X (in base 10).

Similarly, x %1001"9_@ @t

2.9 String operations

>

>

>

The + operator works with strings, but it is not addition in the mathematical
sense.
Instead it performs concatenation, which means joining the strings by
linking them end to end.
For example:

>>> first = 10

>>>second = 15

>>> print(first+second)

25

>>> first = 100’

>>> second = '150'

>>> print(first + second)

100150

» The output of this program is 100150.

Source diginotes.in



2.10 Asking the user for input

>

v V V VY

>

Sometimes we would like to take the value for a variable from the user via
their keyboard.
Python provides a built-in function called input that gets input from the
keyboard.
When this function is called, the program stops and waits for the user to type
something.
When the user presses Return or Enter, the program resumes and input
returns what the user typed as a string.
In Python 2.0, this function was named raw_input.

>>> jnput = input()

Some silly stuff

>>> print(input)

Some silly stuff
Before getting input from the user, it is a good idea to print a prompt telling
the user what to input.

You can pass a string to input 1' I3played to the user before pausing for
input:

>>> name = input("\Whatt me?\n’)

What is your

e HBtesdiree

>>> print(name) All inm omne

Chuck
The sequence \n at the end of the prompt represents a newline, which is a
special character that causes a line break.
That’s why the user’s input appears below the prompt.
If you expect the user to type an integer, you can try to convert the return
value to int using the int() function:

>>> prompt = 'What...is the airspeed velocity of an unladen

swallow?\n'

>>> speed = input(prompt)

What...is the airspeed velocity of an unladen swallow?

17

>>> int(speed)

17

>>> int(speed) + 5

22
But if the user types something other than a string of digits, you get an error:

Source diginotes.in



>>> speed = input(prompt)

What...is the airspeed velocity of an unladen swallow?
What do you mean, an African or a European swallow?
>>> nt(speed)

ValueError: invalid literal for int() with base 10:

2.11 Comments

>

>

>

As programs get bigger and more complicated, they get more difficult to
read.

Formal languages are dense, and it is often difficult to look at a piece of
code and figure out what it is doing, or why.

For this reason, it is a good idea to add notes to your programs to explain in
natural language what the program is doing.

These notes are called comments, and in Python they start with the # symbol:

percentage = (minute * 100) / 60
In this case, the comment appears on a line by itself. You can also put
comments at the end of a line; |
percentage = (mi )
Everything from the \# to the.end ci
the program.
Comments are mosfu @E@ Séﬂd crrr@t@n-obvious features of the
code. All in one
It is reasonable to assume that the reader can figure out what the code does;
it is much more useful to explain why.
This comment is redundant with the code and useless:
V=5
This comment contains useful information that is not in the code:
V=5
Good variable names can reduce the need for comments, but long names can
make complex expressions hard to read, so there is a trade-off.

2.12 Choosing mnemonic variable names

>

>

As long as you follow the simple rules of variable naming, and avoid
reserved words, you have a lot of choice when you name your variables.

In the beginning, this choice can be confusing both when you read a
program and when you write your own programs.

Source diginotes.in



» For example, the following three programs are identical in terms of what
they accomplish, but very different when you read them and try to
understand them.

a
b
C

| R |

=)

= Ca

a* b
print(c)

hours = 35.0

rate = 12.50

pay = hours * rate
print (pay)
x1q3z%ahd = 35.0

x1q3z9%afd = 12.50

x1q3pYafd = xlg3zBahd * xlg3zBafd
print (x1g3pSafd)

|
» The Python interpreter sees f these programs as exactly the same
but humans see and understai-meijo rams quite differently.
» Humans will mosm léd g];:ﬁ Igtent of the second program
because the progra t g Iéﬁes that reflect their intent
regarding what data will be 'stored in each variable.
We call these wisely chosen variable names “mnemonic variable names”.
The word mnemonic means “memory aid”.

We choose mnemonic variable names to help us remember why we created
the variable in the first place.

YV VYV

2.13 Debugging
» At this point, the syntax error you are most likely to make is an illegal
variable name, like class and yield, which are keywords, or odd~job and
US$, which contain illegal characters.
> If you put a space in a variable name, Python thinks it is two operands
without an operator:
>>> pad name =5
SyntaxError: invalid syntax
>>> month = 09
File "<stdin>", line 1
month = 09

Source diginotes.in



Y

vV WV VYV VYV

AN

SyntaxError: invalid token
For syntax errors, the error messages don’t help much. The most common
messages are SyntaxError: invalid syntax and SyntaxError: invalid token,
neither of which is very informative.
The runtime error you are most likely to make is a “use before def;” that is,
trying to use a variable before you have assigned a value.
This can happen if you spell a variable name wrong:
>>> principal = 327.68
>>> interest = principle * rate
NameError: name ‘principle is not defined
Variables names are case sensitive, so LaTeX is not the same as latex.
At this point, the most likely cause of a semantic error is the order of
operations.
For example, to evaluate 1/2_, you might be tempted to write
>>>1.0/2.0*pi
But the division happens first, so you would get /2, which is not the same
thing! |
There is no way for Python tg know what you meant to write, so in this case
you don’t get an error message; vou iust get the wrong answer.

noteséfree

Source diginotes.in



Chapter 3
Conditional execution

3.1 Boolean expressions

» A boolean expression is an expression that is either true or false. The
following examples use the operator ==, which compares two operands and
produces True if they are equal and False otherwise:

>>> 5 ==
True
>>> 5 ==
False

{

» True and False are special values that belong to the class bool; they are not

strings:
>>> type(True)
<class 'bool'> .
>>> type(False)
<class 'bool>
» The == operator is one of the compari c?operators; the others are:
4]

<y Dotgsairee

X<y #Xxis Iessthany

X>=y # x Is greater than or equal to y
X <=y # x is less than or equal to y
Xisy # x is the same as y

xisnoty #xisnotthesameasy
Although these operations are probably familiar to you, the Python symbols
are different from the mathematical symbols for the same operations.
A common error is to use a single equal sign (=) instead of a double equal
sign (==
Remember that = is an assignment operator and == is a comparison operator.
There is no such thing as =< or =>.

vV VY 'V

3.2 Logical operators
» There are three logical operators: and, or, and not.
» The semantics (meaning) of these operators is similar to their meaning in
English.

Source diginotes.in



A\

YV YV Vv

For example, x > 0 and x < 10 is true only if x is greater than 0 and less than
10.
n%2 == 0 or nN%3 == 0 is true if either of the conditions is true, that is, if the
number is divisible by 2 or 3.
Finally, the not operator negates a boolean expression, so not (x >y) is true
iIf x >y is false; that is, if x is less than or equal to y.
Strictly speaking, the operands of the logical operators should be boolean
expressions, but Python is not very strict.
Any nonzero number is interpreted as “true.”

>>> 17 and True

True

3.3 Conditional execution

>

>
>

YV VV VY

In order to write useful programs, we almost always need the ability to
check conditions and change the behavior of the program accordingly.
Conditional statements give us this ability.
The simplest form is the if statement:

ifx>0: |

print('x is positive’)
The boolean expression after thic if siatément is called the condition.
We end the if statement Wlth a colo 4 fvacter (:) and the line(s) after the if

statement are mdenﬁo e S re e

print{"x is postitive’)

If the logical condition is true, then the indented statement gets executed. If
the logical condition is false, the indented statement is skipped.

If statements have the same structure as function definitions or for loops

The statement consists of a header line that ends with the colon character (:)
followed by an indented block.

Statements like this are called compound statements because they stretch
across more than one line.

Source diginotes.in



» If you enter an if statement in the Python interpreter, the prompt will change
from three chevrons to three dots to indicate you are in the middle of a block
of statements, as shown below:

S>> X =3
>>> jf x < 10:
.. print('Small’)

Small
>>>

3.4 Alternative execution
» A second form of the if statement is alternative execution, in which there are
two possibilities and the condition determines which one gets executed. The
syntax looks like this:
if X%2==0:
print('x is even’)

else :
print(’x is @Cc") A
If the remainder when X is divided by|2 is 0, then we know that X is even,
and the program displays a message o that effect.

If the condition is false, the second se 4 fstatements IS executed.

Since the conditiofi r@f!‘:@g rde @@Ise exactly one of the

alternatives will be execute
The alternatives are called branches because they are branches in the flow
of execution.

Y VYV V¥V

{
No @ Yes

print{x is odd’) printi‘x is even’)

Figure 3.2: If-Then-Else Logic

Source diginotes.in



3.5 Chained conditionals
» Sometimes there are more than two possibilities and we need more than two

branches.
» One way to express a computation like that is a chained conditional:
ifx<y:
print('x is less than y")
elif x >vy:

print('x is greater than y')
else:
print('x and y are equal’)
» elif is an abbreviation of “else if.” Again, exactly one branch will be
executed.

0 Yes
print{‘less’)  p—t

0 Yes
print {‘greater) T I \

pnm:iq‘uan m 8:4 fre e

Figure 3.3: I[f-Then-Elself Logic

» There is no limit on the number of elif statements. If there is an else clause,
it has to be at the end

if choice == "a':
print ('Bad guess')
elif choice == 'b':

print('Good guess')
elif choice = 'c':
print('Close, but not correct')

» Each condition is checked in order. If the first is false, the next is checked,
and so on.

» If one of them is true, the corresponding branch executes, and the statement
ends.

» Even if more than one condition is true, only the first true branch executes.

Source diginotes.in



3.6 Nested conditionals
» One conditional can also be nested within another. We could have written
the three-branch example like this:

if x == y:
print('x and y are equal')
else:
if x < y:
print('x is less than y')
else:
print('x is greater than y')

» The outer conditional contains two branches. The first branch contains a
simple statement.

» The second branch contains another if statement, which has two branches of
its own.

» Those two branches are both simple statements, although they could have
been conditional statements as well.

v

Yes ::::: ﬂ{ I
——-.._\_-YEIS-

1

. p:intﬁ'less']

print“graater’)

-

Figure 3.4: Nested If Statements

» Logical operators often provide a way to simplify nested conditional
statements.
» For example, we can rewrite the following code using a single conditional:
If0<x:
If x < 10:
print('x is a positive single-digit number.")
» The print statement is executed only if we make it past both conditionals, so
we can get the same effect with the and operator:
IfO<xandx<10:
print('x is a positive single-digit number.")

Source diginotes.in



» The print statement is executed only if we make it past both conditionals, so
we
can get the same effect with the and operator:

If O <xandx<10:
print('x is a positive single-digit number.")

3.7 Catching exceptions using try and except
» Here is a sample program to convert a Fahrenheit temperature to a Celsius
temperature:
inp = input('Enter Fahrenheit Temperature: )
fahr = float(inp)
cel = (fahr-32.0) *5.0/9.0
print(cel)

> If we execute this code and give it invalid input, it simply fails with an
unfriendly error message:

python fahren.py |
Enter Fahrenheit Tempegl y
22.2222222222222?2

python fahrer}. A{f
Enter Fahrenmgmtppeaﬁusr:ei r,ejree

Traceback (most recent call last):

File "fahren.py", line 2, in <module>

fahr = float(inp)

ValueError: could not convert string to float: ‘fred’

» There is a conditional execution structure built into Python to handle these
types of expected and unexpected errors called “try / except”.

» The idea of try and except is that you know that some sequence of
instruction(s) may have a problem and you want to add some statements to
be executed if an error occurs.

» These extra statements (the except block) are ignored if there is no error.

» We can rewrite our temperature converter as follows:
inp = input('"Enter Fahrenheit Temperature:')
try:
fahr = float(inp)
cel = (fahr - 32.0) *5.0/9.0

Source diginotes.in



Y V V

print(cel)
except:
print('Please enter a number")

Python starts by executing the sequence of statements in the try block. If all
goes well, it skips the except block and proceeds.
If an exception occurs in the try block, Python jumps out of the try block and
executes the sequence of statements in the except block.

python fahren2.py

Enter Fahrenheit Temperature:72

22.22222222222222

python fahren2.py

Enter Fahrenheit Temperature:fred

Please enter a number
Handling an exception with a try statement is called catching an exception.
In this example, the except clause prints an error message.

In general, catching an exception gives you a chance to fix the problem, or
try again, or at least end the pl: 1 jacefully.

3.8 Short-circuit evaluatlon of Ioglcal 4f3|ons

» When Python is processmg a IIoglcql expression such as x >= 2 and (x/y) > 2,

>

it evaluates the expression from left to right.

Because of the definition of and, if x is less than 2, the expression x >= 2 is
False and so the whole expression is False regardless of whether (x/y) > 2
evaluates to True or False.

When Python detects that there is nothing to be gained by evaluating the rest
of a logical expression, it stops its evaluation and does not do the
computations in the rest of the logical expression.

When the evaluation of a logical expression stops because the overall value
Is already known, it is called short-circuiting the evaluation.

The short-circuit behavior leads to a clever technique called the guardian
pattern.

Consider the following code sequence in the Python interpreter:

Source diginotes.in



>
>
2> X
True
22 x =1
>>> 5
>*>> X
False
>»> x = 6
>»> y =10
>>> x »>= 2 and (x/y) > 2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ZercDivisionError: division by =zero
>

» The third calculation failed because Python was evaluating (x/y) and y was
zero, which causes a runtime error.

» But the second example did not fail because the first part of the expression x
>= 2 evaluated to False so the (x/y)lwas not ever executed due to the short-
circuit rule and there was no €r

» We can construct the logicgi S ion to strategically place a guard

evaluation just before the evaluation ht cause an error as follows:
e no 1; f’
0

>3 ¥y
>»>> x >= 2 and y != 0 and (va) > 2
False
>2> X
>>> y =0
>>> x >= 2 and y !'= 0 and (x/y) > 2
False
>>> x »>= 2 and (x/y) > 2 and y != 0
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ZeroDivisionError: division by =zero

o W
Wl
Il

]

o]

2 and (x/y) >

Wl
=

o]

= 2 and (x/y) >

6

>3
> In the first logical expression, x >= 2 is False so the evaluation stops at the and.
» In the second logical expression, x >= 2 is True but y !'= 0 is False so we never reach
(x/y).
» In the third logical expression, the y =0 is after the (x/y) calculation so the expression
fails with an error.
» In the second expression, we say that y =0 acts as a guard to insure that we only execute

(xly) if y is non-zero.

Source diginotes.in



Chapter 4
Functions

4.1 Function calls

>

>

YV VYV VVYV

In the context of programming, a function is a named sequence of statements
that performs a computation.

When you define a function, you specify the name and the sequence of
statements.

Later, you can “call” the function by name.

>>> type(32)
<class 'int">
The name of the function is type.
The expression in parentheses is called the argument of the function.
The argument is a value or variable that we are passing into the function as
input to the function. f
The result, for the type functiir jype of the argument.
It is common to say that a function ‘ftakes” an argument and “returns” a
result.

The result is called ﬂ@it\ @ 54 f]f' ee

4.2 Built-in functions

Python provides a number of important built-in functions that we can use
without needing to provide the function definition.

The creators of Python wrote a set of functions to solve common problems
and included them in Python for us to use.

The max and min functions give us the largest and smallest values in a list,
respectively:

>>> max('Hello world")
>>> min(‘Hello world")

>>>
The max function tells us the “largest character” in the string (which turns
out to be the letter “w”’) and the min function shows us the smallest character
(which turns out to be a space).

Source diginotes.in



» Another very common built-in function is the len function which tells us
how many items are in its argument.
» If the argument to len is a string, it returns the number of characters in the
string.
>>> |en('Hello world")
11
>>>
» These functions are not limited to looking at strings. They can operate on
any set of values
» You should treat the names of built-in functions as reserved words (i.e.,
avoid using “max” as a variable name).

4.3 Type conversion functions
» Python also provides built-in functions that convert values from one type to
another.
» The int function takes any value and converts it to an integer, if it can, or
complains otherwise:
>>> nt('32") |
32
>>> int('Hello")
ValueError: |nvaI|d Ilteral for A;[( ith base 10: 'Hello'

» int can convert floatlng pomq Va es o ;ntegers%ut it doesn’t round off; it
chops off the fraction part:
>>> int(3.99999)
3
>>> nt(-2.3)
-2

» float converts integers and strings to floating-point numbers:
>>> float(32)
32.0
>>> float('3.14159")
3.14159

> Finally, str converts its argument to a string:
>>> str(32)
130
>>> str(3.14159)
'3.14159'

Source diginotes.in



4.4 Random numbers

>

YV VYV

Y

>

>

Given the same inputs, most computer programs generate the same outputs
every time, so they are said to be deterministic.

For some applications, though, we want the computer to be unpredictable.
Making a program truly nondeterministic turns out to be not so easy, but
there are ways to make it at least seem nondeterministic.

One of them is to use al- gorithms that generate pseudorandom numbers.
Pseudorandom numbers are not truly random because they are generated by
a deterministic computation, but just by looking at the numbers it is all but
impossible to distinguish them from random.

The random module provides functions that generate pseudorandom
numbers

The function random returns a random float between 0.0 and 1.0 (including
0.0 but not 1.0).

Each time you call random, you get the next number in a long series.

import random

for i in range(10):
¥ = random.randomf()

print(x)

This program produces ;;1{1911;.'% §t |.}l ;Emrgmenumburﬁ between 0.0 and
| 1 I Il E

up to but not including 1.0. ©

Lo T T e o N o o o o

Y VvV

.11132867921152356
.5950949227800241
.04820265884996877
.841003109276478
.997914947054958
.04842330803368111
.7T416205048208405
.510535245390327
L2T44T0401T71978143
02851180547 2TB5867

The random function is only one of many functions that handle random
numbers.
The function randint takes the parameters low and high, and returns an
integer between low and high (including both).

>>> random.randint(5, 10)

5

Source diginotes.in



>

>

>>> random.randint(5, 10)

9
To choose an element from a sequence at random, you can use choice:
>>>t=[1, 2, 3]
>>> random.choice(t)
2
>>> random.choice(t)
3

The random module also provides functions to generate random values from
continuous distributions including Gaussian, exponential, gamma, and a few
more.

4.5 Math functions
» Python has a math module that provides most of the familiar mathematical

YV VV V V¥V

functions.
Before we can use the module, we have to import it:

>>> print(math)

<module ‘math’ (built-ig)> g
The module object contains 1¢tions and variables defined in the
module.
To access one of the functlons you to specify the name of the module
and the name of the @@ ff@ @so known as a period).
This format is caIIe ot notapon

>>> ratio = signal_| power/n0|se power

>>> decibels = 10 * math.log10(ratio)

>>> radians = 0.7

>>> height = math.sin(radians)
The first example computes the logarithm base 10 of the signal-to-noise
ratio.
The math module also provides a function called log that computes
logarithms base e.
The second example finds the sine of radians.
The name of the variable is a hint that sin and the other trigonometric
functions (cos, tan, etc.) take arguments in radians.
To convert from degrees to radians, divide by 360 and multiply by 2_:

>>> degrees = 45

>>> radians = degrees / 360.0 * 2 * math.pi

>>> math.sin(radians)

0.7071067811865476

Source diginotes.in



>

>

The expression math.pi gets the variable pi from the math module. The value
of this variable is an approximation of _, accurate to about 15 digits.
you can check the previous result by comparing it to the square root of two
divided by two:

>>> math.sqrt(2) / 2.0

0.7071067811865476

4.6 Adding new functions

>

>

>

Y V VY

VVVY VV VY 'V

So far, we have only been using the functions that come with Python, but it
Is also possible to add new functions.
A function definition specifies the name of a new function and the sequence
of statements that execute when the function is called.
Once we define a function, we can reuse the function over and over
throughout our program.
Here is an example:
def print_lyrics():
print("I'm a lumberjack, and I'm okay.")
print(’'l sleep all night “nrh' work all day.")
def is a keyword that indicate$ that Thisjis a function definition.
The name of the function is pfint_lyrics.
The rules for function names ar Ki%i as for variable names: letters,
r

numbers and some i 4but the first character t
be a number. FT@T(EIS @ erl -

You can’t use a keyword as the namé Jf a function, and you should avoid
having a variable and a function with the same name.

The empty parentheses after the name indicate that this function doesn’t take
any arguments.

Later we will build functions that take arguments as their inputs.

The first line of the function definition is called the header; the rest is called
the body.

The header has to end with a colon and the body has to be indented.

By convention, the indentation is always four spaces.

The body can contain any number of statements.

The strings in the print statements are enclosed in quotes. Single quotes and
double quotes do the same thing; most people use single quotes except in
cases like this where a single quote (which is also an apostrophe) appears in
the string.

If you type a function definition in interactive mode, the interpreter prints
ellipses (. . . ) to let you know that the definition isn’t complete:

Source diginotes.in



>>> def print_lyrics():
print("1'm a lumberjack, and I'm okay.")
print('l sleep all night and | work all day.")

To end the function, you have to enter an empty line
Defining a function creates a variable with the same name.

>>> print(print_lyrics)

<function print_lyrics at Oxb7e99e9c>
>>> print(type(print_lyrics))

<class 'function'>

The value of print_lyrics is a function object, which has type “function”.
The syntax for calling the new function is the same as for built-in functions:

>>> print_lyrics()
I'm a lumberjack, and I'm okay.
I sleep all night and | work all day.

Once you have defined a function, you can use it inside another function.

For example, to repeat the previougyrefrain, we could write a function called
repeat_lyrics:
def repeat_lyrics():

print_lyrics()

print_lyrics() t 4f

And then call repeat_ yrlcsS . ree
>>> repeat_lyrics()

I'm a lumberjack, and I'm okay.

I sleep all night and | work all day.

I'm a lumberjack, and I'm okay.

I sleep all night and | work all day.

But that’s not really how the song goes.

4.7 Definitions and uses

Pulling together the code fragments from the previous section, the whole program
looks like this:

def print_lyrics():

print("I'm a lumberjack, and I'm okay.")

print(’'l sleep all night and | work all day.")

def repeat_lyrics():

print_lyrics()

print_lyrics()

4.8. FLOW OF EXECUTION 49

Source diginotes.in



repeat_lyrics()

This program contains two function definitions: print_lyrics and repeat_lyrics.
Function definitions get executed just like other statements, but the effect is to
create function objects. The statements inside the function do not get executed
until the function is called, and the function definition generates no output.

As you might expect, you have to create a function before you can execute it. In
other words, the function definition has to be executed before the first time it is
called.

Exercise 2: Move the last line of this program to the top, so the function call
appears before the definitions. Run the program and see what error message you
get.

Exercise 3: Move the function call back to the bottom and move the definition of
print_lyrics after the definition of repeat_lyrics. What happens when you

run this program?

4.8 Flow of execution

In order to ensure that a function is defined before its first use, you have to know
the order in which statements are exe "'\.1 vhich is called the flow of execution.
Execution always begins at the first t ilof the program. Statements are
executed one at a time, in order fronp icp (C battom.

Function definitions do not alter the flow utlon of the program, but
remember §4F

that statements inside the unctlon .are not executed until'the function is

called.

A function call is like a detour in the flow of execution. Instead of going to the
next

statement, the flow jumps to the body of the function, executes all the statements
there, and then comes back to pick up where it left off.

That sounds simple enough, until you remember that one function can call another.
While in the middle of one function, the program might have to execute the
statements

in another function. But while executing that new function, the program

might have to execute yet another function!

Fortunately, Python is good at keeping track of where it is, so each time a function
completes, the program picks up where it left off in the function that called it.
When it gets to the end of the program, it terminates.

What’s the moral of this sordid tale? When you read a program, you don’t always
want to read from top to bottom. Sometimes it makes more sense if you follow the
flow of execution.

50 CHAPTER 4. FUNCTIONS

Source diginotes.in



4.9 Parameters and arguments

Some of the built-in functions we have seen require arguments. For example, when
you call math.sin you pass a number as an argument. Some functions take more
than one argument: math.pow takes two, the base and the exponent.

Inside the function, the arguments are assigned to variables called parameters.
Here is an example of a user-defined function that takes an argument:

def print_twice(bruce):

print(bruce)

print(bruce)

This function assigns the argument to a parameter named bruce. When the function
is called, it prints the value of the parameter (whatever it is) twice.

This function works with any value that can be printed.

>>> print_twice('Spam’)

Spam

Spam

>>> print_twice(17)

17

17 |

>>> import math ‘ \

>>> print_twice(math.pi)

3.141592653589793

3.141592653589793 nqte ﬁdéf f‘['¢ Q
The same rules of composition that apply to built-in functions also apply to

user-defined functions, so we can use any kind of expression as an argument for
print_twice:

>>> print_twice('Spam *4)

Spam Spam Spam Spam

Spam Spam Spam Spam

>>> print_twice(math.cos(math.pi))

-1.0

-1.0

The argument is evaluated before the function is called, so in the examples the
expressions “Spam ’*4andmath.cos(math.pi)‘ are only evaluated once.

You can also use a variable as an argument:

>>> michael = 'Eric, the half a bee.'

>>> print_twice(michael)

Eric, the half a bee.

Eric, the half a bee.

The name of the variable we pass as an argument (michael) has nothing to do
with the name of the parameter (bruce). It doesn’t matter what the value was

Source diginotes.in



called back home (in the caller); here in print_twice, we call everybody bruce.

4.10 Fruitful functions and void functions

Some of the functions we are using, such as the math functions, yield results;

for lack of a better name, | call them fruitful functions. Other functions, like

print_twice, perform an action but don’t return a value. They are called void

functions.

