

 Structure
1.0 Introduction

1.1 Procedure (steps involved in problem solving)

1.2 Algorithm

1.3 Flow Chart

1.4 Symbols used in Flow Charts

1.5 Pseudo Code

Learning Objectives
• To understand the concept of Problem solving

• To understand steps involved in algorithm development

• To understand the concept of Algorithm

• Develop Algorithm for simple problem

• To understand the concept of Flowchart development

• Draw the symbols used in Flowcharts

1UNIT

Introduction to Problem Solving
Techniques

 Computer Science and Engineering250

 1.0 Introduction
A computer is a very powerful and versatile machine capable of performing

a multitude of different tasks, yet it has no intelligence or thinking power. The
intelligence Quotient (I.Q) of a computer is zero. A computer performs many
tasks exactly in the same manner as it is told to do. This places responsibility on
the user to instruct the computer in a correct and precise manner, so that the
machine is able to perform the required job in a proper way. A wrong or
ambiguous instruction may sometimes prove disastrous.

In order to instruct a computer correctly, the user must have clear
understanding of the problem to be solved. A part from this he should be able to
develop a method, in the form of series of sequential steps, to solve it. Once the
problem is well-defined and a method of solving it is developed, then instructing
he computer to solve the problem becomes relatively easier task.

Thus, before attempt to write a computer program to solve a given problem.
It is necessary to formulate or define the problem in a precise manner. Once the
problem is defined, the steps required to solve it, must be stated clearly in the
required order.

1.1 Procedure (Steps Involved in Problem Solving)
A computer cannot solve a problem on its own. One has to provide step

by step solutions of the problem to the computer. In fact, the task of problem
solving is not that of the computer. It is the programmer who has to write down
the solution to the problem in terms of simple operations which the computer
can understand and execute.

In order to solve a problem by the computer, one has to pass though certain
stages or steps. They are

1. Understanding the problem

2. Analyzing the problem

3. Developing the solution

4. Coding and implementation.

1. Understanding the problem: Here we try to understand the problem
to be solved in totally. Before with the next stage or step, we should be absolutely
sure about the objectives of the given problem.

2. Analyzing the problem: After understanding thoroughly the problem
to be solved, we look different ways of solving the problem and evaluate each

 251Paper - II Programming in C

of these methods. The idea here is to search an appropriate solution to the
problem under consideration. The end result of this stage is a broad overview of
the sequence of operations that are to be carries out to solve the given problem.

3. Developing the solution: Here the overview of the sequence of
operations that was the result of analysis stage is expanded to form a detailed
step by step solution to the problem under consideration.

4. Coding and implementation: The last stage of the problem solving is
the conversion of the detailed sequence of operations in to a language that the
computer can understand. Here each step is converted to its equivalent instruction
or instructions in the computer language that has been chosen for the implantation.

1.2 Algorithm
Definition

A set of sequential steps usually written in Ordinary Language to solve a
given problem is called Algorithm.

It may be possible to solve to problem in more than one ways, resulting in
more than one algorithm. The choice of various algorithms depends on the
factors like reliability, accuracy and easy to modify. The most important factor in
the choice of algorithm is the time requirement to execute it, after writing code in
High-level language with the help of a computer. The algorithm which will need
the least time when executed is considered the best.

Steps involved in algorithm development

An algorithm can be defined as “a complete, unambiguous, finite number
of logical steps for solving a specific problem “

Step1. Identification of input: For an algorithm, there are quantities to
be supplied called input and these are fed externally. The input is to be indentified
first for any specified problem.

Step2: Identification of output: From an algorithm, at least one quantity
is produced, called for any specified problem.

Step3 : Identification the processing operations : All the calculations
to be performed in order to lead to output from the input are to be identified in
an orderly manner.

Step4 : Processing Definiteness : The instructions composing the
algorithm must be clear and there should not be any ambiguity in them.

 Computer Science and Engineering252

Step5 : Processing Finiteness : If we go through the algorithm, then for
all cases, the algorithm should terminate after a finite number of steps.