When you call a fruitful function, you almost always want to do something with

the result; for example, you might assign it to a variable or use it as part of an

expression:

X = math.cos(radians)

golden = (math.sqrt(5) + 1) / 2

When you call a function in interactive mode, Python displays the result:

>>> math.sqrt(5)

2.23606797749979

But in a script, if you call a fruitful function and do not store the result of the

function in a variable, the return value vanishes into the mist!

math.sqrt(5) |

This script computes the square rootjo! 5. but since it doesn’t store the result in

a variable or display the result, it is not very

Void functions might display something or&iefcreen or have some other effect,
Oa

but they don’t have a retuﬂ@:t@@ 1@1@ result to a variable,
ed None, — .~ _

you get a special value ca (
>>> result = print_twice('Bing)
Bing

Bing

>>> print(result)

None

The value None is not the same as the string “None”. It is a special value that has
its own type:

>>> print(type(None))

<class 'NoneType'>

To return a result from a function, we use the return statement in our function.
For example, we could make a very simple function called addtwo that adds two
numbers together and returns a result.

52 CHAPTER 4. FUNCTIONS

def addtwo(a, b):

added=a+Db

return added

X = addtwo(3, 5)

Source diginotes.in



print(x)

When this script executes, the print statement will print out “8” because the
addtwo function was called with 3 and 5 as arguments. Within the function, the
parameters a and b were 3 and 5 respectively. The function computed the sum of
the two numbers and placed it in the local function variable named added. Then

it used the return statement to send the computed value back to the calling code

as the function result, which was assigned to the variable x and printed out.

4.11 Why functions?

It may not be clear why it is worth the trouble to divide a program into functions.
There are several reasons:

* Creating a new function gives you an opportunity to name a group of statements,
which makes your program easier to read, understand, and debug.

* Functions can make a program smaller by eliminating repetitive code. Later,

If you make a change, you only have to make it in one place.

* Dividing a long program into functions allows you to debug the parts one at

a time and then assemble them into a working whole.

» Well-designed functions are often usefulgfor,many programs. Once you write
and debug one, you can reuse it.
Throughout the rest of the book, oftér we will use a function definition to explain
a concept. Part of the skill of creating and using=functions is to have a function
properly capture an idea sﬂ @’F iala n a list of values”. Later
we will show you code tha the smallest in a I|s of values and we will present
it to you as a function named min which takes a list of values as its argument and
returns the smallest value in the list.

Source diginotes.in



Python Application Programming (15CS664) Module II

MODULE Il

2.1 ITERATION

The while statement, Infinite loops, “Infinite loops” and break, Finishing iterations with Continue,

Definite loops using for, Loop pattern ,Counting and summing loops, Maximum and minimum loops

2.2 STRINGS

A string is a sequence, Getting the length of a string using len, Traversal through a string with a loop,
String slices, Strings are immutable, Looping and counting, The in operator, String comparison string
methods, Parsing strings, Format operator

2.3 FILES

Files, Persistence, Opening files, Text files and lines, Reading files, Searching through a file, Letting the

user choose the file name, Using try, excep‘, 1 1,\Writing files, Debugging

noteséfree

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 1



Python Application Programming (15CS664) Module II

MODULE Il

2.1 ITERATION
Iteration is a processing of repeating some task. In a real time programming, we require a set of
statements to be repeated certain number of times and/or till a condition is met. Every programming
language provides certain constructs to achieve the repetition of tasks. In this section, various such
looping structures are discussed.

— The while Statement
The while loop has the syntax as below —

while condition:
statement 1
statement 2

e Here, while is a keyword, the flow of r a while statement is as below.

e The condition is evaluated first, yieldirg=F alse

e |f the condition is false, thﬁ i I asdéi,f tﬁter the loop will be executed.

e If the condition is true, mm e tm comprises of the statement 1 to
statement_n and then goes back té'condition"evaluation.

e Consider an example —

n=1

while n<=5:
print(n) #observe indentation
n=n+1

print("over")

The output of above code segment would be —
1

g b~ w PN

over
e In the above example, a variable n is initialized to 1. Then the condition n<=5 is being checked. As
the condition is true, the block of code containing print statement print(n) and increment statement
(n=n+1)are executed. After these two lines, condition is checked again. The procedure continues till

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 2



Python Application Programming (15CS664) Module II

condition becomes false, that is when n becomes 6. Now, the while-loop is terminated and next
statement after the loop will be executed. Thus, in this example, the loop is iterated for 5 times.

Consider another example —

n=5

while n>0:
print(n) #observe indentation
n=n-1

print("Blast off!")

The output of above code segment would be —
5

P NN Wb

Blast off!
Iteration is referred to each time of execution of the body of loop.
Note that, a variable n is initialized before starting the loop and it is incremented/decremented
inside the loop. Such a variable that ¢hanoeg iis;value for every iteration and controls the total
execution of the loop is called as iterat able or counter variable. If the count variable is
not updated properly within the loo thel loop may not terminate and keeps executing

notes4free

— Infinite Loops, break and continue i »
A loop may execute infinite number of times when the condltlon IS never going to become false.
For example,
n=1
while True:
print(n)
n=n+1
Here, the condition specified for the loop is the constant True, which will never get terminated.
Sometimes, the condition is given such a way that it will never become false and hence by
restricting the program control to go out of the loop. This situation may happen either due to
wrong condition or due to not updating the counter variable.
In some situations, we deliberately want to come out of the loop even before the normal
termination of the loop. For this purpose break statement is used.
The following example depicts the usage of break. Here, the values are taken from keyboard until
a negative number is entered. Once the input is found to be negative, the loop terminates.
while True:
x=int(input("Enter a number:"))
if x>=0:

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 3



Python Application Programming (15CS664) Module II

print("'You have entered ",x)

else:
print("'You have entered a negative number!!")
break #terminates the loop

Output:

Enter a number:23

You have entered 23

Enter a number:12

You have entered 12

Enter a number:45

You have entered 45

Enter a number:0

You have entered 0

Enter a number:-2

You have entered a negative number!!

e In the above example, we have used the constant True as condition for while-loop, which will
never become false. So, there was a possibility of infinite loop. This has been avoided by using
break statement with a condition.

e The condition is kept inside the loop st / that, if the user input is a negative number, the
loop terminates. This indicates that, the loop may terminate with just one iteration (if user gives
negative number for the very first time) of it may dake thousands of iteration (if user keeps on
giving only positive numb i LIE]ED }%f fe[ations here is unpredictable.

e But, we are making sure m@;u_ En m iristead, the user has control on the
|OOp. AL 1 n o m e

e Another example for usage of while with break statement: the below code takes input from the
user until they type done:

while True:
line = input(*">"
if line =="done".
break
print(line)
print('Done!’)

e In the above example, since the loop condition is True, so the loop runs repeatedly until it hits the
break statement.

e Each time it prompts the user to enter the data. If the user types done, the brak statement exits the
loop. Otherwise the program echoes whatever the user types and goes back ti the top of the loop.

e Output will be:

>hello
hello
>finished

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 4



Python Application Programming (15CS664) Module II

finished
>done
Done!

e Sometimes, programmer would like to move to next iteration by skipping few statements in the
loop, based on some condition with current iteration. For this purpose continue statement is used.
For example, we would like to find the sum of 5 even numbers taken as input from the keyboard.
The logic is —

e Read a number from the keyboard
e If that number is odd, without doing anything else, just move to next iteration for reading
another number
e If the number is even, add it to sum and increment the accumulator variable.
e When accumulator crosses 5, stop the program
e The program for the above task can be written as —
sum=0
count=0
while True:
x=input("Enter a number:")
if x%2!=0: i
continue
else:
sum+=x

smnotesdiree
break Al 1 mn o e
print("Sum=", sum)

Output:

Enter a number: 23
Enter a number: 67
Enter a number: 789
Enter a number: 78
Enter a number: 5
Enter a number: 7
Sum= 891

e Example of a loop that copies its input until the user types “done”, but treats lines that start with
the hash character as lines not to be printed

while True:
line=input(">")
if line[0] == "#"

continue

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 5



Python Application Programming (15CS664) Module II

if line =='done":
break
print(line)

print('Done!’)

Output:
> hello there
hello there
> #dont print this
> print this!
print this!
> done
Donel!
e Above, all lines are printed except the one that starts with ‘# because whenth econtinue is
executed, it ends the current iteration and jumps back to the while statement to start the next

iteration, thus skipping the print statement.

— Definite Loops using for

e The while loop iterates till the condition is rim‘ and hence, the number of iterations are usually
unknown prior to the loop. Hence, it is ; ¢alled as indefinite loop.

e When we know total number of times the et of statements to be executed, for loop will be used.
This is called as a definite loop. The for- s.over a set of numbers, a set of words, lines

in a file etc. The syntax of ﬁomvfu&b@: Z F T- p e

L e i i
for var in listy/sequence:,

statement 1
statement 2

statement n

statements after for

Here, forand in are keywords
list/sequence is a set of elements on which the loop is iterated. That is, the loop
will be executed till there is an element in list/sequence
statements constitutes body of the loop

e Example: In the below given example, a list names containing three strings has been created.
Then the counter variable x in the for-loop iterates over this list. The variable x takes the elements
in names one by one and the body of the loop is executed.

names=["Ram", "Shyam", "Bheem"]
for x in names:
print("Happy New Year" x)

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 6



Python Application Programming (15CS664) Module II

print('Done!’)
The output would be -

Happy New Year Ram
Happy New Year Shyam
Happy New Year Bheem
Donel!

NOTE: In Python, list is an important data type. It can take a sequence of elements of different types.
It can take values as a comma separated sequence enclosed within square brackets. Elements in the list
can be extracted using index (just similar to extracting array elements in C/C++ language). Various
operations like indexing, slicing, merging, addition and deletion of elements etc. can be applied on
lists. The details discussion on Lists will be done in Module 3.

e The for loop can be used to print (or extract) all the characters in a string as shown below —
foriin "Hello™:
print(i, end="\t")
Output:
H e I I 0

e When we have afixed set of number{ tl ﬂ‘in a for loop, we can use a function

range(). The function range() takes the follc rmat —
range(start, end, steps)

e The start and end indicate @S%ﬁrﬁ quence, where end is excluded in

the sequence (That is, sequ mm& e of start is 0. The argument steps

indicates the increment/decrement‘in ‘the values of séquience with the default value as 1. Hence, the

argument steps is optional.
e Let us consider few examples on usage of range() function.

Ex1. Printing the values from 0 to 4 —
for i in range(5):
print(i, end= ‘\t’)
Output:
0 1 2 3 4
Here, 0 is the default starting value. The statement range(5)is same as range(0,5) and range(0,5,1).

Ex2. Printing the values from5to 1 —
for i in range(5,0,-1):
print(i, end= ‘\t’)
Output:
5 4 3 2 1
The function range(5,0,-1)indicates that the sequence of values are 5 to O(excluded) in steps of -1

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 7



Python Application Programming (15CS664) Module II

(downwards).
Ex3. Printing only even numbers less than 10 —
for i in range(0,10,2):
print(i, end= ‘\t”)
Output:
0 2 4 6 8

— Loop Patterns

The while-loop and for-loop are usually used to go through a list of items or the contents of a file and
to check maximum or minimum data value. These loops are generally constructed by the following
procedure —

e Initializing one or more variables before the loop starts

e Performing some computation on each item in the loop body, possibly changing the variables

in the body of the loop
e Looking at the resulting variables when the loop completes

The construction of these loop patterns are demonstrated in the following examples.

Counting and Summing Loops: One cant A 1 loop for counting number of items in the list as
shown —
count=0

wenratdotesdfree

print(“Count:”, count)

e Here, the variable count is initialized before the loop. Though the counter variable is not being
used inside the body of the loop, it controls the number of iterations.
e The variable count is incremented in every iteration, and at the end of the loop the total number of
elements in the list is stored in it.
e One more loop similar to the above is finding the sum of elements in the list —
total = 0
forx in [4, -2, 41, 34, 25]:
total = total + x
print(“Total:”, total)
e Here, the variable total is called as accumulator because in every iteration, it accumulates the sum
of elements. In each iteration, this variable contains running total of values so far.

NOTE: In practice, both of the counting and summing loops are not necessary, because there are
built-in functions len()and sum()for the same tasks respectively.

Maximum and Minimum Loops: To find maximum element in the list, the following code can be

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 8



Python Application Programming (15CS664) Module II

used —
big = None
print('Before Loop:', big)
for x in [12, 0, 21,-3]:
if big is None or x > big :
big = x
print(‘lteration Variable:', x, 'Big:', big)
print('Biggest:', big)
Output:
Before Loop: None
Iteration Variable: 12 Big: 12
Iteration Variable: 0 Big: 12
Iteration Variable: 21 Big: 21
Iteration Variable: -3 Big: 21
Biggest: 21

e Here, we initialize the variable big to None. It is a special constant indicating empty.

e Hence, we cannot use relational operator = \ﬁ/h le comparing it with big. Instead, the is operator
must be used.

e In every iteration, the counter variable d with previous value of big. If x > big, then x
is assigned to big.

e Similarly, one can have a I@QL@&I& fxrﬁtgw the list as given below —

small = None
print('Before Loop:', small)
for x in [12, 0, 21,-3]:
if small is None or x < small :
small = x
print(‘lIteration Variable:', x, 'Small:’, small)
print('Smallest:', small)

Output:
Before Loop: None
Iteration Variable: 12 Small: 12
Iteration Variable: 0 Small: 0
Iteration Variable: 21 Small: 0
Iteration Variable: -3 Small: -3
Smallest: -3

NOTE: In Python, there are built-in functions max() and min()to compute maximum and minimum
values among. Hence, the above two loops need not be written by the programmer explicitly. The

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 9



Python Application Programming (15CS664) Module II

inbuilt function min()has the following code in Python —

def min(values):
smallest = None
for value in values:
if smallest is None or value < smallest:
smallest = value
return smallest

2.2 STRINGS

A string is a sequence of characters, enclosed either within a pair of single quotes or double
quotes.
Each character of a string corresponds to an index number, starting with zero as shown below:

S= “Hello World”

character [H [e [I |I |o w o [r [I |d
index 0 |1 ]2 3N4 )5 ]6 |7 [8]9]10

The characters of a string can be accessL.rgg;.'-Jiex enclosed within square brackets.
So, H is the 0" letter, e is the 1" letter and | is t ZP erof “Hello world”
For example, hété Sq iqe e

>>> word1="Hello" " W

>>> word2="hi'

>>> x=word1[1] #2" character of word1 is extracted

>>> print(X)

e

>>> y=word2[0] #1* character of word1 is extracted

>>> print(y)

h

e Python supports negative indexing of string starting from the end of the string as shown below:
S= “Hello World”

character H e | | 0 w |o |r || d
Negative index -11 |-10 |9 |8 |-7|6 |5|-4|-3]-2 |-1

e The characters can be extracted using negative index also, which count backward from the end of
the string.
e For example:

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 10



Python Application Programming (15CS664) Module II

>>> yar="“Hello”
>>> print(var[-1])
0

>>> print(var[-4])
e

e Whenever the string is too big to remember last positive index, one can use negative index to
extract characters at the end of string.

— Getting Length of a String using len()
e The len() function is a built-in function that can be used to get length of a string, which returns the
number of characters in a string
e Example:
>>> var="Hello"
>>> [n=len(var)
>>> print(In)
5
e The index for string varies from 0 to Je '*'r*l’ Trying to use the index value beyond this range
generates error.
>>> var="Hello"
>>> [n=len(var)

>>> ch=var[In] ntg;!;g SI4 ,fr e e

IndexError: string index ou

— Traversal through String with a Loop

e Extracting every character of a string one at a time and then performing some action on that
character is known as traversal.

e A string can be traversed either using while loop or using for loop in different ways. Few of such
methods is shown here —

%+ Using for loop:
st="Hello"
foriin st:
print(i, end="\t)

Output:
H e I I 0

¢ Inthe above example, the for loop is iterated from first to last character of the string st. That is, in
every iteration, the counter variable i takes the values as H, e, |, | and 0. The loop terminates when
no character is left in st.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 11



Python Application Programming (15CS664) Module II

% Using while loop:

st="Hello"
i=0
while i<len(st):
print(st[i], end=‘\t")
i+=1
Output:
H e I I 0
In this example, the variable i is initialized to 0 and it is iterated till the length of the string. In
every iteration, the value of i is incremented by 1 and the character in a string is extracted using i
as index.
Example: Write a while loop that starts at the last character in the string and traverses backwards
to the first character in the string, printing each letter on separate line

str="Hello"
i=1
while i>=-len(str):
print(str[i])
i-=1 i
Output:
0
| ,
I
. “'notes4diree
H ' T | | I | 3

— String Slices

1.

A segment or a portion of a string is called as slice.
Only a required number of characters can be extracted from a string using colon (:) symbol.
The basic syntax for slicing a string would be — st[i:j:k]
This will extract character from i character of st till (j-1)™ character in steps of k.
If first index is not present, it means that slice should start from the beginning of the string. |
f the second index j is not mentioned, it indicates the slice should be till the end of the string.
The third parameter k, also known as stride, is used to indicate number of steps to be incremented
after extracting first character. The default value of stride is 1.
Consider following examples along with their outputs to understand string slicing.
st="Hello World" #refer this string for all examples

print("st[:] is", st[:]) #output Hello World
As both index values are not given, it assumed to be a full string.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 12



Python Application Programming (15CS664) Module II

2. print("st[0:5] is", st[0:5]) #output is Hello
Starting from 0™ index to 4™ index (5 is exclusive), characters will be printed.

3. print("st[0:5:1] is", st[0:5:1]) #output is Hello
This code also prints characters from Oth to 4th index in the steps of 1. Comparing this
example with previous example, we can make out that when the stride value is 1, it is
optional to mention.

4. print("st[3:8] is ", st[3:8]) #output is lo Wo
Starting from 3" index to 7" index (8 is exclusive), characters will be printed.

5. print("st[7:]is", st[7:]) #output is orld
Starting from 7" index to till the end of string, characters will be printed.

6. print(st[::2]) #output is Hlowrd
This example uses stride value as 2. So, starting from first character, every alternative
character (char+2) will be printed.

7. print("st[4:4] is ", st[4:4]) “/f‘ mpty string
Here, st[4:4] indicates, slicing should starf from 4™ character and end with (4-1)=3"
character, which is not possible. Herice the cutput would be an empty string.

8. print(st[3:8:2]) nqggsg@{r? g
Starting from 3rd character, .-.I /T cha cter, évery alternative index is considered.

9. print(st[1:8:3]) #output is eoo
Starting from index 1, till 7" index, every 3" character is extracted here.

10. print(st[-4:-1]) #output is orl
Refer the diagram of negative indexing given earlier. Excluding the -1st character, all
characters at the indices -4, -3 and -2 will be displayed. Observe the role of stride with
default value 1 here. That is, it is computed as -4+1 =-3, -3+1=-2 etc.

11. print(st[-1:]) #output is d
Here, starting index is -1, ending index is not mentioned (means, it takes the index
10) and the stride is default value 1. So, we are trying to print characters from -1 (which is
the last character of negative indexing) till 10" character (which is also the last character in
positive indexing) in incremental order of 1. Hence, we will get only last character as output.

12. print(st[:-1]) #output is Hello Worl
Here, starting index is default value 0 and ending is -1 (corresponds to last character in

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 13



Python Application Programming (15CS664) Module II

negative indexing). But, in slicing, as last index is excluded always, -1% character is omitted
and considered only up to -2 character.

13. print(st[::]) #outputs Hello World
Here, two colons have used as if stride will be present. But, as we haven’t mentioned stride
its default value 1 is assumed. Hence this will be a full string.

14. print(st[::-1]) #output is dlrow olleH
This example shows the power of slicing in Python. Just with proper slicing, we could able
to reverse the string. Here, the meaning is a full string to be extracted in the order of -1.
Hence, the string is printed in the reverse order.

15. print(st[::-2]) #output is drwolH
Here, the string is printed in the reverse order in steps of -2. That is, every alternative
character in the reverse order is printed. Compare this with example (6) given above.

By the above set of examples, one can understand the power of string slicing and of Python script.
The slicing is a powerful tool of Python which rria :s many task simple pertaining to data types like
strings, Lists, Tuple, Dictionary etc. (Other |ty e discussed in later Modules)

— Strings are Immutable
e The objects of string class a e $
e That is, once the strings are created (or initialized), they cannot be modified.
e No character in the string can be edited/deleted/added.
e Instead, one can create a new string using an existing string by imposing any modification
required.
e Try to attempt following assignment —
>>> st= “Hello World”
>>> st[3]="t'
TypeError: 'str' object does not support item assignment
e The error message clearly states that an assignment of new item (‘t”) is not possible on string
object(st).
e The reason for this is strings are immutable
e S0, to achieve our requirement, we can create a new string using slices of existing string as below

>>> st= “Hello World”
>>> stl1=st[:3]+ 't' + st[4:]
>>> print(stl)
Helto World # lis replaced by t in new string stl1

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 14



Python Application Programming (15CS664) Module II

— Looping and Counting
Using loops on strings, we can count the frequency of occurrence of a character within another
string.
The following program demonstrates such a pattern on computation called as a counter.
Initially, we accept one string and one character (single letter). Our aim to find the total number of
times the character has appeared in string.
A variable count is initialized to zero, and incremented each time ‘a’ character is found. The
program is given below —

word="banana"

count=0
for letter in word:
if letter =="a":

count=count+1
print("The occurences of character 'a' is %d "%(count))
Output:
The occurences of character 'a" is 3
e Encapsulate the above code in a function named count and generalize it so that it accepts the string
and the letter as arguments |

def count(st,ch): :
cnt=0
wne NOtesdiree
if i==ch: Al i n I L G
| IcntJCrzl |
return cnt

st=input("Enter a string:")
ch=input("Enter a character to be counted:")
c=count(st,ch)
print("%s appeared %d times in %s"%(ch,c,st))
Output:
Enter a string: hello how are you?
Enter a character to be counted: h
h appeared 2 times in hello how are you?

— The in Operator

e The in operator of Python is a Boolean operator which takes two string operands.

e ltreturns True, if the first operand appears as a substring in second operand, otherwise returns
False.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 15



Python Application Programming (15CS664) Module II

e For example,

>>>'el"in 'hello’ #el is found in hello
True

>>>'x'in 'hello’ #x is not found in hello
False

— String Comparison

e Basic comparison operators like < (less than), > (greater than), == (equals) etc. can be applied on
string objects.

e  Such comparison results in a Boolean value True or False.

e Internally, such comparison happens using ASCII codes of respective characters.

e Consider following examples —

Ex1. st=‘hello”
if st== ‘hello’:
print(‘same’)

n
Output is same. As the value contained in tt | 11 both are same, the equality results in True.

Ex2. st=“hello”

i st<=“Hello": ]flOte S4fre -

print(‘lesser’)
else:

print(‘greater”)

Output is greater. The ASCII value of h is greater than ASCII value of H. Hence, hello
is greater than Hello.

NOTE: A programmer must know ASCII values of some of the basic characters. Here are few —

A-Z :65-90
a—-z 197 -122
0-9 : 48 — 57
Space 32

Enter Key 013

— String Methods

e String is basically a class in Python.

e When we create a string in program, an object of that class will be created.

e Aclass is a collection of member variables and member methods (or functions).

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 16



Python Application Programming (15CS664) Module II

e When we create an object of a particular class, the object can use all the members (both variables
and methods) of that class.

e Python provides a rich set of built-in classes for various purposes. Each class is enriched with a
useful set of utility functions and variables that can be used by a Programmer.

e A programmer can create a class based on his/her requirement, which are known as user-defined
classes.

e The built-in set of members of any class can be accessed using the dot operator as shown—

objName.memberMethod(arguments)

e The dot operator always binds the member name with the respective object name. This is very
essential because, there is a chance that more than one class has members with same name. To
avoid that conflict, almost all Object oriented languages have been designed with this common
syntax of using dot operator.

e Python provides a function (or method) dir to list all the variables and methods of a particular class
object. Observe the following statements —

>>> s="hello" # string object is created with the name s
>>>type(s) #checking type of s

<class ‘str’> #s is object of type class ST
>>> dir(s) #display all methods =nd variables of object s

[Ladd_', " class_','_contains_', ' delattr_'," format '_ge_','_getattribute_',

getltem getnewargs ﬂ@tﬁ%j‘i ' iter ', e, Ulen !, It
mod_', ' repr Lrmod_', '_rmul_','_setattr

, _S|zeof_, N _', '_subclasshook_, capltallze, casefold, center, ‘count’, encode, endswith',
‘expandtabs’, ‘find', ‘format’, ‘format_map', ‘index’, ‘isalnum’, ‘isalpha’, ‘isdecimal’, ‘isdigit’,
‘isidentifier’, "islower’, ‘isnumeric', 'isprintable’,  ‘isspace’, 'istitle’, 'isupper’, 'join’, 'ljust’,
‘lower’, ‘Istrip’, ‘maketrans’, ‘partition’, 'replace’, 'rfind’,

‘rindex’, ‘rjust’, 'rpartition’, 'rsplit’, ‘rstrip’, 'split’, 'splitlines’, 'startswith’, 'strip’, 'swapcase’, 'title’,
‘translate’, 'upper’, ‘zfill']

e Note that, the above set of variables and methods are common for any object of string class that
we create.
e Each built-in method has a predefined set of arguments and return type.
e To know the usage, working and behavior of any built-in method, one can use the command help.
e For example, if we would like to know what is the purpose of islower() function (refer above list
to check its existence!!), how it behaves etc, we can use the statement —
>>> help(str.islower)
Help on method_descriptor:

islower(...)

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 17



Python Application Programming (15CS664) Module II

S.islower() -> bool

Return True if all cased characters in S are lowercase and if there is at least one upper
cased character in S, returns False otherwise.

e This is built-in help-service provided by Python. Observe the className.memberName format
while using help.

e The methods are usually called using the object name. This is known as method invocation. We
say that a method is invoked using an object.

e Now, we will discuss some of the important methods of string class.

« capitalize(s) : This function takes one string argument s and returns a capitalized version of that
string. That is, the first character of s is converted to upper case, and all other characters to
lowercase. Observe the examples given below —

Ex1. >>> s="hello"
>>> sl =str.capitalize(s)
>>> print(sl)
Hello #1% character is changed to uppercase
Ex2. >>> s="hello World" I
>>> s]=str.capitalize(s)
>>> print(sl)

womwotesdfree

Observe in Ex2 that the first character'is corivertéd o uppercase, and an in-between uppercase
letter W of the original string is converted to lowercase.

Q2

¢ s.upper(): This function returns a copy of a string s to uppercase. As strings are immutable, the original
string s will remain same.

>>> st= “hello”
>>> st1=st.upper()
>>> print(st1)
'HELLO'
>>> print( st) #no change in original string
'hello’
« s.lower(): This method is used to convert a string s to lowercase. It returns a copy of original string after
conversion, and original string is intact.

>>> st='"HELLO'
>>> st1=st.lower()
>>> print(stl) hello

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 18



Python Application Programming (15CS664) Module II

>>> print(st) #no change in original string
HELLO

% s.find(sl) : The find() function is used to search for a substring sl in the string s. If found, the index
position of first occurrence of s1 in s, is returned. If s1 is not found in s, then -1 is returned.

>>> st="hello’'
>>> j=st.find('l")
>>> print(i) #output is 2
>>> =st.find('l0")
>>> print(i) #output is 3
>>> print(st.find(‘x”)) #output is -1
The find() function can take one more form with two additional arguments viz. start and end positions for

search.
>>> st="calender of Feb. cal of march"
>>> j= st.find(‘cal’)
>>> print(i) #output is 0
Here, the substring ‘cal’is found in the very first position of st, hence the result is 0.
>>> =st.find('cal’,10,20)

>>> print(i) foutput is 17
Here, the substring cal is searched in th 10 5t between 10" and 20™ position and hence the result is 17.

>>> j=st.find('cal’,10,15)
>>>printi) 1) 0 te Slipf@ee

In this example, the substring ‘cal' has not appea'red between 10" and 15™ character of st. Hence,
the result is -1.

% s.strip(): Returns a copy of string s by removing leading and trailing white spaces.

>>> gt=" hello world "
>>> stl = st.strip()
>>> print(stl)
hello world
The strip() function can be used with an argument chars, so that specified chars are removed from
beginning or ending of s as shown below —
>>> st="###Hello##"
>>> stl=st.strip(‘#')
>>> print(st1) #all hash symbols are removed
Hello
We can give more than one character for removal as shown below —
>>> st="Hello world"

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 19



Python Application Programming (15CS664) Module II

>>> st1=st.strip("HId")
ello wor

s S.startswith(prefix, start, end): This function has 3 arguments of which start and end are option. This
function returns True if S starts with the specified prefix, False otherwise.
>>> st="hello world"
>>> st.startswith(*"he™) #returns True
When start argument is provided, the search begins from that position and returns True or False based on
search result.
>>> st="hello world"
>>> st.startswith("w",6) #True because w is at 6th position
When both start and end arguments are given, search begins at start and ends atend.
>>> st="xyz abc pqr ab mn gh*
>>> st.startswith("pgr ab mn",8,12) #returns False
>>> st.startswith("pgr ab mn",8,18) #returns True

The startswith() function requires case of the alphabet to match. So, when we are not sure about the case
of the argument, we can convert it to either Ypoer case or lowercase and then use startswith() function as
below —

>>> st="Hello"

>>> st.startswith("he™) #returns False

>>> st.lower(). startswnn@ t e S 4 fpele True

% S.count(sl, start, end): The courit'() functlon takes three arguments — string, starting position and ending
position. This function returns the number of non-overlapping occurrences of substring sl in string S in
the range of start and end.

>>> st="hello how are you? how about you?"

>>> st.count(‘h’) #output is 3

>>> st.count(‘how’) #output is 2

>>> st.count(‘how’,3,10) #output is 1 because of range given
Example:

st=input("Enter a string:")

ch=input("Enter a character to be counted:")
c=st.count(ch)

print(*%s appeared %d times in %s"%(ch,c,st))

— Parsing Strings
e Sometimes, we may want to search for a substring matching certain criteria.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 20



Python Application Programming (15CS664) Module II

e For example, finding domain names from email-1ds in the list of messages is a useful task in some projects.
e Consider a string below and we are interested in extracting only the domain name.

“From mamatha.a@saividya.ac.in Wed Feb 21 09:14:16 2018~

Now, aim is to extract only saividya.ac.in, which is the domain name.

We can think of logic as—
o ldentify the position of @, because all domain names in email 1Ds will be after the symbol @
o ldentify a white space which appears after @ symbol, because that will be the end of domain

name.

o Extract the substring between @ and white-space.

The concept of string slicing and find() function will be useful here.

Consider the code given below —

st="From mamatha.a@saividya.ac.in ~ Wed Feb 21 09:14:16 2018"
atpos=st.find('@") #finds the position of @

print(‘Position of @ is', atpos)
spacePos=st.find(‘ *, atpos)
print('Position of space after @ is', s

| ‘position of white-space after @

host=st[atpos+1:spacePos]  #slici ill white-space

print(host) n 0 tles4 fr e e

Output:

Position of @ is 14

Position of space after @ is 29
saividya.ac.in

— Format Operator

e The format operator, % allows us to construct strings, replacing parts of the strings with the data stored in
variables.

e The first operand is the format string, which contains one or more format sequences that specify how the
second operand is formatted.
Syntax: “<format>" % (<values>)
e The result is a string.
>>> sum=20
>>> '%d"' %sum
207 #string ‘20°, but not integer 20

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 21



Python Application Programming (15CS664) Module II

¢ Note that, when applied on both integer operands, the % symbol acts as a modulus operator. When the first
operand is a string, then it is a format operator.
e Consider few examples illustrating usage of format operator.

Ex1. >>>"The sum value %d is originally integer"%sum
"The sum value 20 is originally integer*

Ex2. >>> '%d %f %s'%(3,0.5,'hello’)
'3 0.500000 hello*

Ex3. >>> '%d %g %5'%(3,0.5, hello’)
30.5 hello*

Ex4. >>>'%d'% 'hello’
TypeError: %d format: a number is required, not str

EX5. >>> '%d %d %d'%(2,5)
TypeError: not enough arguments for ‘nrnr string

2.3 FILES LJ

e File handling is an import egthr %ﬁ ipg, language, as it allows us to store
the data permanently on thﬁo@aﬁgg a i:fEEfrom a permanent source.

e Here, we will discuss how to ]'derchrm \various Operations on files using the programming
language Python.

— Persistence

e The programs that we have considered till now are based on console 1/O. That is, the input was
taken from the keyboard and output was displayed onto the monitor.

When the data to be read from the keyboard is very large, console input becomes a laborious job.
Also, the output or result of the program has to be used for some other purpose later, it has to be
stored permanently.

Hence, reading/writing from/to files are very essential requirement of programming.

We know that the programs stored in the hard disk are brought into main memory to execute
them.

These programs generally communicate with CPU using conditional execution, iteration,
functions etc.

e But, the content of main memory will be erased when we turn-off our computer.

e Here we will discuss about working with secondary memory or files. The files stored on the

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 22



Python Application Programming (15CS664) Module II

secondary memory are permanent and can be transferred to other machines using pen-drives/CD.

— Opening Files

e To perform any operation on a file, one must open a file.

e File opening involves communication with operating system.

e In Python, a file can be opened using a built-in function open().

e While opening a file, we must specify the name of the file to be opened. Also, we must inform the

OS about the purpose of opening a file, which is termed as file opening mode.
e The syntax of open() function is as below —
thand= open(“filename”, “mode”)
Here, filename is name of the file to be opened. This string may be just a name of the file, or it

may include pathname also. Pathname of the file is optional when the file is
stored in current working directory

mode This string indicates the purpose of opening a file. It takes a pre- defined set of
values as given in Table below
fhand It is a reference to an object of file class, which acts as a handler or tool for all

further operations on files.
e When our Python program makes a request tgl open a specific file in a particular mode, then OS
will try to serve the request.
e When a file gets opened successfully, thei: o i
and is as shown in Figure below.

e It will help to perform vaﬁ@ﬁt@s%£ﬁ@¢ﬂ program. If the file cannot be
opened due to some reason, then error message (traceback) will be displayed.

bject is returned. This is known as file handle

Y
N

From stephen.m..
Return-Path: <p..
Date: Sat, 5 Jan ..
To: source@coll..
From: stephen...
Subject: [sakai]...
Details: http:/...

Figure A File Handle

open

write

Your
Program

¢ A file opening may cause an error due to some of the reasons as listed below —
o File may not exist in the specified path (when we try to read a file)
o File may exist, but we may not have a permission to read/write a file
o File might have got corrupted and may not be in an opening state

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 23



Python Application Programming (15CS664)

Module II

e Since, there is no guarantee about getting a file handle from OS when we try to open a file, it is
always better to write the code for file opening using try-except block.
e This will help us to manage error situation.

Mode Meaning

r Opens a file for reading purpose. If the specified file does not exist in the
specified path, or if you don’t have permission, error message will be displayed.
This is the default mode of open() function in Python.

w Opens a file for writing purpose. If the file does not exist, then a new file with the
given name will be created and opened for writing. If the file
already exists, then its content will be over-written.

a Opens a file for appending the data. If the file exists, the new content will
be appended at the end of existing content. If no such file exists, it will be created
and new content will be written into it.

r+ Opens a file for reading and writing.

w+ Opens a file for both writing and reading. Overwrites the existing file if the file
exists. If the file does not exist, creates a new file for reading and
writing. |

a+ Opens a file for both appengling and raading. The file pointer is at the end of the
file if the file exists. The file opens in the append mode. If the file does not exist,
it creates a new file for reading a -
wie. Y Ntoacdtrope

rb Opens a file forfedditg oty bihary-formtat ™= =

wb Opens a file for writing only in binary format

ab Opens a file for appending only in binary format

— Text Files and Lines

e Atextfile is a file containing a sequence of lines

e It contains only the plain text without any images, tables etc.

e Different lines of a text file are separated by a newline character \n.

e In the text files, this newline character may be invisible, but helps in identifying every line in the
file. There will be one more special entry at the end to indicate end of file (EOF).

NOTE: There is one more type of file called binary file, which contains the data in the form of bits.
These files are capable of storing text, image, video, audio etc. All these data will be stored in the
form of a group of bytes whose formatting will be known. The supporting program can interpret
these files properly, whereas when opened using normal text editor, they look like messy, unreadable
set of characters.

Mamatha A, Asst Prof, Dept of CSE, SVIT

Page 24



Python Application Programming (15CS664) Module II

— Reading Files

e When we successfully open a file to read the data from it, the open() function returns the file
handle (or an object reference to file object) which will be pointing to the first character in the file.

e A text file containing lines can be iterated using a for-loop starting from the beginning with the
help of this file handle. Consider the following example of counting number of lines in a file.

NOTE: Before executing the below given program, create a text file (using Notepad or similar editor)
myfile.txt in the current working directory (The directory where you are going store your Python
program). Open this text file and add few random lines to it and then close. Now, open a Python script
file, say countLines.py and save it in the same directory as that of your text file myfile.txt. Then, type
the following code in Python script countLines.py and execute the program. (You can store text file
and Python script file in different directories. But, if you do so, you have to mention complete path of
text file in the open() function.)

Sample Text file myfile.txt:
hello how are you? I
am doing fine what
about you?

1
Python script file countLines.py ‘ \

fhand=open('myfile.txt','r") count =0

for line in fhand: 4f
print("Line Number " count,™:",'life) " '

print("Total lines=",count)

fhand.close()

Output:
Line Number 1 : hello how are you?
Line Number 2 : 1 am doing fine
Line Number 3 : what about you?
Total lines=3
e In the above program, initially, we will try to open the file 'myfile.txt. As we have already created
that file, the file handler will be returned and the object reference to this file will be stored in
fhand.
e Then, in the for-loop, we are using fhand as if it is a sequence of lines. For each line in the file, we
are counting it and printing the line.
e In fact, a line is identified internally with the help of new-line character present at the end of each
line.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 25



Python Application Programming (15CS664) Module II

e Though we have not typed \n anywhere in the file myfile.txt, after each line, we would have
pressed enter-key. This act will insert a \n, which is invisible when we view the file through
notepad.

e Once all lines are over, fhandwill reach end-of-file and hence terminates the loop.

e Note that, when end of file is reached (that is, no more characters are present in the file), then an
attempt to read will return Noneor empty character *’(two quotes without space in between).

e Once the operations on a file is completed, it is a practice to close the file using a function close().

e Closing of a file ensures that no unwanted operations are done on a file handler.

e Moreover, when a file was opened for writing or appending, closure of a file ensures that the last
bit of data has been uploaded properly into a file and the end-of-file is maintained properly.

e If the file handler variable (in the above example, fhand) is used to assign some other file object
(using open() function), then Python closes the previous file automatically.

e If you run the above program and check the output, there will be a gap of two lines between each
of the output lines. This is because, the new-line character \n is also a part of the variable line in
the loop, and the print() function has default behavior of adding a line at the end (due to default
setting of end parameter of print()).

e To avoid this double-line spacing, we can remove the new-line character attached at the end of
variable line by using built-in string function rgtiip() as below —

print("Line Number ",count, [":", line.rstfip())

e It is obvious from the Iogl'i’q_ @\‘/Eeggr@ffl’free each line is read one at a time,

processed and discarded.

e Hence, there will not be a shortage of maln memory even though we are reading a very large file.

e But, when we are sure that the size of our file is quite small, then we can use read() function to
read the file contents.

e This function will read entire file content as a single string. Then, required operations can be done
on this string using built-in string functions. Consider the below given example —

fhand=open('myfile.txt’)

s=fhand.read()

print(“Total number of characters:”,len(s))
print(“String up to 20 characters:”, s[:20])

e After executing above program using previously created file myfile.txt, then the output would be —
Total number of characters:50
String up to 20 characters: hello how are you? |

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 26



Python Application Programming (15CS664) Module II

— Writing Files
e To write a data into a file, we need to use the mode w in open() function.

>>> fhand=open(“mynewfile.txt","w")
>>> print(fhand)
<_i0.TextlIOWrapper name="mynewfile.txt' mode="w' encoding="cp1252'>

o If the file specified already exists, then the old contents will be erased and it will be ready to write
new data into it.

e |f the file does not exists, then a new file with the given name will be created.

e The write() method is used to write data into a file.

e This method returns number of characters successfully written into a file. For example,

>>> s="hello how are you?"
>>> fhand.write(s)
18

e Now, the file object keeps track of its pesitionfin afile.
e Hence, if we write one more line into the Il be added at the end of previous line.
e Here is a complete program to write fe file —

fhand=open('fl.txt','w") I]_Ot 'e S4fre e

for i in range(5):
line=input("Enter a I|ne. ")
fhand.write(line+"\n")
fhand.close()

e The above program will ask the user to enter 5 lines in a loop.

o After every line has been entered, it will be written into a file. Note that, as write() method doesn’t
add a new-line character by its own, we need to write it explicitly at the end of every line.

e Once the loop gets over, the program terminates. Now, we need to check the file f1.txt on the disk
(in the same directory where the above Python code is stored) to find our input lines that have
been written into it.

— Searching through a File

e Most of the times, we would like to read a file to search for some specific data within it.

e This can be achieved by using some string methods while reading a file. For example, we may be
interested in printing only the line which starts with a character h.

e Then we can use startswith() method.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 27



Python Application Programming (15CS664) Module II

fhand=open('myfile.txt")
for line in fhand:
if line.startswith('h"):
print(line)
fhand.close()

e Assume the input file myfile.txt is containing the following lines —

hello how are you?
| am doing fine
how about you?
e Now, if we run the above program, we will get the lines which starts with h —
hello how are you?
how about you?

— Letting the User Choose the File Name
e In a real time programming, it is always better to ask the user to enter a name of the file which
he/she would like to open, instead of hard-coding the name of a file inside the program.
fname=input("Enter a file name:")

fhand=open(fname) ‘ I \

count =0

for line in fhand:

et notesdiree

print("Line Number ",count,!":" 'lifie) @ !

print(*Total lines=",count)
fhand.close()
e In this program, the user input filename is received through variable fname, and the same has
been used as an argument to open() method.
e Now, if the user input is myfile.txt (discussed before), then the result would be
Total lines=3
e Everything goes well, if the user gives a proper file name as input. But, what if the input filename
cannot be opened (Due to some reason like — file doesn’t exists, file permission denied etc)?
e Obviously, Python throws an error. The programmer need to handle such run- time errors as
discussed in the next section.

— Using try, except to Open a File

e It is always a good programming practice to write the commands related to file opening within a
try block. Because, when a filename is a user input, it is prone to errors.

e Hence, one should handle it carefully. The following program illustrates this —

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 28



Python Application Programming (15CS664) Module II

fname=input("Enter a file name:")

try:
fhand=open(fname)
except:
print("File cannot be opened™) exit()
count =0
for line in fhand:
count+=1
print("Line Number ",count, ":", line)

print("Total lines=",count)
fhand.close()

e In the above program, the command to open a file is kept within try block. If the specified file
cannot be opened due to any reason, then an error message is displayed saying File cannot be
opened, and the program is terminated.

e If the file could able to open successfully, then we will proceed further to perform required task
using that file.

— Debugging
e While performing operations on files, e may
characters.
For that purpose, we may u$e gt t A&hf elimiters that may exist between
the words/lines of a file. n @ ’@@ r@a@
e But, usually, the invisible characters Ilke Whlte space tabs and new-line characters are confusing
and it is hard to identify them properly. For example,
>>> s="1 2\t 3\n 4"
>>> print(s)
12 3
4
e Here, by looking at the output, it may be difficult to make out where there is a space, where is a
tab etc.
e Python provides a utility function called as repr() to solve this problem.
e This method takes any object as an argument and returns a string representation of that object.
e For example, the print() in the above code snippet can be modified as —

d to extract required set of lines or words or

>>> print(repr(s))
'1 2\t3\n4'

Note that, some of the systems use \n as new-line character, and few others may use \r (carriage
return) as a new-line character. The repr() method helps in identifying that too.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 29



Python Application Programming (15CS664) Module III

MODULE 11

3.1 LISTS

A list is a sequence, Lists are mutable, Traversing a list, List operations, List slices, List Methods,
Deleting elements, Lists and functions, Lists and strings, Parsing lines, Objects and values , Aliasing,

List arguments, Debugging

3.2 DICTIONARIES

Introduction, Dictionary as a set of counters, Dictionaries and files, Looping and Advanced text

parsing, Debugging

3.3 TUPLES

Tuples are immutable, Comparing tuples, Tuple assignment Dictionaries and tuples, Multiple

assignment with dictionaries, The most comr A ds, Using tuples as keys in dictionaries, Sequences:
strings, lists, and tuples, Debugging

3.4 REGULAR EXPREWG S4fre e

L &l i n, o I . .. .
Character matching in regular expressions, Extracting data using regular expressions, Combining searching

and extracting Escape character, Summary, Bonus section for Unix / Linux users

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 1



Python Application Programming (15CS664) Module III

MODULE Il
3.1 LISTS

e Alistis an ordered sequence of values.
e |t is a data structure in Python. The values inside the lists can be of any type (like integer, float,
strings, lists, tuples, dictionaries etc) and are called as elements or items.
e The elements of lists are enclosed within square brackets.
e For example,
Is1=[10,-4, 25, 13]
1s2=[“Tiger”, “Lion”, “Cheetah’]

Here, Is1 is a list containing four integers, and Is2 is a list containing three strings.
A list need not contain data of same type.
We can have mixed type of elements in list.
For example,
1s3=[3.5, “Tiger’, 10, [3,4]]

e Here, Is3 contains a float, a string, an integer and a list.
e This illustrates that a list can be nested as well.

e Anempty list can be created any of the fo!lov L ays —
>>> s =[]
>>> type(ls)
<class 'list'> 4f
or
>>> |s =list() I]‘Otes ree
>SS type(|5) AL 1 M O n e
<class 'list'>

e In fact, list() is the name of a method (special type of method called as constructor — which will be
discussed in Module 4) of the class list.

Hence, a new list can be created using this function by passing arguments to it as shown below —

>>> [s2=list([3,4,1])
>>> print(ls2)
[3,4,1]

— Lists are Mutable
e The elements in the list can be accessed using a numeric index within square-brackets.
e Itissimilar to extracting characters in a string.

>>> [s=[34, 'hi', [2,3],-5]
>>> print(Is[1])
hi
>>> print(Is[2])
[2,3]

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 2



Python Application Programming (15CS664) Module III

Observe here that, the inner list is treated as a single element by outer list. If we would like to
access the elements within inner list, we need to use double-indexing as shown below —

>>> print(Is[2][0]) 2
>>> print(Is[2][1]) 3

Note that, the indexing for inner-list again starts from O.

Thus, when we are using double- indexing, the first index indicates position of inner list inside
outer list, and the second index means the position particular value within inner list.

Unlike strings, lists are mutable. That is, using indexing, we can modify any value within list.

In the following example, the 3 element (i.e. index is 2) is being modified —

>>> [s=[34, 'hi', [2,3],-5]
>>> |s[2]="Hello'
>>> print(Is)
[34, 'hi', 'Hello', -5]
The list can be thought of as a relationship between indices and elements. This relationship is
called as a mapping. That is, each index maps to one of the elements in a list.
The index for extracting list elements has following properties —

> Any integer expression can be an index

n
>>> |s=[34, 'hi", [2,3],-5] ‘ \
>>> print(Is[2*1])

[2,3]

> Attempt to agie:‘slsa: ?ggeﬁimﬂit E{I gﬁaﬁrc@er
- 1 m o n e

>>> print(Is[4])
IndexError: list index out of range

A negative indexing counts from backwards.
>>> |s=[34, 'hi', [2,3],-5]
>>> print(Is[-1])
-5
>>> print(Is[-3])
hi

The in operator applied on lists will results in a Boolean value.
>>> |s=[34, 'hi', [2,3],-5]
>>>34inls
True
>>>-21inls
False

— Traversing a List

A list can be traversed using for loop.
If we need to use each element in the list, we can use the for loop and in operator as below
>>> |s=[34, 'hi', [2,3],-5]

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 3



Python Application Programming (15CS664) Module III

>>> for itemin Is:
print(item)

34
hi
[2.3]
-5
e List elements can be accessed with the combination of range() and len() functions as well —

Is=[1,2,3,4]
for i in range(len(ls)):
Is[i]=Is[i]**2

print(ls)

#output is
[1, 4,9, 16]

e Here, we wanted to do modification in the elements of list. Hence, referring indices is suitable
than referring elements directly.

e The len() returns total number of elemepts in fh list (here it is 4).

e Then range() function makes the loop t je from0to 3 (i.e. 4-1).

e Then, for every index, we are updating the list elements (replacing original value by its square).

—» List Operations 4f
e Python allows to use operatI;&th a& r e e
e The operator + uses two list objects and returns concatenation of those two lists.

e Whereas * operator take one list object and one integer value, say n, and returns a list by repeating
itself for n times.

>>>1s1=[1,2,3]
>>> 1s2=[5,6,7]
>>> print(Is1+1s2) #concatenation using +
[1,2,3,5,6,7]

>>>1s1=[1,2,3]
>>> print(ls1*3) #repetition using *
[1,2,3,1,2,3,1,2,3]

>>> [0]*4 #repetition using *
[0,0,0,0]

— List Slices
e Similar to strings, the slicing can be applied on lists as well. Consider a list t given below, and a
series of examples following based on this object.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 4



Python Application Programming (15CS664) Module III

t=['a,b','c,'d" 'e’]

» Extracting full list without using any index, but only a slicing operator —
>>> print(t[:])
[lal, lbl’ |CI’ Idl, Iel]

> Extracting elements from 2" position —
>>> print(t[1:])
[b,'c,'d", 'e]

» Extracting first three elements —
>>> print(t[:3])
[a, b, 'c]

» Selecting some middle elements —
>>> print(t[2:4])
['C', Idl]

» Using negative indexing —
>>> print(t[:-2])
[a, b, 'c]

I
» Reversing a list using negative value f({' ( \
>>> print(t[::-1])

[e','d', 'c', 'b", ]

> Modifying (reassignment)];;quEr@ Q&ig_e e

>>> t[1:3]:['p','ql] A
>>> print(t)
[a,'p,'q,'d,e]

Thus, slicing can make many tasks simple.

— List Methods

There are several built-in methods in list class for various purposes. Here, we will discuss some of
them.

» append(): This method is used to add a new element at the end of alist.