Step6 : Possessing Effectiveness : The instructions in the algorithm
must be sufficiently basic and in practice they can be carries out easily.

An algorithm must possess the following properties

1. Finiteness: An algorithm must terminate in a finite number of steps

2. Definiteness: Each step of the algorithm must be precisely and
unambiguously stated

3. Effectiveness: Each step must be effective, in the sense that it should
be primitive easily convert able into program statement) can be performed exactly
in a finite amount of time.

4. Generality: The algorithm must be complete in itself so that it can be
used to solve problems of a specific type for any input data.

5. Input/output: Each algorithm must take zero, one or more quantities as
input data produce one or more output values. An algorithm can be written in
English like sentences or in any standard representation sometimes, algorithm
written in English like languages are called Pseudo Code

Example

1. Suppose we want to find the average of three numbers, the algorithm is
as follows

Step 1 Read the numbers a, b, c

Step 2 Compute the sum of a, b and c

Step 3 Divide the sum by 3

Step 4 Store the result in variable d

Step 5 Print the value of d

Step 6 End of the program

1.2.2 Algorithms for Simple Problem

Write an algorithm for the following

1. Write an algorithm to calculate the simple interest using the formula.

Simple interest = P*N* R/100.

 253Paper - II Programming in C

Where P is principle Amount, N is the number of years and R is the rate
of interest.

Step 1: Read the three input quantities’ P, N and R.

Step 2 : Calculate simple interest as

Simple interest = P* N* R/100

Step 3: Print simple interest.

Step 4: Stop.

2. Area of Triangle: Write an algorithm to find the area of the triangle.

Let b, c be the sides of the triangle ABC and A the included angle between
the given sides.

Step 1: Input the given elements of the triangle namely sides b, c and angle
between the sides A.

Step 2: Area = (1/2) *b*C* sin A

Step 3: Output the Area

Step 4: Stop.

3. Write an algorithm to find the largest of three numbers X, Y,Z.

Step 1: Read the numbers X,Y,Z.

Step 2: if (X > Y)

Big = X

else BIG = Y

Step 3 : if (BIG < Z)

Step 4: Big = Z

Step 5: Print the largest number i.e. Big

Step 6: Stop.

 Computer Science and Engineering254

4. Write down an algorithm to find the largest data value of a set of given
data values

Algorithm largest of all data values:

Step 1: LARGE 0

Step 2: read NUM

Step 3: While NUM > = 0 do

3.1 if NUM > LARGE

 3.1.1 then

 3.1.1.1 LARGE NUM

3.2. read NUM

Step 4: Write “largest data value is”, LARGE

Step 5: end.

5. Write an algorithm which will test whether a given integer value is prime
or not.

Algorithm prime testing:

Step 1: M 2

Step 2: read N

Step 3: MAX SQRT (N)

Step 4: While M < = MAX do

 4.1 if (M* (N/M) = N

 4.1.1 then

 4.1.1.1 go to step 7

4.2. M M + 1

Step 5: Write “number is prime”

Step 6: go to step 8

Step 7: Write “number is not a prime”

Step 8: end.

 255Paper - II Programming in C

6. Write algorithm to find the factorial of a given number N

Step 1: PROD 1

Step 2: I 0

Step 3: read N

Step 4: While I < N do

4.1 I I + 1

4.2. PROD PROD* I

Step 5: Write “Factorial of”, N, “is”, PROD

Step 6: end.

7. Write an algorithm to find sum of given data values until negative value is
entered.

 Algorithm Find – Sum

Step 1: SUM 0

Step 2: I 0

Step 3: read NEW VALUE

Step 4: While NEW VALUE < = 0 do

4.1 SUM SUM + NEW VALUE

4.2 1 I + 1

4.3 read NEW VALUE

Step 5: Write “Sum of”, I, “data value is, “SUM

Step 6: END

8. Write an algorithm to calculate the perimeter and area of rectangle. Given
its length and width.

Step 1: Read length of the rectangle.

Step 2: Read width of the rectangle.

Step 3: Calculate perimeter of the rectangle using the formula perimeter =
2* (length + width)

Step 4: Calculate area of the rectangle using the formula area = length
*width.