>>> |s=[1,2,3]
>>> [s.append(‘hi’)
>>> |s.append(10)
>>> print(Is)
[1,2,3, ‘hi’, 10]

» extend(): This method takes a list as an argument and all the elements in this list are added at the
end of invoking list.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 5



Python Application Programming (15CS664) Module III

>>> [s1=[1,2,3]

>>> [s2=[5,6]

>>> |s2.extend(Is1)

>>> print(Is2)
[5,6,1,2,3]

Now, in the above example, the list Isl is unaltered.

» sort(): This method is used to sort the contents of the list. By default, the function will sort the
items in ascending order.

>>> |s=[3,10,5, 16,-2]
>>> |s.sort()
>>> print(ls)

[-2, 3,5, 10, 16]

When we want a list to be sorted in descending order, we need to set the argument as shown

>>> |s.sort(reverse=True)
>>> print(ls)
[16, 10, 5, 3, -2]

I
» reverse(): This method can be used to reverse the given list.
>>> [s=[4,3,1,6]

= potesdfree

» count(): This method is used to count number of occurrences of a particular value within list.
>>>1s=[1,2,5,2,1,3,2,10]
>>> |s.count(2)
3 #the item 2 has appeared 3 tiles in Is

» clear(): This method removes all the elements in the list and makes the listempty.
>>>1s=[1,2,3]
>>> |s.clear()
>>> print(ls)

(1

> insert(): Used to insert a value before a specified index of the list.
>>> |s=[3,5,10]
>>> |s.insert(1,"hi")
>>> print(Is)
[3, 'hi", 5, 10]

> index(): This method is used to get the index position of a particular value in the list.
>>> |s=[4, 2, 10, 5, 3, 2, 6]
>>> [s.index(2)

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 6



Python Application Programming (15CS664) Module III

1
Here, the number 2 is found at the index position 1. Note that, this function will give index of only the
first occurrence of a specified value. The same function can be used with two more arguments start
and end to specify a range within which the search should take place.

>>> [s=[15, 4, 2, 10, 5, 3, 2, 6]
>>> |s.index(2)

2
>>> Is.index(2,3,7) 6

If the value is not present in the list, it throws ValueError.
>>> [s=[15, 4, 2, 10, 5, 3, 2, 6]
>>> |s.index(53)
ValueError: 53 is not in list

Few important points about List Methods:
1. There is a difference between append() and extend() methods. The former adds the argument as it
is, whereas the latter enhances the existing list. To understand this, observe the following example
>>>1s1=[1,2,3]
>>> |52=[5,6]

>>> |s2.append(Isl) "
>>> print(Is2)
[5,6,[1, 2, 3]]

Here, the argument Is1 foﬂeﬁ%ﬁ%ﬁﬁﬁne item, and made as an inner list
to Is2. On the other hand, i epldcte d( end() then the result would be —
S>> |51:[1,2,3] P 1 n o e
>>> |s2=[5,6]
>>> |s2.extend(ls1)
>>> print(Is2)
[5,6,1,2,3]

2. The sort() function can be applied only when the list contains elements of compatible types. But,
if a list is a mix non-compatible types like integers and string, the comparison cannot be done.
Hence, Python will throw TypeError.

For example,
>>> |s=[34, 'hr', -5]
>>> |s.sort()
TypeError: '<' not supported between instances of 'str' and 'int'

Similarly, when a list contains integers and sub-list, it will be an error.
>>> [s=[34,[2,3],5]

>>> |s.sort()
TypeError: '<' not supported between instances of 'list' and 'int’

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 7



Python Application Programming (15CS664) Module III

Integers and floats are compatible and relational operations can be performed on them. Hence, we can
sort a list containing such items.

>>> |s=[3, 4.5, 2]

>>> |s.sort()

>>> print(ls)
[2,3,4.5]

3. The sort() function uses one important argument keys. When a list is containing tuples, it will be
useful. We will discuss tuples later in this Module.

4. Most of the list methods like append(), extend(), sort(), reverse() etc. modify the list object
internally and return None.

>>> |s=[2,3]
>>> |s1=ls.append(5)
>>> print(Is)
[2,3,5]
>>> print(Is1)
None

— Deleting Elements
Elements can be deleted from a list in diffe & ython provides few built-in methods for
removing elements as given be
> pop(): This method deletesﬂ@egr@t$41£ﬁﬁa&
>>> |s=[3,6,-2,8,10] Al
>>> x=lIs.pop() #10 is removed from list and stored in x
>>> print(ls)
[3, 6, -2, 8]
>>> print(X)
10

When an element at a particular index position has to be deleted, then we can give that position as
argument to pop() function.
>>>t=[4q, b, 'c]
>>> x = t.pop(1) #item at index 1 is popped
>>> print(t)
[a,c]
>>> print(x) b

» remove(): When we don’t know the index, but know the value to be removed, then this function
can be used.

>>> |s=[5,8, -12,34,2]

>>> |s.remove(34)

>>> print(ls)
[5,8,-12, 2]

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 8



Python Application Programming (15CS664) Module III

Note that, this function will remove only the first occurrence of the specified value, but not
all occurrences.
>>> |s=[5,8, -12, 34, 2, 6, 34]
>>> |s.remove(34)
>>> print(ls)
[5, 8,-12, 2, 6, 34]

Unlike pop() function, the remove() function will not return the value that has been deleted.

» del: This is an operator to be used when more than one item to be deleted at a time. Here also, we
will not get the items deleted.

>>> |s=[3,6,-2,8,1]
>>> del Is[2] #item at index 2 is deleted
>>> print(ls)

[3, 6,8, 1]

>>> |s=[3,6,-2,8,1]
>>> del Is[1:4] #deleting all elements from index 1 to 3
>>> print(Is)

[3, 1]

Example: Deleting all odd indexed elemek

>>> t_ ‘aD ‘b’ ‘ b ‘d) 6 ’ : 4%

>>> del t[1::2

27> del L lIl(L])tE!S _ ree
[a,'c, e )

— Lists and Functions
e The utility functions like max(), min(), sum(), len() etc. can be used on lists.
e Hence most of the operations will be easy without the usage of loops.

>>> |s=[3,12,5,26, 32,1,4]

>>> max(ls) # prints 32
>>> min(ls) # prints 1
>>> sum(ls) # prints 83
>>> len(ls) # prints 7

>>> avg=sum(lIs)/len(ls)
>>> print(avg)
11.857142857142858
e When we need to read the data from the user and to compute sum and average of those numbers,
we can write the code as below —

Is= list()

while (True):
= input('Enter a number: ')

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 9



Python Application Programming (15CS664) Module III

if x=="done":
break

x= float(x)
Is.append(x)

average = sum(ls) / len(ls)
print('Average:', average)

e Inthe above program, we initially create an empty list.

e Then, we are taking an infinite while- loop.

e As every input from the keyboard will be in the form of a string, we need to convert x into float
type and then append it to a list.

e When the keyboard input is a string ‘done’, then the loop is going to get terminated.

e After the loop, we will find the average of those numbers with the help of built-in functions sum()
and len().

— Lists and Strings
e Though both lists and strings are sequences, they are not same.
e In fact, a list of characters is not same as string.

e To convert a string into a list, we use a fnetho Miist ) as below —
>>> s="hello"
>>> |s=list(s)

>>> print(ls)

merotesdfree

e The method list() breaks a string intoindividual léttets and constructs a list.
e If we want a list of words from a sentence, we can use the following code —

>>> s="Hello how are you?"
>>> |s=s.split()
>>> print(Is)
[Hello', 'how!, ‘are’, 'you?']

e Note that, when no argument is provided, the split() function takes the delimiter as white space.
e |If we need a specific delimiter for splitting the lines, we can use as shown in following example —

>>> (t="20/03/2018"
>>> |s=dt.split('/")
>>> print(ls)

['20, '03', '201817

e There is a method join() which behaves opposite to split() function.

o It takes a list of strings as argument, and joins all the strings into a single string based on the
delimiter provided.

For example —

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 10



Python Application Programming (15CS664) Module III

>>> |s=["Hello", "how", "are", "you"]
>>>d=""
>>> d.join(ls)

'Hello how are you'

e Here, we have taken delimiter d as white space. Apart from space, anything can be taken as
delimiter. When we don’t need any delimiter, use empty string as delimiter.

— Parsing Lines
e In many situations, we would like to read a file and extract only the lines containing required
pattern. This is known as parsing.
e Asan illustration, let us assume that there is a log file containing details of email communication
between employees of an organization.
e For all received mails, the file contains lines as —
From stephen.marquard@uct.ac.za Fri Jan 509:14:16 2018
From georgek@uct.ac.za Sat Jan 6 06:12:51 2018

e Apart from such lines, the log file also contains mail-contents, to-whom the mail has been sent etc.

e Now, if we are interested in extracting only the days of incoming mails, then we can go for parsing.

e That is, we are interested in knowing on which of the days, the mails have been received. The code
would be —

thand = open(‘logFile.txt’)
for line in fhand:
line = ligeystrip( f
roibbesdiree
continue. I I i n oon o
words = line.split()
print(words[2])
e Obviously, all received mails starts from the word From. Hence, we search for only such lines and
then split them into words.

e Observe that, the first word in the line would be From, second word would be email-ID and the
3" word would be day of a week. Hence, we will extract words[2]which is 3" word.

— Objects and Values
e Whenever we assign two variables with same value, the question arises — whether both the
variables are referring to same object, or to different objects.
e This is important aspect to know, because in Python everything is a class object.
e There is nothing like elementary data type.
Consider a situation —
a= “hi”
b= “hi”

e Now, the question is whether both a and b refer to the same string.
e There are two possible states —

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 11


mailto:stephen.marquard@uct.ac.za
mailto:georgek@uct.ac.za

Python Application Programming (15CS664) Module III

— [
a 1 a>hi

D e—) hi b

e In the first situation, a and b are two different objects, but containing same value. The
modification in one object is nothing to do with the other.

e Whereas, in the second case, both a and b are referring to the same object.

e That is, ais an alias name for b and vice- versa. In other words, these two are referring to same
memory location.

e To check whether two variables are referring to same object or not, we can use is operator.

>>> a= “hi”
>>> b= “hi”
>>>3ish #result is True
>>> a==Dp #result is True

e When two variables are referring to same object, they are called as identical objects.

e When two variables are referring to different objects, but contain a same value, they are known as
equivalent objects.

e For example,

>>> s]=input(“Enter a string:”) #assume you entered hello

>>> s2= input(“Enter a string:”) 1s§lime you entered hello

>>>sl is 52 | 1 and s2 are identical False
>>>3] = nd s2 are equivalent True

Here s1 and s2 are eqU'Valent ﬁ’@ f]é S4 r e e

e |If two objects are identical, theysare lalso equivalent; but if they are equivalent, they are not
necessarily identical.

e String literals are interned by default. That is, when two string literals are created in the program
with a same value, they are going to refer same object. But, string variables read from the key-
board will not have this behavior, because their values are depending on the user’s choice.

e Lists are not interned. Hence, we can see following result —

>>>1s1=[1,2,3]
>>>1s2=[1,2,3]

>>> |s1 is Is2 #output is False
>>>|s] == [s2 #output is True
— Aliasing

e When an object is assigned to other using assignment operator, both of them will refer to same
object in the memory.
e The association of a variable with an object is called as reference.

>>> [s1=[1,2,3]
>>> |s2=Isl
>>> sl is Is2 #output is True
e Now, Is2 is said to be reference of Is1. In other words, there are two references to the same object

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 12



Python Application Programming (15CS664) Module III

in the memory.
e An object with more than one reference has more than one name, hence we say that object is
aliased. If the aliased object is mutable, changes made in one alias will reflect the other.

>>> [s2[1]= 34
>>> print(Isl) #output is [1, 34, 3]

Strings are safe in this regards, as they are immutable.

— List Arguments

e When a list is passed to a function as an argument, then function receives reference to this list.
e Hence, if the list is modified within a function, the caller will get the modified version.

e Consider an example —

def del_front(t):
del t[0]

Is=[4a', b, 'c
del_front(ls)
print(ls)

# output is A
[, ']
e Here, the argument Is and the_parameter t both aé aliases to same object.
e One should understand the ﬁ@\ t y hét@d the operations that create a new
list. Abl in @ne
e For example, the append() function modifies the list, whereas the + operator creates a new list.

>>> 11 =[1, 2]

>>> {2 = tl.append(3)

>>> print(t1) #outputis [1 2 3]
>>> print(t2) #prints None
>>>13 =t1 + [5]

>>> print(t3) #outputis [1 2 3 5]
>>> 12 is t3 #output is False

e Here, after applying append() on t1 object, the t1 itself has been modified and t2 is not going to
get anything.

e But, when + operator is applied, t1 remains same but t3 will get the updated result.

e The programmer should understand such differences when he/she creates a function intending to

modify a list.

For example, the following function has no effect on the original list —

def test(t):
t=t[1:]

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 13



Python Application Programming (15CS664) Module III

Is=[1,2,3]
test(ls)
print(ls) #prints [1, 2, 3]

e One can write a return statement after slicing as below —
def test(t):
return t[1:]

Is=[1,2,3]

Is1=test(ls)

print(ls1) #prints [2, 3]
print(Is) #prints [1, 2, 3]

¢ In the above example also, the original list is not modified, because a return statement always creates
a new object and is assigned to LHS variable at the position of function call.

3.2 DICTIONARIES

e Addictionary is a collection of unordered set of key:value pairs, with the requirement that keys are
unique in one dictionary. i
e Unlike lists and strings where elements arc acces:
values in dictionary are accessed using ke
e A key in dictionary can be any immuta strings, numbers and tuples. (The tuple can be
made as a key for dictionar I\eif ﬁ:f steingloumber/ sub-tuples).
e As lists are mutable — that ﬁa@eﬁérg i%eésénments, slicing, or using methods
like append(), extend() etc, they cannot;be a key far dictionary.
e One can think of a dictionary as a mapping between set of indices (which are actually keys) and a
set of values.
e Each key maps to a value.
e Anempty dictionary can be created using two ways —
d={}
OR
d=dict()

e To add items to dictionary, we can use square brackets as —

>>> d={}

>>> d["Mango"]="Fruit"

>>> d["Banana"]="Fruit"

>>> d["Cucumber"]="Veg"

>>> print(d)

{'Mango": 'Fruit’, '‘Banana’: 'Fruit’, '‘Cucumber": 'Veg'}
,, 10 Initialize a dictionary at the time of creation itself, one can use the code like —

>>> tel_dir={"Tom'": 3491, 'Jerry:8135}

>>> print(tel_dir)

{Tom': 3491, Jerry": 8135}

d using index values (which are integers), the

>>> tel_dir['Donald]=4793

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 14



Python Application Programming (15CS664) Module III

>>> print(tel_dir)
{Tom": 3491, ‘Jerry" 8135, 'Donald": 4793}

NOTE that the order of elements in dictionary is unpredictable. That is, in the above example, don’t
assume that "Tom": 3491 is first item, 'Jerry": 8135 is second item etc. As dictionary members are not
indexed over integers, the order of elements inside it may vary. However, using a key, we can extract
its associated value as shown below —

>>> print(tel_dir['Jerry]) 8135

e Here, the key "Jerry'maps with the value 8135, hence it doesn’t matter where exactly it is inside the
dictionary.

e If a particular key is not there in the dictionary and if we try to access such key, then the KeyError is
generated.
>>> print(tel_dir['Mickey']) KeyError:
'‘Mickey'
e The len() function on dictionary object gives the number of key-value pairs in that object.
>>> print(tel_dir)
{Tom": 3491, ‘Jerry": 8135, 'Donald": 4793}
>>> len(tel_dir)
3
e The in operator can be used to check whe
>>> 'Mickey' in tel_dir
>>>"Jerry' in tel_dir

tput is True
>>> 3491 in tel_dir
e We observe from above e QHE% &&fﬁn@éﬁed with the key 'Tom' in tel_dir.

But, the in operator returns False. 4 | |

e The dictionary object has a method values() WhICh will return a list of all the values associated
with keys within a dictionary.

e If we would like to check whether a particular value exist in a dictionary, we can make use of it as
shown below —

>>> 3491 in tel_dir.values() #output is True

e The in operator behaves differently in case of lists and dictionaries as explained hereunder:

e When in operator is used to search a value in a list, then linear search algorithm is used internally.
That is, each element in the list is checked one by one sequentially. This is considered to be
expensive in the view of total time taken to process.

e Because, if there are 1000 items in the list, and if the element in the list which we are search for is

in the last position (or if it does not exists), then before yielding result of search (True or False),

we would have done 1000 comparisons.

In other words, linear search requires n number of comparisons for the input size of n elements.

Time complexity of the linear search algorithm is O(n).

The keys in dictionaries of Python are basically hashable elements.

The concept of hashing is applied to store (or maintain) the keys of dictionaries.

Normally hashing techniques have the time complexity as O(log n) for basic operations like
insertion, deletion and searching.

e Hence, the in operator applied on keys of dictionaries works better compared to that on lists.

“key (not value) appears in the dictionary object.
#Houtput is False

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 15



Python Application Programming (15CS664) Module III

— Dictionary as a Set of Counters
e Assume that we need to count the frequency of alphabets in a given string. There are different
methods to do it —
> Create 26 variables to represent each alphabet. Traverse the given string and increment the
corresponding counter when an alphabet is found.
> Create a list with 26 elements (all are zero in the beginning) representing alphabets. Traverse
the given string and increment corresponding indexed position in the list when an alphabet is
found.
> Create a dictionary with characters as keys and counters as values. When we find a character
for the first time, we add the item to dictionary. Next time onwards, we increment the value
of existing item.
e Each of the above methods will perform same task, but the logic of implementation will be
different. Here, we will see the implementation using dictionary.

s=input("Enter a string:") #read a string
d=dict() #create empty dictionary
forchins: #traverse through string
if ch notin d: #if new character found
d[ch]=1 #initialize counter to 1
else: l #otherwise, increment counter
d[ch]+=1
print(d) display the dictionary

The sample output would be I]_ 0 t 'e 54 fr e e

Enter a string:
Hello World
{H:1,'¢:1,'1:3,'0:2,"1,'W:1,:1,'d: 1}

e |t can be observed from the output that, a dictionary is created here with characters as keys and
frequencies as values. Note that, here we have computed histogram of counters.

e Dictionary in Python has a method called as get(), which takes key and a default value as two
arguments. If key is found in the dictionary, then the get() function returns corresponding value,
otherwise it returns default value.

e For example,

>>> tel_dir={Tom'": 3491, ‘Jerry":8135, 'Mickey"':1253}
>>> print(tel_dir.get(‘Jerry',0))

8135
>>> print(tel_dir.get('Donald',0))

0

e In the above example, when the get() function is taking ‘Jerry’ as argument, it returned
corresponding value, as ‘Jerry'is found in tel_dir.

e Whereas, when get() is used with 'Donald’ as key, the default value O (which is provided by us) is
returned.

e The function get() can be used effectively for calculating frequency of alphabets in a string.

e Here is the modified version of the program —

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 16



Python Application Programming (15CS664) Module III

s=input("Enter a string:")
d=dict()

forchins:
d[ch]=d.get(ch,0)+1

print(d)
e In the above program, for every character ch in a given string, we will try to retrieve a value.
When the ch is found in d, its value is retrieved, 1 is added to it, and restored.
e Ifchisnot found, O is taken as default and then 1 is added to it.

— Looping and Dictionaries
e When a for-loop is applied on dictionaries, it will iterate over the keys of dictionary.
e If we want to print key and values separately, we need to use the statements as shown

tel_dir={'"Tom": 3491, "Jerry":8135, 'Mickey':1253}
for k in tel_dir:
print(k, tel_dir[K])

Output would be - I
Tom 3491
Jerry 8135
Mickey 1253
e Note that, while accessing ﬂ@rb@ﬁéh‘ﬁx;ﬁﬂot be in order. If we want to print

the keys in alphabetical order, then\we need tg makea list of the keys, and then sort that list.
e We can do so using keys() method of dictionary and sort() method of lists.
e Consider the following code —

tel_dir={"Tom": 3491, ‘Jerry:8135, 'Mickey':1253}
Is=list(tel_dir.keys())
print("The list of keys:",1s)
Is.sort()
print("Dictionary elements in alphabetical order:")
forkinls:

print(k, tel_dir[k])

The output would be -
The list of keys: ['Tom', 'Jerry', ‘Mickey']
Dictionary elements in alphabetical order:
Jerry 8135
Mickey 1253
Tom 3491

Note: The key-value pair from dictionary can be together accessed with the help of a method items()
as shown

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 17



Python Application Programming (15CS664) Module III

>>> d={'"Tom"3412, 'Jerry":6781, 'Mickey'1294}
>>> for k,v in d.items():
print(k,v)
Output:
Tom 3412
Jerry 6781
Mickey 1294

The usage of comma-separated list k,v here is internally a tuple (another data structure in Python,
which will be discussed later).

— Dictionaries and Files
e Adictionary can be used to count the frequency of words in a file.
e Consider a file myfile.txt consisting of following text:
hello, how are you?
| am doing fine.
How about you?
e Now, we need to count the frequency of each of the word in this file. So, we need to take an outer
loop for iterating over entire file, and an inner loop for traversing each line in a file.
e Thenin every line, we count the occurrence of a word, as we did before for a character.
e The program is given as below —

I
fname=input("Enter file naJP \
try:

f.hand:open fname) f
exceptp;rint("Fi&in%EIﬁen dé re e
eXIt() o | | I | 3

d=dict()
for line in fhand:
for word in line.split():
d[word]=d.get(word,0)+1
print(d)

The output of this program when the input file is myfile.txt would be —

Enter file name: myfile.txt
{'hello,": 1, ‘'how" 1, ‘are" 1, ‘'you?" 2, 'l 1, ‘'am" 1,
'doing": 1, 'fine.": 1, 'How": 1, 'about" 1}

e Few points to be observed in the above output —
» The punctuation marks like comma, full point, question mark etc. are also considered as a
part of word and stored in the dictionary. This means, when a particular word appears in a
file with and without punctuation mark, then there will be multiple entries of that word.

» The word ‘how’ and ‘How’ are treated as separate words in the above example because of
uppercase and lowercase letters.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 18



Python Application Programming (15CS664) Module III

e While solving problems on text analysis, machine learning, data analysis etc. such kinds of
treatment of words lead to unexpected results. So, we need to be careful in parsing the text and we
should try to eliminate punctuation marks, ignoring the case etc. The procedure is discussed in the
next section.

— Advanced Text Parsing
e As discussed in the previous section, during text parsing, our aim is to eliminate punctuation
marks as a part of word.
e The string module of Python provides a list of all punctuation marks as shown:
>>> jmport string
>>> string.punctuation
THEWE\'()*+,-./:;<=>2@[\]"_{|}~'
e The str class has a method maketrans() which returns a translation table usable for another
method translate().
e Consider the following syntax to understand it more clearly:
line.translate(str.maketrans(fromstr, tostr, deletestr))
e The above statement replaces the characters in fromstr with the character in the same position in
tostr and delete all characters that are in deletestr.
e The fromstr and tostr can be empty strings and the deletestrparameter can be omitted.
e Using these functions, we will re-write the pragram for finding frequency of words in a file.
import string
fname=input("Enter file name:")

ry: fhand:open(fnamel"l 0 t e 54 f r e e

except: .
print("File cannot be opened”) "
exit()

d=dict()
for line in fhand:
line=line.rstrip()
line=line.translate(line.maketrans(",",string.punctuation))
line=line.lower()
for word in line.split():
d[word]=d.get(word,0)+1

print(d)

Now, the output would be —
Enter file name:myfile.txt
{hello: 1, 'how" 2, ‘'are: 1, 'you: 2, 'i= 1, 'am" 1,'doing" 1, fine" 1, 'about" 1}

e Comparing the output of this modified program with the previous one, we can make out that all
the punctuation marks are not considered for parsing and also the case of the alphabets are
ignored.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 19



Python Application Programming (15CS664) Module III

— Debugging

3.3TUPLES

When we are working with big datasets (like file containing thousands of pages), it is difficult to
debug by printing and checking the data by hand. So, we can follow any of the following procedures
for easy debugging of the large datasets —

Scale down the input: If possible, reduce the size of the dataset. For example if the program reads a
text file, start with just first 10 lines or with the smallest example you can find. You can either edit
the files themselves, or modify the program so it reads only the first n lines. If there is an error, you
can reduce n to the smallest value that manifests the error, and then increase it gradually as you
correct the errors.

Check summaries and types: Instead of printing and checking the entire dataset, consider printing
summaries of the data: for example, the number of items in a dictionary or the total of a list of
numbers. A common cause of runtime errors is a value that is not the right type. For debugging this
kind of error, it is often enough to print the type of a value.

Write self-checks: Sometimes you can write code to check for errors automatically. For example, if
you are computing the average of a list of numbers, you could check that the result is not greater than the
largest element in the list or less than the smallest. This is called a sanity check because it detects results that
are “completely illogical”. Another kind of check compares the results of two different computations to see if
they are consistent. This is called a consistency check.

Pretty print the output: Formatting depugoinl output can make it easier to spot an error.

A tuple is a sequence of Itemmtg;&%fx eeﬁ
The values stored in the tu el e they exed using integers.

Unlike lists, tuples are immutablé. That is/" valtie$' within tuples cannot be modified/reassigned.
Tuples are comparable and hashable objects.

Hence, they can be made as keys in dictionaries.

A tuple can be created in Python as a comma separated list of items — may or may not be enclosed
within parentheses.

>>> t='"Mango’, 'Banana’, 'Apple’ #without parentheses
>>> print(t)

('Mango', '‘Banana’, 'Apple’)
>>>t1=("Tom', 341, 'Jerry') #with parentheses
>>> print(tl)

(Tom', 341, ‘Jerry")

Observe that tuple values can be of mixed types.
If we would like to create a tuple with single value, then just a parenthesis will not suffice.

For example,
>>> x=(3) #trying to have a tuple with single item
>>> print(x)
3 #observe, no parenthesis found
>>> type(x)
<class 'int"> #not a tuple, it is integer!!

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 20



Python Application Programming (15CS664) Module III

e Thus, to have a tuple with single item, we must include a comma after the item. That is,
>>>t=3, #or use the statement t=(3,)
>>> type(t) #now this is a tuple
<class 'tuple’>
e Anempty tuple can be created either using a pair of parenthesis or using a function tuple() as below
>>>t1=()
>>> type(tl)
<class 'tuple’>

>>> t2=tuple()
>>> type(t2)
<class 'tuple’>
e |If we provide an argument of type sequence (a list, a string or tuple) to the method tuple(), then a
tuple with the elements in a given sequence will be created:

» Create tuple using string:

>>> t=tuple('Hello")
>>> print(t)
(HY, e, ', o)

» Create tuple using list:

: n
>>> t=tuple([3,[12,5],'Hi"]) ‘ \
>>> print(t)

.l '“'hotes4free

> Create tuple using another tuple; |

>>> t=('Mango’, 34, 'hi’)
>>> t1=tuple(t)
>>> print(tl)

(‘Mango', 34, 'hi’)
>>>tistl

True

Note that, in the above example, both t and t1 objects are referring to same memory location. That is,
tl is a reference to t.

e Elements in the tuple can be extracted using square-brackets with the help of indices.
e Similarly, slicing also can be applied to extract required number of items from tuple.

>>> t=("Mango', 'Banana’, 'Apple")
>>> print(t[1])
Banana
>>> print(t[1:])
(‘Banana’, 'Apple")
>>> print(t[-1])

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 21



Python Application Programming (15CS664) Module III

Apple

e Modifying the value in a tuple generates error, because tuples are immutable —
>>> t[0]="Kiwi'
TypeError: 'tuple’ object does not support item assignment

e We wanted to replace ‘Mango’ by ‘Kiwi’, which did not work using assignment.
e But, atuple can be replaced with another tuple involving required modifications —

>>> t=("Kiwi',)+t[1:]
>>> print(t)
('Kiwi', 'Banana’, 'Apple’)

— Comparing Tuples
e Tuples can be compared using operators like >, <, >=, == etc.
e The comparison happens lexicographically.
e For example, when we need to check equality among two tuple objects, the first item in first tuple
is compared with first item in second tuple.

e If they are same, 2" items are compared.
e The check continues till either a mismatch is fﬂ d or items get over.
e Consider few examples —

>>> (1,2,3)==(1,2,5)

False
>>> (3,4)==(3,4)

w ' notesdiree

a1 1 I ;
e The meaning of < and > in tuples is not ex'actly less than and greater than, instead, it means
comes before and comes after.
e Hence in such cases, we will get results different from checking equality (==).

>>> (1,2,3)<(1,2,5)
True

>>> (3,4)<(5,2)
True

e When we use relational operator on tuples containing non-comparable types, then TypeError will
be thrown.
>>> (1,'hi")<('hello’,'world")
TypeError: '<' not supported between instances of 'int" and 'str'

e The sort() function internally works on similar pattern — it sorts primarily by first element, in case
of tie, it sorts on second element and so on. This pattern is known as DSU —
» Decorate a sequence by building a list of tuples with one or more sort keys preceding the
elements from the sequence,
» Sort the list of tuples using the Python built-in sort(), and
» Undecorate by extracting the sorted elements of the sequence.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 22



Python Application Programming (15CS664) Module III

e Consider a program of sorting words in a sentence from longest to shortest, which illustrates DSU
property.

txt = 'Ram and Seeta went to forest with Lakshman'
words = txt.split()

t = list()
for word in words:
t.append((len(word), word))

print(‘The listis:’,t)
t.sort(reverse=True)
res = list()

for length, word in t:
res.append(word)
print(‘The sorted list:’,res)

The output would be -

The list is: n

[(3, 'Ram"), (3, 'and’), (5, 'Seeta’), (4, 'wel 1, (6, ‘forest"), (4, 'with"), (8, 'Lakshman")]

The sorted list:['Lakshman’, 'Seeta, ‘went', ‘with',

mrnel - Cpotesdiree

e In the above program, we have split the sentence inte adist of words.

e Then, a tuple containing length of the word and the word itself are created and are appended to a
list.

e Observe the output of this list — it is a list of tuples. Then we are sorting this list in descending
order.

e Now for sorting, length of the word is considered, because it is a first element in the tuple.

e At the end, we extract length and word in the list, and create another list containing only the
words and print it.

— Tuple Assignment
e Tuple has a unique feature of having it at LHS of assignment operator.
e This allows us to assign values to multiple variables at a time.

>>> x,y=10,20
>>> print(x) #prints 10
>>> print(y) #prints 20

e When we have list of items, they can be extracted and stored into multiple variables as below —

>>> |s=["hello", "world"]

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 23



Python Application Programming (15CS664) Module III

>>> x,y=Is
>>> print(X) #prints hello
>>> print(y) #prints world

e This code internally means that —
x=Is[0]
y=Is[1]

e The best known example of assignment of tuples is swapping two values as below —
>>>3=10
>>> h=20
>>>a,b=Db,a
>>> print(a, b) #prints 20 10

e Inthe above example, the statement a, b = b, a is treated by Python as — LHS is a set of variables,
and RHS is set of expressions.

e The expressions in RHS are evaluated and assigned to respective variables at LHS.

e Giving more values than variables generates ValueError —
>>> g, b=10,20,5
ValueError: too many values to unpack (elxnected 2)

e While doing assignment of multiple vg
string or tuple. Following example extra

>>> emailz'mamathaafm 4f

>>> usrName, domain-= $|€@§ r e e
>>> print(usrName) A, 1N TN ¢ #prints mamathaa
>>> print(domain) #prints ieee.org

RHS can be any type of sequence like list,
e and domain from an email ID.

— Dictionaries and Tuples

e Dictionaries have a method called items() that returns a list of tuples, where each tuple is a key-
value pair as shown below —

>>>d ={'a"10, 'b"1, 'c:22}
>>> t = list(d.items())
>>> print(t)

[(b', 1), (2, 10), ('c', 22)]

e As dictionary may not display the contents in an order, we can use sort() on lists and then print in
required order as below —
>>>d = {'a":10, 'b"1, 'c:22}
>>> t = list(d.items())
>>> print(t)
[(b', 1), (&, 10), (¢, 22)]
>>> t.sort()
>>> print(t)
[(a', 10), (b, 1), (', 22)]

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 24



Python Application Programming (15CS664) Module III

— Multiple Assignment with Dictionaries
e We can combine the method items(), tuple assignment and a for-loop to get a pattern for traversing
dictionary:
d={Tom" 1292, ‘Jerry". 3501, 'Donald": 8913}
for key, val in list(d.items()):
print(val,key)

The output would be -
1292 Tom
3501 Jerry
8913 Donald

e This loop has two iteration variables because items() returns a list of tuples.

e And key, val is a tuple assignment that successively iterates through each of the key-value pairs in
the dictionary.

e For each iteration through the loop, both key and value are advanced to the next key-value pair in
the dictionary in hash order.

e Once we get a key-value pair, we can create a list of tuples and sort them:

d={"Tom". 9291, ‘Jerry": 3501, 'Donald" Ri"’:}

Is=list()

for key, val in d.items():
Is.append((val,key))

print("List of tuples:" Iﬂ 0 t 'e 54 fr e e

Is.sort(reverse=True) A
print("List of sorted tuples:",Is)

observe inner parentheses

The output would be -

List of tuples: [(9291, "Tom'), (3501, ‘Jerry"), (8913, 'Donald")]
List of sorted tuples: [(9291, 'Tom"), (8913, 'Donald’), (3501, ‘Jerry')]

e In the above program, we are extracting key, val pair from the dictionary and appending it to the
list Is.

e While appending, we are putting inner parentheses to make sure that each pair is treated as a
tuple.

e Then, we are sorting the list in the descending order.

e The sorting would happen based on the telephone number (val), but not on name (key), as first
element in tuple is telephone number (val).

— The Most Common Words
o We will apply the knowledge gained about strings, tuple, list and dictionary till here to solve a
problem — write a program to find most commonly used words in a text file.
e The logic of the program is —
> Open afile

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 25



Python Application Programming (15CS664) Module III

Take a loop to iterate through every line of afile.

Remove all punctuation marks and convert alphabets into lower case

Take a loop and iterate over every word in aline.

If the word is not there in dictionary, treat that word as a key, and initialize its value as 1. If that
word already there in dictionary, increment the value.

Once all the lines in a file are iterated, you will have a dictionary containing distinct words

and their frequency. Now, take a list and append each key-value (word- frequency) pair into it.
» Sort the list in descending order and display only 10 (or any number of) elements from the

list to get most frequent words.

VVYVYV

A\

import string

fhand = open(‘test.txt")

counts = dict()

for line in fhand:
line = line.translate(str.maketrans(", ",string.punctuation))
line = line.lower()

for word in line.split():
if word not in counts:
counts[word] =1

else: i
counts[word] +=1 ‘ \
Ist=list) _
e HiOtes4iree
Ist.sort(reverse=True) All in @n:

for key, val in Ist[:10]:
print(key, val)

Run the above program on any text file of your choice and observe the output.

— Using Tuples as Keys in Dictionaries

e Astuples and dictionaries are hashable, when we want a dictionary containing composite keys, we
will use tuples.

e For Example, we may need to create a telephone directory where name of a person is Firstname-
last name pair and value is the telephone number.

e Our job is to assign telephone numbers to these keys.

e Consider the program to do this task —

names=(("Tom’,'Cat’),('Jerry','Mouse"), ('Donald’, 'Duck"))
number=[3561, 4014, 9813]

telDir={}

for i in range(len(hnumber)):

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 26



Python Application Programming (15CS664) Module III

telDir[names[i]]=numberf[i]

for fn, In in telDir:
print(fn, In, telDir[fn,In])

The output would be -

Tom Cat 3561
Jerry Mouse 4014
Donald Duck 9813

— Summary on Sequences: Strings, Lists and Tuples

Till now, we have discussed different types of sequences viz. strings, lists and tuples.

In many situations these sequences can be used interchangeably.

Still, due their difference in behavior and ability, we may need to understand pros and cons of
each of them and then to decide which one to use in a program.

Here are few key points —

1. Strings are more limited compared to other sequences like lists and Tuples. Because, the
elements in strings must be characters only. Moreover, strings are immutable. Hence, if we
need to modify the characters in a sequence, it is better to go for a list of characters than a
string.

2. As lists are mutable, they are most ¢ \I ompared to tuples. But, in some situations as
given below, tuples are preferable.

a. When we have a return statgi
lists.

b. When a dictiona S t@wfg nts, then we must use immutable
type like stringsﬂm @SS Tbeee

c. When a sequence of elements is"being passed to a function as arguments, usage of
tuples reduces unexpected behavior due to aliasing.

3. As tuples are immutable, the methods like sort() and reverse() cannot be applied on them. But,
Python provides built-in functions sorted() and reversed() which will take a sequence as an
argument and return a new sequence with modified results.

a function, it is better to use tuples rather than

Debugging

Lists, Dictionaries and Tuples are basically data structures.

In real-time programming, we may require compound data structures like lists of tuples,
dictionaries containing tuples and lists etc.

But, these compound data structures are prone to shape errors — that is, errors caused when a data
structure has the wrong type, size, composition etc.

For example, when your code is expecting a list containing single integer, but you are giving a
plain integer, then there will be an error.
When debugging a program to fix the bugs, following are the few things a programmer can try —

» Reading: Examine your code, read it again and check that it says what you meant to say.

» Running: Experiment by making changes and running different versions. Often if you display
the right thing at the right place in the program, the problem becomes obvious, but sometimes
you have to spend some time to build scaffolding.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 27



Python Application Programming (15CS664) Module III

» Ruminating: Take some time to think! What kind of error is it: syntax, runtime, semantic?
What information can you get from the error messages, or from the output of the program?
What kind of error could cause the problem you’re seeing? What did you change last, before
the problem appeared?

> Retreating: At some point, the best thing to do is back off, undoing recent changes, until you
get back you can start rebuilding.

3.4 REGULAR EXPRESSIONS

Searching for required patterns and extracting only the lines/words matching the pattern is a very
common task in solving problems programmatically.

We have done such tasks earlier using string slicing and string methods like split(), find() etc.

As the task of searching and extracting is very common, Python provides a powerful library called
regular expressions to handle these tasks elegantly.

Though they have quite complicated syntax, they provide efficient way of searching the patterns.

The regular expressions are themselves little programs to search and parse strings.

To use them in our program, the library/module re must be imported.

There is a search() function in this module, which is used to find particular substring within a string.
Consider the following example —

import re

fhand = open(‘'myfile.txt") I
for line in fhand:
line = line.rstrip()

if re.search(‘how’, line):

print(line)nOte S4fre e

By referring to file myfile.txt that ﬁés'béen discussed in previous Chapters, the output would be
hello, how are you?
how about you?
In the above program, the search() function is used to search the lines containing a word how.
One can observe that the above program is not much different from a program that uses find() function
of strings. But, regular expressions make use of special characters with specific meaning.
In the following example, we make use of caret (*) symbol, which indicates beginning of the line.

import re
hand = open(‘'myfile.txt’)
for line in hand:
line = line.rstrip()
if re.search(*how’, line):
print(line)

The output would be —

how about you?
Here, we have searched for a line which starts with a string how.
Again, this program will not makes use of regular expression fully.
Because, the above program would have been written using a string function startswith(). Hence,

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 28



Python Application Programming (15CS664) Module III

in the next section, we will understand the true usage of regular expressions.

— Character Matching in Regular Expressions

e Python provides a list of meta-characters to match search strings.
e Table below shows the details of few important metacharacters.
e Some of the examples for quick and easy understanding of regular expressions are given in next

Table.
Table : List of Important Meta-Characters
Character Meaning

" (caret) Matches beginning of the line

$ Matches end of the line

. (dot) Matches any single character except newline. Using option m, then
newline also can be matched

[-..] Matches any single character in brackets

["...] Matches any single character NOT in brackets

re* Matches 0 or more occurrences of preceding expression.

re+ Matches 1 or more occurrence of preceding expression.

re? Matches 0 or 1 occurrence of preceding expression.

re{ n} Matches exactly n number of occurrences of preceding expression.

re{n} Matches n or more occyrrenceg of preceding expression.

re{ n, m} Matches at least n and dt most m ocurrences of preceding expression.

alb Matches either a or b,

(re) Groups regular expressions and remgmbers matched text.

\d Matches digitsy B0y r1a|%o¢3]wf- an

\D Matches noft-d AL

\w Matches word characters. ' " © !

\W Matches non-word characters.

\s Matches whitespace. Equivalent to [\t\n\r\f].

\S Matches non-whitespace.

\A Matches beginning of string.

\Z Matches end of string. If a newline exists, it matches just before
newline.

\z Matches end of string.

\b Matches the empty string, but only at the start or end of a word.

\B Matches the empty string, but not at the start or end of a word.

() \When parentheses are added to a regular expression, they are ignored for the
purpose of matching, but allow you to extract a particular subset of the
matched string rather than the whole string when using
findall()

Table : Examples for Regular Expressions
Expression Description
[Pp]ython Match "Python" or "python"

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 29



Python Application Programming (15CS664) Module III

rub[ye] Match "ruby" or "rube"

[aeiou] Match any one lowercase vowel

[0-9] Match any digit; same as [0123456789]

[a-Z] Match any lowercase ASCII letter

[A-Z] Match any uppercase ASCII letter

[a-zA-Z0-9] Match any of uppercase, lowercase alphabets and digits
["aeiou] Match anything other than a lowercase vowel

["0-9] Match anything other than a digit

e Most commonly used metacharacter is dot, which matches any character.

e Consider the following example, where the regular expression is for searching lines which starts
with | and has any two characters (any character represented by two dots) and then has a character
m.

import re
fhand = open('myfile.txt’)
for line in fhand:
line = line.rstrip()
if re.search(**l..m’, line):

print(line) |
The output would be —
I am doing fine.

e Note that, the regular expregsi r(jt t 141% é %, but it can match ‘Isdm’, ‘[*3m’
and so on. ﬂ e S 1& 8@7

e That is, between land m, there can‘be any two characters.

e In the previous program, we knew that there are exactly two characters between | and m. Hence,
we could able to give two dots.

e But, when we don’t know the exact number of characters between two characters (or strings), we
can make use of dot and + symbols together.

e Consider the below given program —

import re
hand = open('myfile.txt’)
for line in hand:
line = line.rstrip()
if re.search(**h.+u’, line):
print(line)

The output would be —
hello, how are you?
how about you?

e Observe the regular expression ~h.+u here.
e It indicates that, the string should be starting with h and ending with u and there may by any
number of (dot and +) characters in- between.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 30



Python Application Programming (15CS664) Module III

Few examples:
e To understand the behavior of few basic meta characters, we will see some examples.
The file used for these examples is mbox-short.txt which can be downloaded from —
https://www.py4e.com/code3/mbox-short.txt

Use this as input and try following examples —

Pattern to extract lines starting with the word From (or from) and ending with edu:

import re
fhand = open('mbox-short.txt’)
for line in fhand:

line = line.rstrip()

pattern = ‘“*[Fflrom.*edu$’

if re.search(pattern, line):

print(line)

Here the pattern given for regular expression indicates that the line should start with either From
or from. Then there may be 0 or more characters, and later the line should end with edu.

Pattern to extract lines ending with any digit:
Replace the pattern by following string, rét of the program will remain the same.
pattern = ‘[0-9]$’

e e :Pattern = ‘A[Aa'ﬂﬁ t e 54 fr e e

Here, the first ~ indicates we want something to match in the beginning of a line. Then, the
inside square-brackets indicate do not match any single character within bracket. Hence, the
whole meaning would be — line must be started with anything other than a lower-case alphabets
and digits. In other words, the line should not be started with lowercase alphabet and digits.

Start with upper case letters and end with digits:
pattern = "[A-Z].*[0-9]$'

Here, the line should start with capital letters, followed by 0 or more characters, but must end
with any digit.

— Extracting Data using Regular Expressions

Python provides a method findall() to extract all of the substrings matching a regular expression.
This function returns a list of all non-overlapping matches in the string.

If there is no match found, the function returns an empty list.

Consider an example of extracting anything that looks like an email address from any line.

import re
s ='A message from csev@umich.edu to cwen@iupui.edu about meeting @2PM'

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 31


https://www.py4e.com/code3/mbox-short.txt
mailto:csev@umich.edu
mailto:cwen@iupui.edu

Python Application Programming (15CS664) Module III

Ist = re.findall(\S+@\S+', s)
print(lst)

The output would be —
[‘csev@umich.edu’, ‘cwen@iupui.edu’]

e Here, the pattern indicates at least one non-white space characters (\S) before @ and at least one
non-white space after @.

e Hence, it will not match with @2pm, because of a white- space before @.

e Now, we can write a complete program to extract all email-ids from the file.

import re
fhand = open('mbox-short.txt’)
for line in fhand:
line = line.rstrip()
x = re.findall(\S+@\S+', line)
if len(x) > 0:
print(x)

e Here, the condition len(x) > 0 is checked because, we want to print only the line which contain an
email-ID. If any line do not find the matc™ ‘an attern given, the findall() function will return an
empty list. The length of empty list will nd hence we would like to print the lines only
with length greater than 0.

The output of above program WI|| be omethln flow —

['stephen. marquard@uct ac. za < ostmaster co ab sakalprOJect org>']
['<200801051412. m05ECIaH010327@nakamura uits.iupui.edu>"
['<source@collab.sakaiproject.org>;"] ['<source@collab.sakaiproject.org>;']
['<source@collab.sakaiproject.org>;"] ['apache@Iocalhost)']

e Note that, apart from just email-ID’s, the output contains additional characters (<, >, ; etc)
attached to the extracted pattern. To remove all that, refine the pattern. That is, we want email-1D
to be started with any alphabets or digits, and ending with only alphabets. Hence, the statement

would be —

x = re.findall('[a-zA-Z0-9\S*@\S*[a-zA-Z]', line)

— Combining Searching and Extracting
e Assume that we need to extract the data in a particular syntax.
e For example, we need to extract the lines containing following format —

X-DSPAM-Confidence: 0.8475
X-DSPAM-Probability: 0.0000

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 32


mailto:postmaster@collab.sakaiproject.org
mailto:200801051412.m05ECIaH010327@nakamura.uits.iupui.edu
mailto:source@collab.sakaiproject.org
mailto:source@collab.sakaiproject.org
mailto:source@collab.sakaiproject.org

Python Application Programming (15CS664) Module III

e The line should start with X-, followed by 0 or more characters. Then, we need a colon and white-
space. They are written as it is.

e Then there must be a number containing one or more digits with or without a decimal point. Note
that, we want dot as a part of our pattern string, but not as meta character here. The pattern for
regular expression would be —

AX-*:[0-9.]+

The complete program is —
import re
hand = open('mbox-short.txt")
for line in hand:
line = line.rstrip()
if re.search(**X\S*: [0-9.]+', line):
print(line)

The output lines will as below —
X-DSPAM-Confidence: 0.8475
X-DSPAM-Probability: 0.0000
X-DSPAM-Confidence: 0.6178
X-DSPAM-Probability: 0.0000
X-DSPAM-Confidence: 0.6961

X-DSPAM-Probability: 0.0000 ‘ . \

e Assume that, we want onIﬂM@(@4 frc@@wce probability etc) in the above

output.

e We can use split() function on extracted strlng But, it is better to refine regular expression. To
do so, we need the help of parentheses.

e When we add parentheses to a regular expression, they are ignored when matching the string. But
when we are using findall(), parentheses indicate that while we want the whole expression to
match, we only are interested in extracting a portion of the substring that matches the regular
expression.

import re
hand = open('mbox-short.txt")
for line in hand:

line = line.rstrip()

x = re.findall("*X-\S*: ([0-9.]+)", line)

if len(x) > 0:

print(x)
e Because of the parentheses enclosing the pattern above, it will match the pattern starting with X-
and extracts only digit portion. Now, the output would be —

['0.84751
['0.00007
[0.6178
['0.00001

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 33



Python Application Programming (15CS664) Module III

[0.6961]

e Another example of similar form: The file mbox-short.txt contains lines like —

Details: http://source.sakaiproject.org/viewsvn/?view=rev&rev=39772
e We may be interested in extracting only the revision numbers mentioned at the end of these
lines. Then, we can write the statement —
x = re.findall(""Details:.*rev=([0-9.]+)', line)
e The regex here indicates that the line must start with Details:, and has something with rev= and
then digits.
e As we want only those digits, we will put parenthesis for that portion of expression.
e Note that, the expression [0-9] is greedy, because, it can display very large number. It keeps
grabbing digits until it finds any other character than the digit.
e The output of above regular expression is a set of revision numbers as given below —
['397721
[397711]
[397707]
[397697]

I
e Consider another example — we may b interesied in knowing time of a day of each email. The
file mbox-short.txt has lines like —

From stephen. marquard%uct .ac.za Sat Jan im 16 2008

e Here, we would like to extract on e our hat |s we would like only two digits
representmg hour. Hence, we need to modlfy our expressmn as —
= re.findall(‘*From .* ([0-9][0-9]):", line)

e Here, [0-9][0-9] indicates that a digit should appear only two times.
e The alternative way of writing this would be -
x = re.findall("*From .* ([0-9]{2}):, line)
e The number 2 within flower-brackets indicates that the preceding match should appear exactly two
times.
e Hence [0-9]{2} indicates there can be exactly two digits.
e Now, the output would be —
[097]
[18]
[167]
[157]

— Escape Character

e As we have discussed till now, the character like dot, plus, question mark, asterisk, dollar etc. are
meta characters in regular expressions.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 34


http://source.sakaiproject.org/viewsvn/?view=rev&amp;rev=39772
mailto:stephen.marquard@uct.ac.za

Python Application Programming (15CS664) Module III

e Sometimes, we need these characters themselves as a part of matching string.
e Then, we need to escape them using a back- slash.
e For example,

import re
x = 'We just received $10.00 for cookies.'
y = re.findall(\$[0-9.]+',x)

Output:
['$10.007

e Here, we want to extract only the price $10.00. As, $ symbol is a metacharacter, we need to use
\ before it.

e So that, now $ is treated as a part of matching string, but not as metacharacter.

— Bonus Section for Unix/Linux Users
e Support for searching files using regular expressions was built into the Unix OS.

e There is a command-line program built into Unix called grep (Generalized Regular Expression
Parser) that behaves similar to search() function.

hogt.tX
Output: n
From: stephen.marquard@uct.ac.za Fron
louis@media.berkeley.edu From:
zgian@umich.edu
From: rjlowe@iupui.e(I]_ 0 t 'e 54 fr e e
¢ Note that, grep command does not:support the non-blank character \S, hence we need to use
[~ Jindicating not a white-space.