 Computer Science and Engineering256

Step 5: Print perimeter.

Step 6: Print area.

Step 7: Stop.

1.3 Flowchart
A flow chart is a step by step diagrammatic representation of the logic

paths to solve a given problem. Or A flowchart is visual or graphical representation
of an algorithm.

 The flowcharts are pictorial representation of the methods to b used
to solve a given problem and help a great deal to analyze the problem and plan
its solution in a systematic and orderly manner. A flowchart when translated in
to a proper computer language, results in a complete program.

Advantages of Flowcharts

1. The flowchart shows the logic of a problem displayed in pictorial fashion
which felicitates easier checking of an algorithm.

2. The Flowchart is good means of communication to other users. It is also
a compact means of recording an algorithm solution to a problem.

3. The flowchart allows the problem solver to break the problem into parts.
These parts can be connected to make master chart.

4. The flowchart is a permanent record of the solution which can be
consulted at a later time.

Differences between Algorithm and Flowchart

 Algorithm
1. A method of representing the
step-by-step logical procedure for
solving a problem
2. It contains step-by-step English
descriptions, each step representing
a particular operation leading to
solution of problem
3. These are particularly useful for
small problems
4. For complex programs,
algorithms prove to be Inadequate

 Flowchart
1. Flowchart is diagrammatic
representation of an algorithm. It is
constructed using different types of boxes
and symbols.
2. The flowchart employs a series of blocks
and arrows, each of which represents a
particular step in an algorithm
3. These are useful for detailed
representations of complicated programs
4. For complex programs, Flowcharts
prove to be adequate

 257Paper - II Programming in C

 1.4 Symbols used in Flow-Charts
The symbols that we make use while drawing flowcharts as given below

are as per conventions followed by International Standard Organization (ISO).

a. Oval: Rectangle with rounded sides is used to indicate either START/
STOP of the program. ..

b. Input and output indicators: Parallelograms are used to represent
input and output operations. Statements like INPUT, READ and PRINT are
represented in these Parallelograms.

c. Process Indicators: - Rectangle is used to indicate any set of processing
operation such as for storing arithmetic operations.

d. Decision Makers: The diamond is used for indicating the step of
decision making and therefore known as decision box. Decision boxes are used
to test the conditions or ask questions and depending upon the answers, the
appropriate actions are taken by the computer. The decision box symbol is

e. Flow Lines: Flow lines indicate the direction being followed in the
flowchart. In a Flowchart, every line must have an arrow on it to indicate the
direction. The arrows may be in any direction

f. On- Page connectors: Circles are used to join the different parts of a
flowchart and these circles are called on-page connectors. The uses of these
connectors give a neat shape to the flowcharts. Ina complicated problems, a
flowchart may run in to several pages. The parts of the flowchart on different

 Computer Science and Engineering258

pages are to be joined with each other. The parts to be joined are indicated by
the circle.

g. Off-page connectors: This connector represents a break in the path of
flowchart which is too large to fit on a single page. It is similar to on-page
connector. The connector symbol marks where the algorithm ends on the first
page and where it continues on the second.

1.4.1 Simple Problems using Flow Chart

Draw the Flowchart for the following

1. Draw the Flowchart to find Roots of Quadratic equation ax2+ bx + c
= 0. The coefficients a, b, c are the input data

START

INPUT A,B,C

D = B2 - 4 * A * C

IS

D < O

YES

YES

NO

NO

 x = B/2*A

Print X,Y

y = B/2*A y = -B + D

2 x A2 x A

x =B + D

Print X,Y

output complex roots

Stop

IS

D = O

 259Paper - II Programming in C

2. Draw a flowchart to find out the biggest of the three unequal positive
numbers.

3. Draw a flowchart for adding the integers from 1 to 100 and to
print the sum.

Print Sum

 Computer Science and Engineering260

4. Draw a flowchart to find the factorial of given positive integer N.

5. Develop a flowchart to illustrate how to make a Land phone
telephone call

.

Flowchart for Telephone call

I

I

 261Paper - II Programming in C

6. 6. ABC company plans to give a 6% year-end bonus to each of its
employees earning Rs 6,000 or more per month , and a fixed Rs 250/- -
bonus to the remaining employees. Draw a flowchart for calculating the
bonus for an employee

1.5 Pseudo code
The Pseudo code is neither an algorithm nor a program. It is an abstract

form of a program. It consists of English like statements which perform the
specific operations. It is defined for an algorithm. It does not use any graphical
representation. In pseudo code, the program is represented in terms of words
and phrases, but the syntax of program is not strictly followed.

Advantages: * Easy to read, * Easy to understand, * Easy to modify.

Example: Write a pseudo code to perform the basic arithmetic operations.

Read n1, n2

Sum = n1 + n2

Diff = n1 – n2

Mult = n1 * n2

Quot = n1/n2

Print sum, diff, mult, quot

End.

 Computer Science and Engineering262

Activity
 Practice more sample problems on algorithm and Flowcharts

Model Questions
Short Answer Type Questions - 2 Marks

1. Define Algorithm

2. What is Flowchart

3. What is Pseudo code?

4. What are the symbols of Flowchart

5. Write an Algorithm for perimeter of Triangle

6. What are the basic steps involved In problem solving

Long Answer Type Questions - 6 Marks
1. Differentiate between Algorithm and Flowchart.

2. Write an algorithm to find greatest of given three numbers.

3. Write an algorithm to check whether given integer value is PRIME or
NOT.

4. Draw the flowchart to find roots of Quadratic equation ax2+ bx + c = 0

Note : Practice more related Algorithms and Flowcharts.

 Structure
2.0 Introduction

2.1 Character Set

2.2 Structure of a ‘C’ Program

2.3 Data Types in ‘C’

2.4 Operations

2.5 Expressions

2.6 Assignment Statement

2.7 Conditional Statements

2.8 Structure for Looping Statements

2.9 Nested Looping Statements

2.10 Multi Branching Statement (Switch), Break and Continue

2.11 Differences between Break and Continue

2.12 Unconditional Branching (Go to Statement)

2UNIT

Features of ‘C’

 Computer Science and Engineering264

 Learning Objectives
•What is C Language and its importance

• To understand various data types

• To understand working function of input and output statements in C

• To understand working function of Branching statements in C

• To understand working function of Looping statements in C

• To Understand differences between Break and Continue

2.0 Introduction
‘C’ is high level language and is the upgraded version of another language

(Basic Combined Program Language). C language was designed at Bell
laboratories in the early 1970’s by Dennis Ritchie. C being popular in the modern
computer world can be used in Mathematical Scientific, Engineering and
Commercial applications

 The most popular Operating system UNIX is written in C language. This
language also has the features of low level languages and hence called as “System
Programming Language”

Features of C language

• Simple, versatile, general purpose language

• It has rich set of Operators

• Program execution are fast and efficient

• Can easily manipulates with bits, bytes and addresses

• Varieties of data types are available

• Separate compilation of functions is possible and such functions can be
called by any C program

• Block- structured language

• Can be applied in System programming areas like operating systems,
compilers & Interpreters, Assembles, Text Editors, Print Spoolers, Network
Drivers, Modern Programs, Data Bases, Language Interpreters, Utilities etc.

 265Paper - II Programming in C

 2.1 Character Set
The character set is the fundamental raw-material for any language. Like

natural languages, computer languages will also have well defined character-set,
which is useful to build the programs.

The C language consists of two character sets namely – source character
set execution character set. Source character set is useful to construct the
statements in the source program. Execution character set is employed at the
time of execution of h program.

1. Source character set : This type of character set includes three types
of characters namely alphabets, Decimals and special symbols.

i. Alphabets : A to Z, a to z and Underscore(_)

ii. Decimal digits : 0 to 9

iii. Special symbols: + - * / ^ % = & ! () { } [] “ etc

2. Execution character set : This set of characters are also called as
non-graphic characters because these are invisible and cannot be printed or
displayed directly.