$ grep "*From:' m

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 35


mailto:stephen.marquard@uct.ac.za
mailto:louis@media.berkeley.edu
mailto:zqian@umich.edu
mailto:rjlowe@iupui.edu

Python Application Programming (15CS664) Module IV

MODULE IV

4.1 CLASSES AND OBJECTS

Programmer defined types, Attributes, Rectangles, Copying, Debugging
4.2 CLASSES AND FUNCTIONS

Time, Pure Functions, Modifiers, Prototyping vs Planning, Debugging
4.3 CLASSES AND METHODS

Obiject Oriented Features, The init Method and str Method, Operator Overloading, Type-based dispatch,
Polymorphism, Interface and Implementation, Debugging

LY
notes4free

Al in (o

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 1



Python Application Programming (15CS664) Module IV

MODULE IV

4.1 CLASSES AND OBJECTS

e Python is an object-oriented programming language, and class is a basis for any object oriented
programming language.

e Class is a user-defined data type which binds data and functions together into single entity.

e Class is just a prototype (or a logical entity/blue print) which will not consume any memory.

e Anobject is an instance of a class and it has physical existence.

e One can create any number of objects for a class.

e A class can have a set of variables (also known as attributes, member variables) and member
functions (also known as methods).

— Programmer-defined Types
e A class in Python can be created using a keyword class.
e Here, we are creating an empty class withoutany members by just using the keyword passwithin it.

class Point:
pass

print(Point) i

The output would be -
<class ' main._.Point™>

e The term main_indicates thﬂe@lﬁﬁﬁi’rﬁﬁg of the current module.

e In other words; thisclass is at the t%p'le’vel Wwhile éxécuting the program.

e Now, a user-defined data type Point got created, and this can be used to create any number of
objects of this class.

e Observe the following statements:

p=Point()

e Now, a reference (for easy understanding, treat reference as a pointer) to Point object is created
and is returned. This returned reference is assigned to the object p.

e The process of creating a new object is called as instantiation and the object is instance of a
class.

e When we print an object, Python tells which class it belongs to and where it is stored in the
memory.

print(p)

The output would be -
< main_.Point object at 0x003C1BF0>

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 2



Python Application Programming (15CS664) Module IV

e The output displays the address (in hexadecimal format) of the object in the memory.
e Itis now clear that, the object occupies the physical space, whereas the class does not.

— Attributes
e An object can contain named elements known as attributes.
e One can assign values to these attributes using dot operator.

For example, keeping coordinate points in mind, we can assign two attributes x and y for the
object of a class Point as below

p.x =10.0
p.y =20.0

e A state diagram that shows an object and its attributesis called as object diagram.
e For the object p, the object diagram is shown in Figure below.

Point
x— 10.0
P > | y——» 200
Figur ]| iagram

e The diagram indicates that a variable (|
attributes.

e Each attributes refersto a fmo oﬂtgg'q:f
e One can access attributes 0 r@cl n-= r e e
A | i n 0ok
>>> print(p.x)

10.0

>>>print(p.y)
20.0

cOlp refers to a Point object, which contains two

e Here, p.Xx means “Go fo the object p refers to and get the value of x”.
e Attributes of an object can be assigned to other variables

>>> X=p.X
>>> print(X)
10.0

e Here, the variable x is nothing to do with attribute x.

e There will not be any name conflict between normal program variable and attributes of an object.

e A complete program: Write a class Point representing a point on coordinate system. Implement
following functions —

» A function read_point() to receive x and y attributes of a Point object as user input.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 2



Python Application Programming (15CS664) Module IV

» A function distance() which takes two objects of Point class as arguments and computes the
Euclidean distance between them.
» A function print_point()to display one point in the form of ordered-pair.

Program:
import math

class Point:

""" This is a class Point representing a coordinate point™™
def read_point(p):

p.x=float(input("x coordinate:"))

p.y=float(input("'y coordinate:"))

def print_point(p):
print(*(%g,%g)"%(p.X, p.y))

def distance(p1,p2):
d=math.sqrt((p1.x-p2.x)**2+(pl.y-p2.y)**2)

return d I
pl=Point() #create first object

print("Enter First point:")

read_point(p1) 1’1 0 t e S 4#%1’( €IEOr pl

p2=Point() A L i 0 #ereate second object
print("Enter Second point:")

read_point(p2) #read x and y for p2
dist=distance(pl,p2) #compute distance
print("First point.is:*)

print_point(p1) #print pl
print(""Second point is:")

print_point(p2) #print p2

print("Distance is: %g" %(distance(pl,p2))) #printd

The sample output of above program would be —
Enter First point:
x coordinate:10
y coordinate:20
Enter Second point:
x coordinate:3
y coordinate:5
First point is: (10,20)

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 3



Python Application Programming (15CS664) Module IV

Second point is:(3,5)
Distance is: 16.5529

Let us discuss the working of above program thoroughly —

e The class Point contains a string enclosed within 3 double-quotes. This is known as
docstring. Usually, a string literal is written within 3 consecutive double-quotes inside a
class, module or function definition. It is an important part of documentation and is to help
someone to understand the purpose of the said class/module/function. The docstring becomes
a value for the special attribute viz._ doc_ available for any class (and objects of that class).
To get the value of docstring associated with a class, one can use the statements like —

>>> print(Point._doc_ )
This is a class Point representing a coordinate point

>>> print(pl..doc_)
This is a class Point representing a coordinate point

Note that, you need to type two underscores, then the word doc and again two underscores.In
the above program, there is no-need of docstring and we would have just used pass to
indicate an empty class. But, it is better to understand the professional way of writing user-
defined types and hence, introduced '“"si’ g.

e The function read point() take Qr nent of type Point object. When we use the

“potesdfree

read_point(pl)
the parameter p of this function will act as an gs for the argument pl. Hence, the
modification done to the alias p reflects the orlgmal argument pl. With the help of this
function, we are instructing Python that the object p1 has two attributes x and y.

e The function print_point() also takes one argument and with the help of format- strings, we
are printing the attributes x and y of the Point object as an ordered-pair (X,y).

e Aswe know, the Euclidean distance between two points (x1,y1) and (x2,y2) is
V- x2) +(y1- y2y

In this program, we have Point objects as (pl.x, pl.y) and (p2.x, p2.y). Apply the formula on
these points by passing objects p1 and p2 as parameters to the function distance(). And then
return the result.

Thus, the above program gives an idea of defining a class, instantiating objects, creating attributes,
defining functions that takes objects as arguments and finally, calling (or invoking) such functions
whenever and wherever necessary.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 4



Python Application Programming (15CS664) Module IV

NOTE: User-defined classes in Python have two types of attributes viz. class attributes and instance
attributes. Class attributes are defined inside the class (usually, immediately after class header). They
are common to all the objects of that class. That is, they are shared by all the objects created from that
class. But, instance attributes defined for individual objects. They are available only for that instance
(or object). Attributes of one instance are not available for another instance of the same class.

For example, consider the class Point as discussed earlier —

class Point:

pass
pl=Point() #first objectof the class
pl.x=10.0 #attributes for pl
pl.y=20.0
print(pl.x, pl.y) #prints 10.0 20.0
p2= Point() #second object of the class
print(p2.x) #displays error as below

AttributeError: 'Point’ object has no attribute 'x'

This clearly indicates that the attributes x and v i‘ ited are available only for the object p1, but not
for p2. Thus, x and y are instance attributes|ut nc™ class attributes.

We will discuss class attributes late in-
following example —

for the understanding purpose, observe the

notesédiree

class Point: e

X:2 ik | |

y=3
pl=Point() #first object of the class
print(pl.x,pl.y) # prints 2 3
p2=Point() #second object of the class
print(p2.x, p2.y) # prints 2 3

Here, the attributes x and y are defined inside the definition of the class Point itself. Hence, they are
available to all the objects of that class.

— Rectangles
e Itis possible to make an object of one class as an attribute to other class.
e To illustrate this, consider an example of creating a class called as Rectangle.
e A rectangle can be created using any of the following data —
» By knowing width and height of a rectangle and one corner point (ideally, a bottom- left
corner) in a coordinate system
» By knowing two opposite corner points
> Let us consider the first technique and implement the task: Write a class Rectangle containing

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 5



Python Application Programming (15CS664) Module IV

numeric attributes width and height.
» This class should contain another attribute corner which is an instance of another class Point.
Implement following functions —
» A function to print corner point as an ordered-pair
» A function find_center() to compute center point of the rectangle
> A function resize() to modify the size of rectangle

The program is as given below —

class Point:
""" This is a class Point representing coordinate point™""

class Rectangle:
""" This is a class Rectangle. Attributes: width, height and Corner Point ™"

def find_center(rect):
p=Point()
p.X = rect.corner.x + rect.width/2
p.y = rect.corner.y + rect.height/2
return p

def resize(rect, w, h): A
rect.width +=w
rect.height+=h

def print_point(p): I]_Ote S4fre e

print("(%g,%0) %X, B &1 i

box=Rectangle() #create Rectangle object
box.corner=Point() #define an attribute corner for box
box.width=100 #set attribute width to box
box.height=200 #set attribute height to box
box.corner.x=0 #corner itself has two attributes x and y
box.corner.y=0 #initialize x and y to 0

print("Original Rectangle is:")
print("width=%g, height=%g"%(box.width, box.height))

center=find_center(box)
print("The center of rectangle is:")
print_point(center)

resize(box,50,70)
print("Rectangle after resize:")
print("width=%g, height=%g"%(box.width, box.height))

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 6



Python Application Programming (15CS664) Module IV

center=find_center(box)
print("The center of resized rectangle is:")
print_point(center)

A sample output would be:
Original Rectangle is: width=100, height=200
The center of rectangle is: (50,100)
Rectangle after resize: width=150, height=270
The center of resized rectangle is: (75,135)

The working of above program is explained in detail here —
» Two classes Pointand Rectanglehave been createdwith suitable docstrings. As of now, they
do not contain any class-level attributes.
» The following statement instantiates an object of Rectangleclass.
box=Rectangle()

The statement

box.corner=Point()
indicates that corner is an attribute for the object box and this attribute itself is an object of
the class Point. The following statermenis fincigate that the object box has two more attributes

box.width=100
box.height=200

give any numeric value
In this program, we arﬂ&tﬁ&‘éﬁfaﬁl&& in coordinate system and

hence the following assignments=. i n o
box.corner.x=0 box.corner.y=0

#give any numeric value

(Note that, instead of origin, any other location in the coordinate system can be given as
corner point.) Based.onall.above statements, an object diagram can be drawn as —

Rectangle
hox width —— 100 Point
height —— 200
X— 0
corner Y y—0

The expression box.corner.x means, “Go to the object box refers to and select the attribute
named corner; then go to that object and select the attribute named x.”

» The function find_center() takes an object rect as an argument. So, when a call is made using
the statement —

center=find_center(box)

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 7



Python Application Programming (15CS664) Module IV

the object rect acts as an alias for the argument box.

A local object p of type Point has been created inside this function. The attributes of p are x
and y, which takes the values as the coordinates of center point of rectangle. Center of a
rectangle can be computed with the help of following diagram.

L
Half of heigh (x+ half of width, y+ half of height)

(le) T
Half of width

The function find_center() returns the computed center point. Note that, the return value of a
function here is an instance of some class. That is, one can have an instance as return values
from a function.

The function resize() takes three arguments rect — an instance of Rectangle class and two
numeric variables w and h. The vaiues w and h are added to existing attributes width and
height. This clearly shows that olje Mutable. State of an object can be changed by
modifying any of its attributes. Wher this function is called with a statement —

resize(box, 50 ,70)

the rect acts as.an ali wj ight modified within the function will
reflect the original obj S

Thus, the above program.illustrates the concepts Object of one class is made as attribute for object of
another class, returning objects from functions and objects are mutable.

— Copying

An object will be aliased whenever there an object is assigned to another object of same class.
This may happen in following situations —

» Direct object assignment (like p2=p1)

» When an object is passed as an argument to a function

» When an object is returned from a function

The last two cases have been understood from the two programs in previous sections.
Let us understand the concept of aliasing more in detail using the following program

>>> class Point;
pass

>>> pl=Point()
>>>pl.x=10
>>>pl.y=20
>>> p2=pl

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 8



Python Application Programming (15CS664) Module IV

>>> print(pl)

< main_Point object at 0x01581BF0>
>>> print(p2)

< main_Point object at 0x01581BF0>

e Observe that both p1 and p2 objects have same physical memory. It is clear now that the object p2
is an alias for p1.
e S0, we can draw the object diagram as below —

X —» 10

p y 520

+— p2

e Hence, if we check for equality and identity of these two objects, we will get following result.

>>>plis p2
True
>>> pl==p2
True

e But, the aliasing is not good always. Fgr cxagiple, we may need to create a new object using an
existing object such that — the new object shouldlhave a different physical memory, but it must
have same attribute (and their values of existing object. Diagrammatically, we need

QWnotesdfree

Al in

X S

—> 10 X —» 10
)\—’ 20 y » 20
e In short, we need a copy of an object, but not an alias.

e To do this, Python provides a module called copy and a method called copy(). Consider the below
given program to understand the concept.

pl— «— p2

>>> class Point:
pass

>>> pl=Point()

>>>pl.x=10

>>>pl.y=20

>>> import copy #import module copy
>>> p3=copy.copy(pl) #use the method copy()

>>> print(pl)

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 9



Python Application Programming (15CS664) Module IV

< main_Point object at 0x01581BF0>
>>> print(p3)
< main_Point object at 0x02344A50>
>>> print(p3.x,p3.y)
10 20

e Observe that the physical address of the objects p1 and p3 are now different.
e But, values of attributes xand y are same. Now, use the following statements —

>>>plis p3
False

>>>pl == p3
False

e Here, the is operator gives the result as False for'the obvious reason of pl and p3 are being two
different entities on the memory.

e But, why == operator is generating False.as the result, though the contents of two objects are
same? The reason is p1 and p3 are the objects of user-defined type.

e And, Python cannot understand the‘meaning of equality on the new data type. The default
behavior of equality (==) is identity (is operator) itself. Hence, Python applies this default
behavior on p1 == p3and results in Falsg. |

NOTE: If we need to define the meaning| o’ coualit

types (i.e. on class objects), then we need

discussed later in detail.

e The copy() method of copymxpgﬂtsﬁﬁ
e The content (i.e. attributes jéct- 8.0 i eoer object as we have discussed till

now. Al in Vay

e But, when an object itself is an attribute inside another object, the duplication will result in a
strange manner.

e To understand this concept, try to copy Rectangle object (created in previous section) as given
below

(==) operator explicitly on user-defined data
he method_eq. () inside the class. This will be

Y
uo

import copy class
Point:
""" This is a class Point representing coordinate point™"

class Rectangle:
""" This'is a class Rectangle.Attributes: width, height and Corner Point """

box1=Rectangle()
box1.corner=Point()
box1.width=100
box1.height=200
box1.corner.x=0
box1.corner.y=0

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 10



Python Application Programming (15CS664) Module IV

box2=copy.copy(box1)
print(box1 is box2) #prints False
print(box1.corner is box2.corner) #prints True

e Now, the question is — why box1.corner and box2.corner are same objects, when box1 and box2
are different? Whenever the statement is executed,

box2=copy.copy(box1)

e The contents of all the attributes of box1 object are copied into the respective attributes of box2
object.

e That is, box1.width is copied into box2.width, box1.height s copied into box2.height.

e Similarly, box1.corner is copied into box2.corner.

e Now, recollect the fact that corner is not exactly the object itself, but it is a reference to the object
of type Point (Read the discussion done for Figure at the beginning of this Chapter).

e Hence, the value of reference (that is, the physical address) stored in box1.corner is copied into
box2.corner.

e Thus, the physical object to which box1.corner and box2.corner are pointing is.only one.

e This type of copying the objects is known as shallow copy.

e To understand this behavior, observe the following diagram

Py

./ |
box1 width ::ij) 4f idth 100 < box2
height te S re ee|ght—>200
All Pdint @ 1 ¢
corner corner
x—0

y—»0 [——

e Now, the attributes width and height for two objects box1 and box2 are independent.

e Whereas, the attribute corner is-shared by both the objects.

e Thus, any modification.done to box1.corner will reflect box2.corner as well.

e Obviously, we don’t want this to happen, whenever we create duplicate objects. That is, we want
two independent physical objects.

e Python provides a method deepcopy() for doing this task.

e This method copies not only the object but also the objects it refers to, and the objects they refer
to, and so on.

box3=copy.deepcopy(box1)
print(box1 is box3) #prints False
print(box1.corner is box3.corner) #prints False

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 11



Python Application Programming (15CS664) Module IV

Thus, the objects box1 and box3 are now completely independent.

— Debugging

e While dealing with classes and objects, we may encounter different types of errors.

e For example, if we try to access an attribute which is not there for the object, we will get
AttributeError. For example —

>>> p= Point()
>>>p.x =10
>>>p.y =20
>>> print(p.z)
AttributeError: 'Point' object has no attribute‘z'

e To avoid such error, it is better to enclose such codes within try/except as given below —
try:
Z=pX
except AttributeError: z=0

e When we are not sure, which type of object it is, then we can use type() as —
>>> type(box1) n
<class ' main__.Rectangle'>

e Another method isinstance() helps to check w 4 Fn object isan instance of a particular class

>>> isinstance(boxd, RIET’@) e S r e e

True
e When weare not sure whether an object has a particular attribute or not, use a function hasattr() —
>>> hasattr(box1, ‘width’)
True
e Observe the string notation for second argument of the function hasattr(). Though the attribute
width is basically numeric, while giving it as an argument to function hasattr(), it must be
enclosed within gquotes.

Al

4.2CLASSES AND FUNCTIONS

e Though Python is-object oriented programming languages, it is possible to use it as functional
programming. There are two types of functions viz. pure functions and modifiers.

e A pure function takes objects as arguments and does some work without modifying any of the
original argument.

e On the other hand, as the name suggests, modifier function modifies the original argument.

e In practical applications, the development of a program will follow a technique called as prototype
and patch.

e That is, solution to a complex problem starts with simple prototype and incrementally dealing with
the complications.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 12



Python Application Programming (15CS664) Module IV

— Pure Functions

e To understand the concept of pure functions, let us consider an example of creating a class called
Time. An object of class Time contains hour, minutes and seconds as attributes.

e Write a function to print time in HH:MM:SS format and another function to add two time objects.

e Note that, adding two time objects should yield proper result and hence we need to check whether
number of seconds exceeds 60, minutes exceeds 60 etc, and take appropriate action.

class Time:
""'Represents the time of a day Attributes: hour, minute; second """

def printTime(t):
print(*%.2d:%.2d:%.2d"%(t.hour,t.minute,t.second))

def add_time(t1,t2):
sum=Time()
sum.hour = t1.hour + t2.hour
sum.minute = t1.minute + t2.minute
sum.second = t1.second + t2.second

if sum.second >= 60:
sum.second -= 60

sum.minute +=1 i
if sum.minute >= 60:
sum.minute -= 60

I’etums:u:hour ﬁ 0 t e 84 fr e e

Al in
t1=Time()
tlshour=10
tl.minute=34
tl.second=25
print("Timel is:")
printTime(tl)

t2=Time()
t2.hour=2
t2.minute=12
t2.second=41
print("Time2 is :")
printTime(t2)

t3=add_time(t1,t2)
print("After adding two time objects:")
printTime(t3)

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 13



Python Application Programming (15CS664) Module IV

The output of this program would be :
Timel is: 10:34:25
Time2 is: 02:12:41
After adding two time objects: 12:47:06

e Here, the function add_time() takes two arguments of type Time, and returns a Time object,
whereas, it is not modifying contents of its arguments t1 and t2.

e Such functions are called as pure functions.

— Modifiers
e Sometimes, it is necessary to modify the underlying argument so as to reflect the caller.

e That is, arguments have to be modified inside a function and these modifications should be
available to the caller.

e The functions that perform such modifications are known as madifier function.
e Assume that, we need to add few seconds to a time object, and get a new time.
e Then, we can write a function as below

def increment(t, seconds):
t.second += seconds

while t.second >= 60: 1
t.second -= 60
t.minute +=1

- Smgptesdfree

thour+=1 & Ld_ i m

In this function, we will initially add the argument seconds to t.second.

Now, there is a chance that t.second is exceeding 60.

So, we will increment minute counter till t.second becomes lesser than 60.

Similarly, till the t:minute becomes lesser than 60, we will decrement minute counter.

Note that, the modification is done on the argument t itself. Thus, the above function is a
modifier.

— Prototyping v/s Planning

Whenever we donot know the complete problem statement, we may write the program initially, and

then keep of modifying it as and when requirement (problem definition) changes. This methodology

is known as prototype and patch.

e That is, first design the prototype based on the information available and then perform patch-work as
and when extra information is gathered.

e But, this type of incremental development may end-up in unnecessary code, with many special cases
and it may be unreliable too.

e An alternative is designed development, in which high-level insight into the problem can make the
programming much easier.

e For example, if we consider the problem of adding two time objects, adding seconds to time object

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 14



Python Application Programming (15CS664) Module IV

etc. as a problem involving numbers with base 60 (as every hour is 60 minutes and every minute is
60 seconds), then our code can be improved.
e Such improved versions are discussed later in this chapter.

— Debugging

e In the program written inabove, we have treated time objects as valid values.

e But, what if the attributes (second, minute, hour) of time object are given as wrong values like
negative number, or hours with value more than 24, minutes/seconds with more than 60 etc? So, it
IS better to write error-conditions in such situations to verify the input.

e We can write a function similar to as given below —

def valid_time(time):
if time.hour < 0 or time.minute < 0 or time:second < 0O:
return False

if time.minute >= 60 or time.second >= 60:
return False

return True

e Now, at the beginning of add_time()fungtion, Jjc can puta condition as —

def add_time(tl, t2):
if not vaI|d time(t1) or not

A

#remaining statements.of add. time() functions

e Python provides another debugging statement assert.
e Whenthis keyword is used, Python evaluates the statement following it.

e If the statement is True, further statements will be evaluated sequentially. But, if the statement is
False, then AssertionError exception is raised.
e The usage of assert is shown here —

def add_time(t1, t2):
assert valid_time(t1) and valid_time(t2)
#remaining statements of add_time() functions

e The assert statement clearly distinguishes the normal conditional statements as a part of the logic
of the program and the code that checks for errors.

4.3CLASSES AND METHODS

e The classes that have been considered till now were just empty classes without having any
definition.

e But, in a true object oriented programming, a class contains class-level attributes, instance-level
attributes, methods etc.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 15



Python Application Programming (15CS664) Module IV

e There will be a tight relationship between the object of the class and the function that operate on
those objects. Hence, the object oriented nature of Python classes will be discussed here.

— Object-Oriented Features
As an object oriented programming language, Python possess following characteristics:
» Programs include class and method definitions.
» Most of the computation is expressed in terms of operations on objects.
» Objects often represent things in the real world, and methods often correspond to the ways
objects in the real world interact.
e To establish relationship between the object of the class and a function, we must define a function
as a member of the class. \
e function which is associated with a particular class is known as a method.
e Methods are semantically the same as functions, but there are two syntactic differences:
» Methods are defined inside a class definition in order to make the relationship
between the class and the method explicit.
» The syntax for invoking a method is different from the syntax for calling a function.
e Now onwards, we will discuss about classes and methods.

— The __init__() Method

e A method init () has to be written with two underscores before and after the word init

e Python provides a special method calldd ik OJwhich is similar to constructor method in other
programming languages like C++/Java.

e The term init indicates initialization.

e As the name suggests; this method is invoked a 4 fﬁtlcally when the object of a class is created.

Consider the example glveTTG) t e S r e e

import math Al

class Point:
def init_(self,a,b):
self.x=a
self.y=b

def dist(self,p2):
d=math.sqrt((self.x-p2.x)**2 + (self.y-p2.y)**2)
return d

def str__(self):
return "(%d,%d)"%(self.x, self.y)

pl=Point(10,20) # init () is called automatically
p2=Point(4,5) # init () is called automatically
print("P1is:",pl) # str () is called automatically
print("P2 is:",p2) # str () is called automatically

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 16



Python Application Programming (15CS664) Module IV

d=pl.dist(p2) #explicit call for dist()
print("The distance is:",d)

The sample output is —
P1is: (10,20)
P2 is: (4,5)
Distance is: 16.15549442140351

e Let us understand the working of this program and the concepts.involved:
> Keep in mind that every method of any class must have the first argument as self. The
argument self is a reference to the current object. That is, It is reference to the object which
invoked the method. (Those who know C++, can relate self with this pointer). The object
which invokes a method is also known as subject:
» The method init () inside the class is an nitialization ‘method, which will be invoked
automatically when the object gets created. When the statement like —

p1=Point(10,20)

is used, the_init_() method will be called automatically. The internal meaning of the above
line is —
pl.init_ (10,2

Here, pl is the object which is invoking é(:{fﬂd Hence, reference to this object is created

and passed to_init_() a e'z d to formal parameters a and b of
init_() method. Now, ﬁdﬂj ﬁ

ents
Al

self.x=10
self.y=20

This indicates, x and-yare instance attributes. The value of x for the object p1is 10 and, the
value of y for the object plis 20.

When we create another object p2, it will have its own set of x and y. That is, memory
locations of instance attributes are different for every object.

Thus, state of the object can be understood by instance attributes.
» The method dist() is an ordinary member method of the class Point. As mentioned earlier, its
first argument must be self. Thus, when we make a call as —

d=p1.dist(p2)

a reference to the object pl is passed as self to dist() method and p2 is passed explicitly as a
second argument. Now, inside the dist()method, we are calculating distance between two
point (Euclidian distance formula is used) objects. Note that, in this method, we cannot use
the name p1, instead we will use self which is a reference (alias) to p1.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 17



Python Application Programming (15CS664) Module IV

» The next method inside the class is_ str_ (). It is a special method used for string
representation of user-defined object. Usually, print() is used for printing basic types in
Python. But, user-defined types (class objects) have their own meaning and a way of
representation. To display such types, we can write functions or methods like print_point() as
we did in previous section But, more polymorphic way is to use_ str_ () so that, when we
write just print() in the main part of the program, the str_ () method will be invoked
automatically. Thus, when we use the statement like —

print("P1 is:",pl)

the ordinary print() method will print the portion “P1 is:” and the remaining portion is taken
care by str_() method. In fact, str_() method will return the string format what we have given
inside it, and that string will be printed by print() method.

— Operator Overloading

Ability of an existing operator to work on user-defined data type (class) is known as operator
overloading.

It is a polymorphic nature of any object.oriented programming.

Basic operators like +, -, * etc. can be overloaded.

To overload an operator, one needs to write a method within user-defined class.

Python provides a special set of methods ®vhigh have to be used for overloading required
operator.
The method should consist of the cod rogrammer is willing to do with the operator.
Following table shows glves 0 and thelr respective Python methods for
overloading. éi
_add_ ()

- _sub_ () >= _0ge_(

* _mul__() == _eqg_0

/ __truediv__() = _ne_()

% __mod__ () in __contains_()

< It 0 len _len__ ()

> gt 0 str _str_()

Mamatha A, Asst Prof, Dept of CSE, SVIT n OteS4fre e I n Page 18



Python Application Programming (15CS664) Module IV

e Let us consider an example of Point class considered earlier.
e Using operator overloading, we can try to add two point objects. Consider the program given
below —

class Point:
def _init_ (self,a=0,b=0):
self.x=a
self.y=b

def _add__(self, p2):
p3=Point()
p3.x=self.x+p2.x
p3.y=self.y+p2.y
return p3

def __str_ (self):
return "(%d,%d)"%(self.x, self.y)

pl=Point(10,20)
p2=Point(4,5)

print("P1is:",pl)
print("P2 is:",p2)
pa= p1+p2 add_() method

prinesum 1) notes4 ree

The output would be - A i
P1is: (10,20)
P2.s: (4,5)
Sum is: (14,25)

e In the above program; when the statement p4 = p1+p2 is used, it invokes a special method__add__
() written inside the class. Because, internal meaning of this statement is—
p4 =pl.__add_(p4)

Here, pl is the object invoking the.method. Hence, self inside__add_() is the reference (alias) of p1.
And, p4 is passed as argument explicitly.

In the definition of __add__(), we are creating an object p3with the statement —
p3=Point()

The object p3 is created without initialization. Whenever we need to create an object with and without
initialization in the same program, we must set arguments of init_() for some default values. Hence, in
the above program arguments a and b of _init_() are made as default arguments with values as zero.
Thus, x and y attributes of p3will be now zero. In the_add_() method, we are adding respective attributes
of self and p2 and storing in p3.x and p3.y. Then the object p3 is returned. This returned object is
received as p4and is printed.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 19



Python Application Programming (15CS664) Module IV

NOTE that, in a program containing operator overloading, the overloaded operator behaves in a
normal way when basic types are given. That is, in the above program, if we use the statements

m= 3+4

print(m)

it will be usual addition and gives the result as 7. But, when user-defined types are used as operands,
then the overloaded method is invoked.

e Let us consider a more complicated program involving overloading. Consider a problem of
creating a class called Time, adding two Time objects, adding.a number to Time object etc. that
we had considered in previous section. Here is a complete program with more of OOP concepts.

class Time:
def init_(self, h=0,m=0,5=0):
self.hour=h
self.min=m
self.sec=s

def time_to_int(self):
minute=self.hour*60+self.min
seconds=minute*60+self.sec n
return seconds

def int_to_time(self; seconds):

tnjl-lr-mlt;?:so t.sec:divmgc;tdgos 4 fr e e

t.hour, t.min=divmod(mihutes,60) n &
return t

def _str_ (self):
return "%.2d:%.2d:%:2d"%(self.hour,self.min,self.sec)

def _eq_ (self,t):
return self.-hour==t.hour and self.min==t.min and self.sec==t.sec

def __add_ (self,t):
if isinstance(t, Time):
return self.addTime(t)
else:
return self.increment(t)

def addTime(self, t):
seconds=self.time_to_int()+t.time_to_int()
return self.int_to_time(seconds)

def increment(self, seconds):
seconds += self.time_to_int() return

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 20



Python Application Programming (15CS664) Module IV

self.int_to_time(seconds)

def_radd_(self,t):
return self._.add__(t)

T1=Time(3,40)

T2=Time(5,45)

print("T1is:",T1)

print("T2 is:",T2)

print("Whether T1 is same as T2?",T1==T2) #call for_eq ()

T3=T1+T2 #call for add_ ()
print("T1+T2 is:", T3)

T4=T1+75 #call for_add ()
print("T1+75=",T4)

T5=130+T1 #call for_radd_()
print("130+T1=",T5)

T6=sum([T1,T2,T3,T4]) .
print("Using sum([T1,T2,T3,T4]):" T

The output would be — f
T1 is: 03:40:00 t 4
T2 is: 05:45:00 I]'O eS ree
Whether Ti-is same as T2? False .| ™
T1+T2 is: 09:25:00
T1+75=03:41:15
130+T1=03:42:10
Using sum([T1,T2,T3,T4]): 22:31:15

e Working of above program is explained hereunder —

» The class Time has init () method for initialization of instance attributes hour, minand
sec. The default values of all these are being zero.

» The method time_to_int() is used convert a Time object (hours, min and sec) into single integer
representing time in number of seconds.

» The method int_to_time() is written to convert the argument seconds into time object in the form
of hours, min and sec. The built-in method divmod() gives the quotient as well as remainder
after dividing first argument by second argument given to it.

» Special method eq () is for overloading equality (==) operator. We can say one Time object is
equal to the other Time object if underlying hours, minutes and seconds are equal respectively.
Thus, we are comparing these instance attributes individually and returning either True of
False.

» When we try to perform addition, there are 3 cases —

o Adding two time objects like T3=T1+T2.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 21



Python Application Programming (15CS664) Module IV

o Adding integer to Time object like T4=T1+75
o Adding Time object to an integer like T5=130+T1

» Each of these cases requires different logic. When first two cases are considered, the first
argument will be T1and hence self will be created and passed to _add_() method.

» Inside this method, we will check the type of second argument using isinstance() method.

» If the second argument is Time object, then we call addTime() method. In this method, we will
first convert both Time objects to integer (seconds) and then the resulting sum into Time object
again

> So, we make use time_to_int()and int_to_time()here. When the 2" argument is an integer it is
obvious that it is number of seconds. Hence, we need to call increment() method.

» Thus, based on the type of argument received in a method, we take appropriate action. This
is known as type-based dispatch.

> In the 3" case like T5=130+T1, Python tries to convert first argument 130 into self, which is
not possible. Hence, there will be an error. This indicates that for Python, T1+5 is not same
as 5+T1 (Commutative law doesn’t hold good!!).

» To avoid the possible error, we need to implement right-side addition method_radd_ ().
Inside this method, we can call overloaded method add_ ().

» The beauty of Python lies in surprising the programmer with more facilities!! As we have
implemented_ add_ () method (that is, overloading of + operator), the built- in sum() will is
capable of adding multiple objects given in a sequence. This is due to Polymorphism in
Python.

» Consider a list containing Time of) ;l J then call sum()on that list as —
T6=sum([T1,T2,T3,T4])
» The sum() internally calls_add_()=kagt uc=sultiple times and hence gives the appropriate
result. Note down.the square-prackets u [if combine Time objects as a list and then
2
o1

passing it to sum(). \QQE@ §a LL'@%
» Thus, the program gi e ‘dl i S concepts.
ik | | | 3

— Debugging

We have seen earlier that hasattr() method can be used to check whether an object has particular
attribute.
There iIs one more way of doing it using a method vars(). This method maps attribute names and
their values as a dictionary.
For example, for the Point class defined earlier, use the statements

>>>p = Point(3, 4)

>>> vars(p) #output is {'y": 4, 'x": 3}
For purposes of debugging, you might find it useful to keep this function handy:

def print_attributes(obj):
for attr in vars(obyj):
print(attr, getattr(obj, attr))

Here, print_attributes() traverses the dictionary and prints each attribute name and its
corresponding value.

The built-in function getattr() takes an object and an attribute name (as a string) and returns the
attribute values

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 22



Python Application Programming (15CS664) Module V

MODULE V

5.INETWORKED PROGRAMS

In this era of internet, it is a requirement in many situations to retrieve the data from web and to
process it. In this section, we will discuss basics of network protocols and Python libraries available
to extract data from web.

— HyperText Transfer Protocol (HTTP)
e HTTP (HyperText Transfer Protocol) is the media through which we can retrieve web- based data.
e The HTTP is an application protocol for distributed and hypermedia information systems.
e HTTP is the foundation of data communication for the World Wide Web.
e Hypertext is structured text that uses logical links (hyperlinks) between nodes containing text.
HTTP is the protocol to exchange or transfer hypertext.
e Consider a situation:
% you try to read a socket, but the program on the other end of the socket has not sent any data,
then you need to wait.
% If the programs on both ends of the socket simply wait for some data without sending
anything, they will wait for a very long (i
e S0 an important part of programs thaf i¢ate over the Internet is to have some sort of
protocol. A protocol is a set of precise rertes- ermine
« Who will send request t.puUrpQs
% What action to be takeﬁw@ t.lé 5;4 fr e e
< What responseto begiven A 1 | i n o0«
To send request and to receive response, HTTP uses GET and POST methods.

NOTE: To test all the programs in this section, you must be connected to internet.

— The World’s Simplest Web Browser

e The built-in module socket of Python facilitates the programmer to make network connections and to
retrieve data over those sockets in a Python program.

e Socket is bidirectional data path to a remote system.

e A socket is much like a file, except that a single socket provides a two-way connection between
two programs.

e You can both read from and write to the same socket.

e If you write something to a socket, it is sent to the application at the other end of the socket.

¢ If you read from the socket, you are given the data which the other application has sent.

e Consider a simple program to retrieve the data from a web page. To understand the program given
below, one should know the meaning of terminologies used there.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 1



Python Application Programming (15CS664) Module V

« AF_INET is an address family (IP) that is used to designate the type of addresses that your
socket can communicate with.When you create a socket, you have to specify its address
family, and then you can use only addresses of that type with the socket.

% SOCK_STREAM is a constant indicating the type of socket (TCP). It works as a file stream
and is most reliable over the network.

+« Port is a logical end-point. Port 80 is one of the most commonly used port numbers in the
Transmission Control Protocol (TCP) suite.

+«+ The command to retrieve the data must use CRLF(Carriage Return Line Feed) line endings, and
it must end in \r\n\r\n (line break in protocol specification).

% encode() method applied on strings will return bytes-representation of the string. Instead of
encode() method, one can attach a character b at the beginning of the string for the same effect.

% decode() method returns a string decoded from the given bytes.

Figure : A Socket Connection
e A socket connection between the user program and the webpage is shown in Figure below

Your
Program

www.py4e.com

socket

Web Pages

connect

e Now, observe the following program —
import socket

mysock = socket.socket(socket. AF_INET, socket. SOCK_STREAM)
mysock.connect((‘data.pr4de.org’, 80))

cmd="GET http://data.prde.org/romeo.txt HTTP/1.0\r\n\r\n".encode()
mysock.send(cmd)

while True:
data = mysock.recv(512)
if (len(data) < 1):
break
print(data.decode(),end=")
mysock.close()

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 2


http://data.pr4e.org/romeo.txt

Python Application Programming (15CS664) Module V

e When we run above program, we will get some information related to web-server of the website
which we are trying to scrape.

e Then, we will get the data written in that web-page. In this program, we are extracting 512 bytes
of data at a time. (One can use one’s convenient number here). The extracted data is decoded and
printed. When the length of data becomes less than one (that is, no more data left out on the web
page), the loop is terminated.

— Retrieving an Image over HTTP

e In the previous section, we retrieved the text data from the webpage. Similar logic can be used to
extract images on the webpage using HTTP.

e In the following program, we extract the image data in the chunks of 5120 bytes at a time, store
that data in a string, trim off the headers and then store the image file on the disk.

import socket

import time
HOST = 'data.pr4e.org' #host name
PORT =80 ber

""OI u

SOCK_STREAM)

mysock = socket.socket(socket. AF_INET | socke
mysock.connect((HOST, PORT))

mysock.sendall(b’GET http://Qp%.¥q§§3%£¥§0¢n\r\n')

count=0
picture = b"" #empty string in binary format
while True:

data = mysock.recv(5120) #retrieve 5120 bytes at a time

if (len(data) < 1):

break

time.sleep(0.25) #programmer can see data retrieval easily

count = count + len(data)

print(len(data), count) #display cumulative data retrieved

picture = picture + data
mysock.close()

pos = picture.find(b"\r\n\r\n"") #find end of the header (2 CRLF)

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 3


http://data.pr4e.org/cover3.jpg

Python Application Programming (15CS664) Module V

print("Header length’, pos)
print(picture[:pos].decode())

# Skip past the header and save the picture data
picture = picture[pos+4:]

fhand = open("stuff.jpg", "wb") #image is stored as stuff.jpg

fhand.write(picture) fhand.close()

e When we run the above program, the amount of data (in bytes) retrieved from the internet is
displayed in a cumulative format.

e At the end, the image file ‘stuff.jpg’ will be stored in the current working directory. (One has to
verify it by looking at current working directory of the program).

— Retrieving Web Pages with urllib
e Python provides simpler way of webpage retrieval using the library urllib.
e Here, webpage is treated like a file. urllib handles all of the HTTP protocol and header details.

e Following is the code equivalent to the [r z ~ irn above.
import urllib.request

fhand = urIIib.request.urlopenﬁ@at;ée g@rfcf(%
for line in fhand: g e
Al 1 n o n e

print(line.decode().strip())

e Once the web page has been opened with urllib.urlopen, we can treat it like a file and read through
it using a for-loop.

e When the program runs, we only see the output of the contents of the file.

e The headers are still sent, but the urllib code consumes the headers and only returns the data to us.

e Following is the program to retrieve the data from the file romeo.txt which is residing at
www.data.prde.org, and then to count number of words in it.

import urllib.request
fhand = urllib.request.urlopen(’http://data.pr4e.org/romeo.txt")
counts = dict()

for line in fhand:
words = line.decode().split()
for word in words:
counts[word] = counts.get(word, 0) + 1
print(counts)

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 4


http://data.pr4e.org/romeo.txt%27)
http://www.data.pr4e.org/
http://data.pr4e.org/romeo.txt%27)

Python Application Programming (15CS664) Module V

— Reading Binary Files using urllib

e Sometimes you want to retrieve a non-text (or binary) file such as an image or video file.

e The data in these files is generally not useful to print out, but you can easily make a copy of a
URL to a local file on your hard disk using urllib.

e Above, we have seen how to retrieve image file from the web using sockets.

e Now, here is an equivalent program using urllib.

import urllib.request img=urllib.request.urlopen(‘http://data.prde.org/cover3.jpg’).read()
fhand = open(‘cover3.jpg’, 'wb’)

fhand.write(img)

fhand.close()

e Once we execute the above program, we can see a file cover3.jpg in the current working
directory in our computer.

e The program reads all of the data in at once across the network and stores it in the variable img
in the main memory of your computer, then opens the file cover.jpg and writes the data out to
your disk.

e This will work if the size of the file is lesi than the size of the memory (RAM) of your
compulter.

e However, if this is a large audio or vidgo Tile, this program may crash or at least run extremely
slowly when your computer runs out of mel

y.

e In order to avoid memory n:ﬁzﬂgs%’fcrﬁ @cks (or buffers) and then write
each block to your disk bef eV ex .

e This way the program can read any ‘size file'witholt Using up all of the memory you have in
your computer.

e Following is another version of above program, where data is read in chunks and then stored
onto the disk.

import urllib.request

img=urllib.request.urlopen('http://data.prde.org/cover3.jpg’)
fhand = open(‘cover3.jpg’, 'wbh")

size=0

while True:
info = img.read(100000) if
len(info) < 1:

break
size = size + len(info)
fhand.write(info)

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 5


http://data.pr4e.org/cover3.jpg%27).read()
http://data.pr4e.org/cover3.jpg%27)

Python Application Programming (15CS664) Module V

print(size, 'characters copied.") fhand.close()

e Once we run the above program, an image file cover3.jpg will be stored on to the current
working directory.

— Parsing HTML and Scraping the Web

e One of the common uses of the urllib capability in Python is to scrape the web.

e Web scraping is when we write a program that pretends to be a web browser and retrieves pages,
then examines the data in those pages looking for patterns.

e Example: a search engine such as Google will look at the source of one web page and extract the
links to other pages and retrieve those pages, extracting links, and so on.

e Using this technique, Google spiders its way through nearly all of the pages on the web.

e Google also uses the frequency of links from pages it finds to a particular page as one measure of
how “important” a page is and how high the page should appear in its search results.

— Parsing HTML using Regular Expressions

e Sometimes, we may need to parse the data on the web which matches a particular pattern.

e For this purpose, we can use regular expressions. Now, we will consider a program that extracts
all the hyperlinks given in a particular viebpa -

e To understand the Python program for t{ J ;4, one has to know the pattern of an HTML file.

e Hereisasimple HTML file —

h1>The First Page</h1> Il 0 t e 54 fr e e

<
<p
If you like, you can switch to the

<a href="http://www.dr-chuck.com/page2.htm"> Second Page</a>.

</p>

e Here,
<h1> and </h1>are the beginning and end of header tags
<p>and </p>are the beginning and end of paragraph tags
<a>and </a>are the beginning and end of anchor tag which is used for giving links
href is the attribute for anchor tag which takes the value as the link for another page.
e The above information clearly indicates that if we want to extract all the hyperlinks in a webpage,
we need a regular expression which matches the href attribute. Thus, we can create a regular
expression as —

href="http://.+?"
e Here, the question mark in .+? indicate that the match should find smallest possible matching
string.
¢ Now, consider a Python program that uses the above regular expression to extract all hyperlinks

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 6


http://www.dr-chuck.com/page2.htm

Python Application Programming (15CS664) Module V

from the webpage given as input.

import urllib.request import re

url = input('Enter - ") #give URL of any website
html = urllib.request.urlopen(url).read()

links = re.findall(b’href="(http://.*?)™, html)

for link in links:
print(link.decode())
ctx.check_hostname = False
ctx.verify_mode = ssl. CERT_NONE

url = input('Enter - ")

html = urlopen(url, context=ctx).read()
soup = BeautifulSoup(html, "html.parser")
tags = soup(‘'a’)
for tag in tags:
print(TAG:', tag) "
print('URL:', tag.get('href', No
print('Contents:', tag.content

omghtesdfree

The sample output would be —

Enter - http://www.dr-chuck.com/pagel.htm

TAG: <a href="http://www.dr-chuck.com/page2.htm"> Second Page</a>
URL.: http://www.dr-chuck.com/page2.htm

Contents: Second Page

Attrs: {'href": 'http://www.dr-chuck.com/page2.htm'}

5.2 USING WEB SERVICES

There are two common formats that are used while exchanging data across the web.

One is HTML and the other is XML (eXtensible Markup Language).

In the previous section we have seen how to retrieve the data from a web-page which is in the form
of HTML.

Now, we will discuss the retrieval of data from web-page designed using XML.

XML is best suited for exchanging document-style data.

When programs just want to exchange dictionaries, lists, or other internal information with each
other, they use JavaScript Object Notation or JSON (refer www.json.org).

We will look at both formats.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 7


http://www.dr-chuck.com/page1.htm
http://www.dr-chuck.com/page2.htm
http://www.dr-chuck.com/page2.htm
http://www.dr-chuck.com/page2.htm%27
http://www.json.org/

Python Application Programming (15CS664) Module V

— eXtensible Markup Language (XML)

e XML looks very similar to HTML, but XML is more structured than HTML. Here is a sample of
an XML document:

<person>
<name>Chuck</name>
<phone type="intl"> +1 734 303 4456
</phone>
<email hide="yes"/>
</person>

e Often it is helpful to think of an XML document as a tree structure where there is a top tag person
and other tags such as phone are drawn as children of their parent nodes.
e Figure is the tree structure for above given XML code.

nin%: - phgnL‘;—D < Emall [ET
Mgtesdiree

Figure : Tree Representation of XML

— Parsing XML
e Python provides library xml.etree.ElementTree to parse the data from XML files.
e One has to provide XML code as a string to built-in method fromstring() of ElementTree class.
e ElementTree acts as a parser and provides a set of relevant methods to extract the data.
e Hence, the programmer need not know the rules and the format of XML document syntax.
e The fromstring() method will convert XML code into a tree-structure of XML nodes.
e When the XML is in a tree format, Python provides several methods to extract data from XML.
e Consider the following program.

import xml.etree.ElementTree as ET

#XML code embedded in a string format
data=""
<person>

<name>Chuck</name>

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 8



Python Application Programming (15CS664) Module V

<phone type="intl"> +1 734 303 4456
</phone>
<email hide="yes"/>

</person>"'

tree = ET.fromstring(data)

print(‘Attribute for tag email:', tree.find('email’).get(‘hide"))
print(‘Attribute for tag phone:', tree.find('phone’).get(‘type"))

The output would be -

_>

im
im
im

Name: Chuck

Attribute for the tag email: yes Attribute for the

tag phone: intl
When we run this program, it prompts for user input.
We need to give a valid URL of any website. Then all the hyperlinks on that website will be
displayed.

Parsing HTML using BeautifulSoun f
There are a number of Python libraries yvich

pages.
Each of the libraries has its strengths and weaknessessand you can pick one based on your needs.

BeautifulSoup library i |son @ $t@ ai Ie)rparsmg
all the Beautitu

elp you parse HTML and extract data from the

To use this, download and inst ISoup, code

http://www.crummy.com/software/

Consider the following program which uses urllib to read the page and uses BeautifulSoup to
extract href attribute from the anchor tag.

port urllib.request from bs4
port BeautifulSoup
port ssl #Secure Socket Layer

ctx = ssl.create_default_context()
ctx.check hostname = False
ctx.verify_mode = ss. CERT_NONE

url =

input('Enter - ")

html = urllib.request.urlopen(url,context=ctx).read()
soup = BeautifulSoup(html, 'html.parser’)

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 9


http://www.crummy.com/software/

Python Application Programming (15CS664) Module V

tags = soup('a’)

for tag in tags:
print(tag.get(‘href', None))

A sample output would be -
Enter - http://www.dr-chuck.com/pagel.htm
http://www.dr-chuck.com/page2.htm

e The above program prompts for a web address, then opens the web page, reads the data and
passes the data to the BeautifulSoup parser, and then retrieves all of the anchor tags and prints
out the href attribute for each tag.

e The BeautifulSoup can be used to extract various parts of each tag as shown below —

from urllib.request import urlopen from bs4
import BeautifulSoup import ssl

ctx = ssl.create_default_context()
e In the above example, fromstring() is use rt XML code into a tree.
e The find() method searches XML tree ajic a node that matches the specified tag.
e The get() method retrieves the value associatéd with.the specified attribute of that tag. Each node

can have some text, some tflj?tl ezia “¢hild” nodes. Each node can be the
parent for a tree of nodes. ﬂ _ ég ]f"’e e
a1 1 n o n e

— Looping Through Nodes
e Most of the times, XML documents are hierarchical and contain multiple nodes.
e To process all the nodes, we need to loop through all those nodes.
e Consider following example as an illustration.
import xml.etree.ElementTree as ET
input="'
<stuff>
<users>
<user x="2">
<id>001</id>
<name>Chuck</name>
</user>
<user x="7">
<id>009</id>
<name>Brent</name>
<[user>

[

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 10


http://www.dr-chuck.com/page1.htm
http://www.dr-chuck.com/page2.htm

Python Application Programming (15CS664) Module V

</users>
<[stuff>"'

stuff = ET.fromstring(input)
Ist = stuff.findall('users/user")
print('User count:’, len(Ist))

for item in Ist:
print('Name', item.find('name’).text)
print('ld’, item.find('id').text)
print(‘Attribute’, item.get(""x"))

The output would be -
User count: 2
Name Chuck
ld 001
Attribute 2
Name Brent
Id 009 "
Attribute 7

e The findall() method retrieves a Pytho es that represent the user structures in the

| btre
XML tree. 4 f
e Then we can write a for-lmtg ];t@tSac lxgre)des, and prints the name and id,

which are text elements as well as the attributeé x frof the usernode.

— JavaScript Object Notation (JSON)

e The JSON format was inspired by the object and array format used in the JavaScript language.

e But since Python was invented before JavaScript, Python’s syntax for dictionaries and lists
influenced the syntax of JSON.

e So the format of JSON is a combination of Python lists and dictionaries.

e Following is the JSON encoding that is roughly equivalent to the XML code (the string data)
given in the program of previous.

"name" : "Chuck",
"phone™: {"type" : "intl", "number" : "+1 734 303 4456"}, "email": {"hide" : "yes"}
¥

e Observe the differences between XML code and JSON code:
+« In XML, we can add attributes like “intl” to the “phone” tag. In JSON, we simply have key-
value pairs.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 11




Python Application Programming (15CS664) Module V

% XML uses tag “person”, which is replaced by a set of outer curly braces in JSON.

e In general, JSON structures are simpler than XML because JSON has fewer capabilities than
XML.

e But JSON has the advantage that it maps directly to some combination of dictionaries and lists.
And since nearly all programming languages have something equivalent to Python’s dictionaries
and lists

e JSON is a very natural format to have two compatible programs exchange data. JSON is quickly
becoming the format of choice for nearly all data exchange between applications because of its
relative simplicity compared to XML.

— Parsing JSON

e Python provides a module json to parse the data in JSON pages.

e Consider the following program which uses JSON equivalent of XML string written in previous
Section.

e Note that, the JSON string has to embed a list of dictionaries.

import json |
data=""[ L/J
{"id": "001",

~=hotesdfree

"name" : "Chuck" }a

{"id" : "009",
U,
"name" : "Chuck"
}
]III

info = json.loads(data) print('User count:',
len(info))

for item in info:
print('Name', item['name'])
print(ld’, item['id])
print(Attribute’, item['x'])

The output would be —
User count: 2
Name Chuck

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 12




Python Application Programming (15CS664) Module V

Id 001
Attribute 2
Name Chuck Id
009

Attribute 7

Here, the string data contains a list of users, where each user is a key-value pair. The method
loads() in the json module converts the string into a list of dictionaries.

Now onwards, we don’t need anything from json, because the parsed data is available in Python
native structures.

Using a for-loop, we can iterate through the list of dictionaries and extract every element (in the
form of key-value pair) as if it is a dictionary object. That is, we use index operator (a pair of
square brackets) to extract value for a particular key.

NOTE: Current IT industry trend is to use JSON for web services rather than XML. Because, JSON
is simpler than XML and it directly maps to native data structures we already have in the
programming languages. This makes parsing and data extraction simpler compared to XML. But
XML is more self descriptive than JSON and so_there are some applications where XML retains an
advantage. For example, most word procgs documents internally using XML rather than
JSON.

— Application Program

Till now, we have dlscuss ow to ex %nge%aﬁetween appllcatlons using HTTP, XML and
JSON.

The next step is to understand API. Application Programming Interface defines and documents
the contracts between the applications.

When we use an API, generally one program makes a set of services available for use by other
applications and publishes the APIs (i.e., the “rules”) that must be followed to access the services
provided by the program.

When we begin to build our programs where the functionality of our program includes access to
services provided by other programs, we call the approach a Service-Oriented
Architecture(SOA).

A SOA approach is one where our overall application makes use of the services of other
applications.

A non-SOA approach is where the application is a single stand-alone application which contains
all of the code necessary to implement the application.

Consider an example of SOA: Through a single website, we can book flight tickets and hotels.
The data related to hotels is not stored in the airline servers. Instead, airline servers contact the
services on hotel servers and retrieve the data from there and present it to the user.

When the user agrees to make a hotel reservation using the airline site, the airline site uses another

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 13



Python Application Programming (15CS664) Module V

web service on the hotel systems to actually make the reservation.
e Similarly, to reach airport, we may book a cab through a cab rental service.
e And when it comes time to charge your credit card for the whole transaction, still other computers
become involved i process. This process.s depicted in Figure.

Hotel
Reservation
Service

Travel
Application

=y —

Figure : Seryer Oriented Architecture

e SOA has following major ntage
+« we always maintain omt%éil;&ay important for things like hotel

reservations where we do notwant to over-commit)
«» the owners of the data can set the rules about the use of their data.

e With these advantages, an SOA system must be carefully designed to have good performance and
meet the user’s needs. When an application makes a set of services in its APl available over the
web, then it is called as web services.

— Google Geocoding Web Service

e Google has a very good web service which allows anybody to use their large database of
geographic information.

e We can submit a geographic search string like “Rajarajeshwari Nagar” to their geocoding API.

e Then Google returns the location details of the string submitted.

e The following program asks the user to provide the name of a location to be searched for.

e Then, it will call Google geocoding API and extracts the information from the returned JSON.

import urllib.request, urllib.parse, urllib.error
import json

Mamatha A, Asst Prof, Dept of CSE, SVIT n OteS4fre e I n Page 14




Python Application Programming (15CS664) Module V

serviceurl = 'http://maps.googleapis.com/maps/api/geocode/json?'
address = input('Enter location: ")
if len(address) < 1:

exit()

url = serviceurl + urllib.parse.urlencode({'address': address})
print('Retrieving’, url)

uh = urllib.request.urlopen(url)

data = uh.read().decode()

print('Retrieved’, len(data), ‘characters’)

try:

js = json.loads(data)
except:

js = None

if not js or 'status’ not in js or js['status] 1="OK"

print('==== Failure To Retrieve ====' l

print(data) ‘ \

print(json.dumps(js, indent=4 4f

lat = js["results"][0] ["geometﬂ@_a&r@[‘ﬁ'ﬂ r e e
Ing = js["results"][0]["'geometry"]["location"]["Ing"]" ' °
print(lat’, lat, 'Ing’, Ing)

location = js['results’][0]['formatted_address']

print(location)

(Students are advised to run the above program and check the output, which will contain
several lines of Google geographical data).

e The above program retrieves the search string and then encodes it. This encoded string along with
Google API link is treated as a URL to fetch the data from the internet. The data retrieved from
the internet will be now passed to JSON to put it in JSON object format.

e If the input string (which must be an existing geographical location like Channasandra,
Malleshwaram etc!!) cannot be located by Google API either due to bad internet or due to
unknown location, we just display the message as ‘Failure to Retrieve’.

e If Google successfully identifies the location, then we will dump that data in JSON object.

e Then, using indexing on JSON (as JSON will be in the form of dictionary), we can retrieve the
location address, longitude, latitude etc.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 15


http://maps.googleapis.com/maps/api/geocode/json?%27

Python Application Programming (15CS664) Module V

— Security and API Usage

e Public APIs can be used by anyone without any problem.

e But, if the API is set up by some private vendor, then one must have API key to use that API.

e If API key is available, then it can be included as a part of POST method or as a parameter on the
URL while calling API.

e Sometimes, vendor wants more security and expects the user to provide cryptographically signed
messages using shared keys and secrets.

e The most common protocol used in the internet for signing requests is OAuth.

e As the Twitter APl became increasingly valuable, Twitter went from an open and public API to
an API that required the use of OAuth signatures on each API request.

e But, there are still a number of convenient and free OAuth libraries so you can avoid writing an
OAuth implementation from scratch by reading the specification.

e These libraries are of varying complexity and have varying degrees of richness.

e The OAuth web site has information about various OAuth libraries.

5.3 USING DATABASES AND SQL

A structured set of data stored in a permanent storage is called as database.

Most of the databases are organized like = i A dry — that is, they map keys to values.

e Unlike dictionaries, databases can stor[ \ t‘of data as they reside on permanent storage like

hard disk of the computer.

e There are many database 4nan 4effa , MySQL, Microsoft SQL Server,
PostgreSQL, SQL.te etc. ﬂ ﬁ“ﬁ’é“g” éaé

e They are designed to insert and retrieVe data Very fast, however big the dataset is.

e Database software builds indexes as data is added to the database so as to provider quicker access to
particular entry.

e In this course of study, SQLite is used because it is already built into Python. SQL.ite is a C library
that provides a lightweight disk-based database that doesn’t require a separate server process and
allows accessing the database using a non-standard variant of the SQL query language.

e SQLite is designed to be embedded into other applications to provide database support within the
application.

e For example, the Firefox browser also uses the SQL.ite database internally.

e SQLite is well suited to some of the data manipulation problems in Informatics such as the Twitter
spidering application etc.

— Database Concepts

e For the first look, database seems to be a spreadsheet consisting of multiple sheets.

e The primary data structures in a database are tables, rows and columns.

¢ In arelational database terminology, tables, rows and columns are referred as relation, tuple and
attribute respectively.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 16



Python Application Programming (15CS664) Module V

Mamatha A, Asst Prof, Dept of CSE, SVIT

Typical structure of a database table is as shown below.

Each table may consist of n number of attributes and m number of tuples (or records).
Every tuple gives the information about one individual.

Every cell(i, j) in the table indicates value of j" attribute for i"" tuple.

Attributel | Attribute2 | ......ccceuenene. Attribute_n
Tuplel V11 V12 | Vin
Tuple2 V21 V22 V2n
""""""" vmi vm2 teeeraieeee. L VMN

Consider the problem of storing details of students in a database table. The format may look like —

Studentl RolINo Name DoB Marks
q 1 Ram 22/10/2001 82.5
Stugent2 2 Shyam 20/12/2000 | 81.3
----------------------- W]
Student m | .............. Tl ..

—

Thus, table columns indicﬂ elg)@ﬁrrc@ ered, and table rows gives record

pertaining to every student. «

We can create one more table 'sa'y addressTable consisting of attributes like DoorNo,
StreetName, Locality, City, PinCode. To relate this table with a respective student stored in
studentTable, we need to store RolINo also in addressTable (Note that, RolINo will be unique for
every student, and hence there won’t be any confusion).

Thus, there is a relationship between two tables in a single database. There are softwares that can
maintain proper relationships between multiple tables in a single database and are known as
Relational Database Management Systems (RDBMS).

Structured Query Language (SQL) Summary

To perform operations on databases, one should use structured query language.

SQL is a standard language for storing, manipulating and retrieving data in databases.

Irrespective of RDBMS software (like Oracle, MySQL, MS Access, SQL.ite etc) being used, the
syntax of SQL remains the same.

The usage of SQL commands may vary from one RDBMS to the other and there may be little
syntactical difference.

Also, when we are using some programming language like Python as a front-end to perform

database applications, the way we embed SQL commands inside the program source-code is as

Page 17



Python Application Programming (15CS664) Module V

per the syntax of respective programming language.

e Still, the underlying SQL commands remain the same. Hence, it is essential to understand basic
commands of SQL.

e There are some clauses like FROM, WHERE, ORDER BY, INNER JOIN etc. that are used with
SQL commands, which we will study in a due course.

e The following table gives few of the SQL commands.

CREATE DATABASE creates a new database
ALTER DATABASE modifies a database

CREATE TABLE creates a new table

ALTER TABLE modifies a table

DROP TABLE deletes a table

SELECT extracts data from a database
INSERT INTO ew data into a database
UPDATE data in a database

pe,ete [10 te&&g:nﬁfr@@tabase

o As mentioned earlier, every RDBMS' has its oWwn"way of storing the data in tables. Each of
RDBMS uses its own set of data types for the attribute values to be used. SQLite uses the data
types as mentioned in the following table —

NULL The value is a NULL value.

INTEGER The value is a signed integer, stored in 1, 2, 3, 4, 6, or 8 bytes depending on
the magnitude of the value.

REAL The value is a floating point value, stored as an 8-byte floating point number

TEXT The value is a text string, stored using the database encoding (UTF- 8,
UTF-16BE or UTF-16LE)

BLOB The value is a blob (Binary Large Object) of data, stored exactly as it was
input

Mamatha A, Asst Prof, Dept of CSE, SVIT n Otes4fre e . I n Page 18



Python Application Programming (15CS664) Module V

e Note that, SQL commands are case-insensitive. But, it is a common practice to write commands
and clauses in uppercase alphabets just to differentiate them from table name and attribute names.
e Now, let us see some of the examples to understand the usage of SQL statements —
% CREATE TABLE Tracks (title TEXT, plays INTEGER)

This command creates a table called as Tracks with the attributes title and plays
where title can store data of type TEXT and playscan store data of type INTEGER.

% INSERT INTO Tracks (title, plays) VALUES ('My Way', 15)
This command inserts one record into the table Tracks where values for the attributes
title and plays are ‘My Way’ and 15 respectively.

«» SELECT * FROM Tracks
Retrieves all the records from the table Tracks

% SELECT * FROM Tracks WHERE title ='My Way’
Retrieves the records from the table Tracks having the value of attribute title as ‘My
Way’ |

% SELECT title, plays FROM Trackg CROER Y title
The values of attributes t|tIe and pl ; T retrieved from the table

Tracks with thefl@ d@oﬁ g Eftltle

UPDATE Tracks SET plays = 16 WHERE title = "My Way*
Whenever we would like to modify the value of any particular attribute in the table,
we can use UPDATE command. Here, the value of attribute plays is assigned to a
new value for the record having value of title as ‘My Way’.

R/
A X4

7
o

DELETE FROM Tracks WHERE title = 'My Way"'
A particular record can be deleted from the table using DELETE command. Here, the
record with value of attribute title as ‘My Way’ is deleted from the table Tracks.

— Database Browser for SQL.ite
e Many of the operations on SQLite database files can be easily done with the help of software
called Database Browser for SQLite which is freely available from:
http://sqlitebrowser.org/

e Using this browser, one can easily create tables, insert data, edit data, or run simple SQL queries
on the data in the database.
e This database browser is similar to a text editor when working with text files.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 19


http://sqlitebrowser.org/

Python Application Programming (15CS664) Module V

e When you want to do one or very few operations on a text file, you can just open it in a text editor
and make the changes you want.

e When you have many changes that you need to do to a text file, often you will write a simple
Python program.

e You will find the same pattern when working with databases. You will do simple operations in the
database manager and more complex operations will be most conveniently done in Python.

— Creating a Database Table

e When we try to create a database table, we must specify the names of table columns and the type
of data to be stored in those columns.

e When the database software knows the type of data in each column, it can choose the most
efficient way to store and look up the data based on the type of data.

e Here is the simple code to create a database file and a table named Tracks with two columns in the
database:

Ex1.

import sqlite3

conn = sqlite3.connect('music.sqlite")

cur = conn.cursor() "

cur.execute('DROP TABLE IF EXISTS T

cur.execute(CREATE TABLFITiath fﬂég'@lfj{{\lé(‘ém) conn.close()

e The connect() method of sqlite3: mdkes' d' “cénfiection” to the database stored in the file
music.sqlite3 in the current directory.

o If the file does not exist, it will be created.

e Sometimes, the database is stored on a different database server from the server on which we are
running our program.

e But, all the examples that we consider here will be local file in the current working directory of
Python code.

e A cursor() is like a file handle that we can use to perform operations on the data stored in the
database. Calling cursor() is very similar conceptually to calling open() when dealing with text
files.

e Hence, once we get a cursor, we can execute the commands on the contents of database using
execute()method.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 20



Python Application Programming (15CS664) Module V

execute
fetchone

fetchall

Users | | Courses |

-+ 4

Your
Program

Figure : A Database Cursor

e In the above program, we are trying to remove the database table Tracks, if at all it existed in the
current working directory.

e The DROP TABLE command deletes the table along with all its columns and rows.

e This procedure will help to avoid a possible error of trying to create a table with same name.

e Then, we are creating a table with name Tracks which has two columns viz. title, which can take
TEXT type data and plays, which can take INTEGER type data.

e Once our job with the database is over, we need to close the connection using close()method.

e In the previous example, we have just created a table, but not inserted any records into it

e So, consider below given program, which willicreate a table and then inserts two rows and finally
delete records based on some condition

:Er:scl)rt sqlite3 HOte S4free

Al i n

conn = sqlite3.connect('music.sqlite")

cur = conn.cursor()

cur.execute('DROP TABLE IF EXISTS Tracks')
cur.execute('CREATE TABLE Tracks (title TEXT, plays INTEGER)")

cur.execute(“INSERT INTO Tracks (title, plays) VALUES ('Thunderstruck’, 20)”)
cur.execute(“INSERT INTO Tracks (title, plays) VALUES (?, ?)”, (My Way', 15))
conn.commit()

print(‘Tracks:")
cur.execute('SELECT title, plays FROM Tracks')
for row in cur:

print(row)

cur.execute('DELETE FROM Tracks WHERE plays < 100")
cur.close()

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 21



Python Application Programming (15CS664) Module V

In the above program, we are inserting first record with the SQL command —
“INSERT INTO Tracks (title, plays) VALUES('Thunderstruck', 20)”

Note that, execute() requires SQL command to be in string format. But, if the value to be store in
the table is also a string (TEXT type), then there may be a conflict of string representation using
quotes.

Hence, in this example, the entire SQL is mentioned within double-quotes and the value to be
inserted in single quotes. If we would like to use either single quote or double quote everywhere,
then we need to use escape-sequences like \’ or \”.
While inserting second row in a table, SQL statement is used with a little different syntax —
“INSERT INTO Tracks (title, plays) VALUES (2, 2)”,(My Way', 15)

Here, the question mark acts as a place-holder for particular value.
This type of syntax is useful when we would like to pass user-input values into database table.
After inserting two rows, we must use commit() method to store the inserted records permanently
on the database table.

If this method is not applied, then the insertion (or any other statement execution) will be
temporary and will affect only the current run of the program.

Later, we use SELECT command to retrieve the data from the table and then use for-loop to
display all records. f
When data is retrieved from database using 5

a list of records. ,
Hence, we can use for-loop on the cursor obj

ally, we have used a DELETE command to
delete all the records WHETE']_)@EI@ grt&)(‘l;ﬁre e

Let us consider few more examples —

-:CT command, the cursor object gets those data as

Ex3.

import sqlite3

from sqlite3 import Error

def create_connection():

""" create a database connection to a database that resides in the memory™""
try:

conn = sqlite3.connect(':memory:")
print("SQLite Version:",sqlite3.version)

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 22



Python Application Programming (15CS664) Module V

except Error as e:
print(e)
finally:
conn.close()
create_connection()
Few points about above program:

« Whenever we try to establish a connection with database, there is a possibility of error due to
non-existing database, authentication issues etc. So, it is always better to put the code for
connection inside try-except block.

% While developing real time projects, we may need to create database connection and close it

every now-and-then. Instead of writing the code for it repeatedly, it is better to write a

separate function for establishing connection and call that function whenever and wherever

required.
< If we give the term :memory: as an argument to connect() method, then the further operations

(like table creation, insertion into tables etc) will be on memory (RAM) of the computer, but

not on the hard disk.

Ex4. Write a program to create a Student,databage with a table consisting of student name and age.
Read n records from the user and insert therm into database. Write queries to display all records and
to display the students whose age is 20.

import sglite3 conn:sqlite3.con§e!t@ﬂ'§r@3$)24:£nrﬁ(@
c.execute(CREATE TABLE udent hame elxt, age Integer)")

n=int(input(“Enter number of records:”)) for 1 in range(n):
nm=input("Enter Name:")
ag=int(input("Enter age:"))
c.execute("INSERT INTO thlStudent VALUES(?,?)",(nm,aqg))

conn.commit()
c.execute("'select * from tblStudent ") print(c.fetchall())

c.execute("select * from tblStudent where age=20") print(c.fetchall())

conn.close()

In the above program we take a for-loop to get user-input for student’s name and age. These data are
inserted into the table. Observe the question mark acting as a placeholder for user-input variables.

Later we use a method fetchall() that is used to display all the records form the table in the form of a
list of tuples. Here, each tuple is one record from the table.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 23



Python Application Programming (15CS664) Module V

— Three Kinds of Keys
Sometimes, we need to build a data model by putting our data into multiple linked tables and linking
the rows of those tables using some keys. There are three types of keys used in database model:

% A logical key is a key that the “real world” might use to look up a row. It defines the
relationship between primary keys and foreign keys. Most of the times, a UNIQUE constraint
is added to a logical key. Since the logical key is how we look up a row from the outside
world, it makes little sense to allow multiple rows with the same value in the table.

< A primary key is usually a number that is assigned automatically by the database. It generally
has no meaning outside the program and is only used to link rows from different tables
together. When we want to look up a row in a table, usually searching for the row using the
primary key is the fastest way to find the row. Since primary keys are integer numbers, they
take up very little storage and can be compared or sorted very quickly.

«+ A foreign key is usually a number that points to the primary key of an associated row in a
different table.

e Consider a table consisting of student details like RolINo, name, age, semester and address as
shown below —
I

RolINo [ Namé = Sem | Address
1 RaMiefe. 20| 6 | Bangalore
2. | Shyam | 214 |[".8 _| _Mysore
3l 1 Veahife) 8% L 16 € Csirs

4 Kriti |1 20 o|n 6 Tumkur

e In this table, RolINo can be considered as a primary key because it is unique for every student in
that table. Consider another table that is used for storing marks of students in all the three tests as

below
RolINo | Sem M1 M2 M3
1 6 34 45 42.5
2 6 42.3 44 25
3 4 38 44 41.5
4 6 39.4 43 40
2 8 37 42 41

e To save the memory, this table can have just RolINo and marks in all the tests. There is no need to
store the information like name, age etc of the students as these information can be retrieved from
first table. Now, RollNo is treated as a foreign key in the second table.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 24



Python Application Programming (15CS664) Module V

— Basic Data Modeling

e The relational database management system (RDBMS) has the power of linking multiple tables.
The act of deciding how to break up your application data into multiple tables and establishing the
relationships between the tables is called data modeling.

e The design document that shows the tables and their relationships is called a data model. Data
modeling is a relatively sophisticated skill.

e The data modeling is based on the concept of database normalization which has certain set of
rules.

e In a raw-sense, we can mention one of the basic rules as never put the same string data in the
database more than once. If we need the data more than once, we create a numeric key (primary
key) for the data and reference the actual data using this key.

e This is because string requires more space on the disk compared to integer, and data retrieval (by
comparing) using strings is difficult compared to that with integer.

e Consider the example of Student database discussed above.

e We can create a table using following SQL command —

CREATE TABLE tblStudent
(RollNo INTEGER PRIMARY KE '/, Nfine TEXT, age INTEGER, sem INTEGER, address
TEXT)

Here, RolINo is a primary keyﬂ Eﬁdﬁél@/@ffq in_one table. Now, another take can
be created as — lé él
Al 1 m o n e

CREATE TABLE tblMarks
(RolINo INTEGER, sem INTEGER, m1 REAL, m2 REAL, m3 REAL,
UNIQUE(RolINo,sem))

e Now, in the tbIMarks consisting of marks of 3 tests of all the students, RolINo and sem are
together unique. Because, in one semester, only one student can be there having a particular
RolINo. Whereas in another semester, same RolINo may be there.

e Such types of relationships are established between various tables in RDBMS and that will help
better management of time and space.

— Using JOIN to Retrieve Data

e When we follow the rules of database normalization and have data separated into multiple tables,
linked together using primary and foreign keys, we need to be able to build a SELECT that
reassembles the data across the tables.

e  SQL uses the JOIN clause to reconnect these tables. In the JOIN clause you specify the fields that
are used to reconnect the rows between the tables.

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 25



Python Application Programming (15CS664) Module V

e Consider the following program which creates two tables tbIStudent and tbIMarks as discussed in
the previous section.

e Few records are inserted into both the tables. Then we extract the marks of students who are
studying in 6™ semester.

import sqlite3

conn=sqlite3.connect('StudentDB.db")
c=conn.cursor()

c.execute((CREATE TABLE tblStudent
(RolINo INTEGER PRIMARY KEY, Name TEXT, age INTEGER, sem
INTEGER, address TEXT)")

c.execute(CREATE TABLE tbIMarks
(RolINo INTEGER, sem INTEGER, ml REAL, m2 REAL, m3 REAL,
UNIQUE(RolINo,sem))’)

c.execute("INSERT INTO tblstudent VAL :I‘ P

(1,'Ram’,20,6,'Bangalore"))
c.execute("INSERT INTO tblstudent VAL 2

c.execute("INSERT INTO thIJ]eQ/KL&$4)‘r@S@m ,21,8,'Mysore"))

©nF (3,'Vanita',19,4,'Sirsi")) c.execute("INSERT

(4,'Kriti',20,6, Tumkur"))

c.execute("INSERT INTO tbiMarksVALUES(?,2,2,2,2)",(1,6,34,45,42.5))
c.execute("INSERT INTO tbiMarks VALUES(?,2,2,2,2)"(2,6,42.3,44,25))
c.execute("INSERT INTO tbIMarks VALUES(?,2,2,2,2)",(3,4,38,44,41.5))
c.execute("INSERT INTO thiMarksVALUES(?,2,2,2,2)",(4,6,39.4,43,40))
c.execute("INSERT INTO tbIMarks VALUES(?,2,2,2,2)",(2,8,37,42,41))

conn.commit()

query="SELECT tblStudent.RolINo, tblStudent.Name, tbIMarks.sem, tbIMarks.m1,
tbiIMarks.m2, tbIMarks.m3 FROM tblStudent JOIN tblMarks ON tblStudent.sem =
tbIMarks.sem AND tblStudent.RolINo = tbIMarks.RolINo WHERE tblStudent.sem=6"

c.execute(query)

Mamatha A, Asst Prof, Dept of CSE, SVIT Page 26



Python Application Programming (15CS664) Module V

for row in c:
print(row)
conn.close()

The output would be -
(1, 'Ram’, 6, 34.0, 45.0, 42.5)
(4, 'Kriti', 6, 39.4, 43.0, 40.0)

The query joins two tables and extracts the records where RolINo and sem matches in both the tables,
and sem must be 6.

]
notesélgfree

All inmn

Mamatha A, Asst Prof, Dept of CSE, SVIT n Ote S4fre e I n Page 27