These characters will have effect only when the program being executed.
These characters are represented by a back slash (\) followed by a character.

Execution character Meaning Result at the time of execution

 \ n End of a line Transfers the active position of cursor
 to the initial position of next line

\ 0 (zero) End of string Null

\ t Horizontal Tab Transfers the active position of cursor
 to the next Horizontal Tab

\ v Vertical Tab Transfers the active position of cursor
 to the next Vertical Tab

\ f Form feed Transfers the active position of cursor
 to the next logical page

\ r Carriage return Transfers the active position of cursor
 to the initial position of current line

 Computer Science and Engineering266

2.2 Structure of a ‘C’ Program
The Complete structure of C program is

The basic components of a C program are:

• main()

• pair of braces { }

• declarations and statements

• user defined functions

Preprocessor Statements: These statements begin with # symbol. They
are called preprocessor directives. These statements direct the C preprocessor
to include header files and also symbolic constants in to C program. Some of
the preprocessor statements are

#include<stdio.h>: for the standard input/output functions

#include<test.h>: for file inclusion of header file Test.

#define NULL 0: for defining symbolic constant NULL = 0 etc.

Global Declarations: Variables or functions whose existence is known in
the main() function and other user defined functions are called global variables
(or functions) and their declarations is called global declaration. This declaration
should be made before main().

main(): As the name itself indicates it is the main function of every C program.
Execution of C program starts from main (). No C program is executed without
main() function. It should be written in lowercase letters and should not be
terminated by a semicolon. It calls other Library functions user defined functions.
There must be one and only one main() function in every C program.

Braces: Every C program uses a pair of curly braces ({,}0. The left
brace indicates beginning of main() function. On the other hand, the right brace
indicates end of the main() function. The braces can also be used to indicate the
beginning and end of user-defined functions and compound statements.

Declarations: It is part of C program where all the variables, arrays,
functions etc., used in the C program are declared and may be initialized with
their basic data types.

Statements: These are instructions to the specific operations. They may
be input-output statements, arithmetic statements, control statements and other
statements. They are also including comments.

 267Paper - II Programming in C

User-defined functions: These are subprograms. Generally, a subprogram
is a function, and they contain a set of statements to perform a specific task.
These are written by the user; hence the name is user-defined functions. They
may be written before or after the main() function.

2.3 Data Types in ‘C’

The built-in data types and their extensions is the subject of this chapter.
Derived data types such as arrays, structures, union and pointers and user defined
data types such as typedef and enum.

Basic Data Types

There are four basic data types in C language. They are Integer data,
character data, floating point data and double data types.

a. Character data: Any character of the ASCII character set can be
considered as a character data types and its maximum size can be 1 byte or 8
byte long. ‘Char’ is the keyword used to represent character data type in C.

Char - a single byte size, capable of holding one character.

b. Integer data: The keyword ‘int’ stands for the integer data type in C
and its size is either 16 or 32 bits. The integer data type can again be classified
as

1. Long int - long integer with more digits

2. Short int - short integer with fewer digits.

3. Unsigned int - Unsigned integer

C Data types

Built - In Derived C Data Types Void

Array Structure Union Pointer

Char Integer Float Double Type def Enum

 Computer Science and Engineering268

4. Unsigned short int – Unsigned short integer

5. Unsigned long int – Unsigned long integer

As above, the qualifiers like short, long, signed or unsigned can be applied
to basic data types to derive new data types.

 int - an Integer with the natural size of the host machine.

c. Floating point data: - The numbers which are stored in floating point
representation with mantissa and exponent are called floating point (real) numbers.
These numbers can be declared as ‘float’ in C.

 float – Single – precision floating point number value.

d. Double data : - Double is a keyword in C to represent double precision
floating point numbers.

double - Double – precision floating point number value.
Data Kinds in C

Various data kinds that can be included in any C program can fall in to the
following.

a. Constants/Literals

b. Reserve Words Keywords

c. Delimeters

d. Variables/Identifiers

a. Constans/Literals: Constants are those, which do not change, during
the execution of the program. Constants may be categorized in to:

• Numeric Constants

• Character Constants

• String Constants

1. Numeric Constants

Numeric constants, as the name itself indicates, are those which consist of
numerals, an optional sign and an optional period. They are further divided into
two types:

(a) Integer Constants (b) Real Constants

a. Integer Constants

 269Paper - II Programming in C

A whole number is an integer constant Integer constants do not have a
decimal point. These are further divided into three types depending on the number
systems they belong to. They are:

i. Decimal integer constants

ii. Octal integer constants

iii. Hexadecimal integer constants

i. A decimal integer constant is characterized by the following
properties

• It is a sequence of one or more digits ([0…9], the symbols of decimal
number system).

• It may have an optional + or – sign. In the absence of sign, the constant
is assumed to be positive.

• Commas and blank spaces are not permitted.

• It should not have a period as part of it.

Some examples of valid decimal integer constants:

456

-123

Some examples of invalid decimal integer constants:

4.56 - Decimal point is not permissible

1,23 - Commas are not permitted

ii. An octal integer constant is characterized by the following
properties

• It is a sequence of one or more digits ([0…7], symbols of octal number
system).

• It may have an optional + or – sign. In the absence of sign, the constant
is assumed to be positive.

• It should start with the digit 0.

• Commas and blank spaces are not permitted.

• It should not have a period as part of it.

Some examples of valid octal integer constants:

 Computer Science and Engineering270

0456

-0123

+0123

Some examples of invalid octal integer constants:

04.56 - Decimal point is not permissible

04,56 - Commas are not permitted

x34 - x is not permissible symbol

568 - 8 is not a permissible symbol

iii. An hexadecimal integer constant is characterized by the
following properties

• It is a sequence of one or more symbols ([0…9][A….Z], the symbols
of Hexadecimal number system).

• It may have an optional + or - sign. In the absence of sign, the constant
is assumed to be positive.

• It should start with the symbols 0X or 0x.

• Commas and blank spaces are not permitted.

• It should not have a period as part of it.

Some examples of valid hexadecimal integer constants:

0x456

-0x123

0x56A

0XB78

Some examples of invalid hexadecimal integer constants:

0x4.56 - Decimal point is not permissible

0x4,56 - Commas are not permitted.

b. Real Constants

The real constants also known as floating point constants are written in
two forms:

 271Paper - II Programming in C

(i) Fractional form, (ii) Exponential form.

i. Fractional Form

The real constants in Fractional form are characterized by the
following characteristics:

• Must have at least one digit.

• Must have a decimal point.

• May be positive or negative and in the absence of sign taken as positive.

• Must not contain blanks or commas in between digits.

• May be represented in exponential form, if the value is too higher or
too low.

Some examples of valid real constants:

456.78

-123.56

Some examples of invalid real constants:

4.56 - Blank spaces are not permitted

4,56 - Commas are not permitted

456 - Decimal point missing

ii. Exponential Form

The exponential form offers a convenient way for writing very large and
small real constant. For example, 56000000.00, which can be written as 0.56
*, 108 is written as 0.56E8 or 0.56e8 in exponential form. 0.000000234, which
can be written as 0.234 * 10-6 is written as 0.234E-6 or 0.234e-6 in exponential
form. The letter E or e stand for exponential form.

A real constant expressed in exponential form has two parts: (i) Mantissa
part, (ii) Exponent part. Mantissa is the part of the real constant to the left of E
or e, and the Exponent of a real constant is to the right of E or e. Mantissa and
Exponent of the above two number are shown below.

E -60.234E 80.56

E xponentMantis saE xponentMantiss a

E -60.234E 80.56

E xponentMantis saE xponentMantiss a

 Computer Science and Engineering272

In the above examples, 0.56 and 0.234 are the mantissa parts of the first
and second numbers, respectively, and 8 and -6 are the exponent parts of the
first and second number, respectively.

The real constants in exponential form and characterized by the
following characteristics:

• The mantissa must have at least one digit.

• The mantissa is followed by the letter E or e and the exponent.

• The exponent must have at least one digit and must be an integer.

• A sign for the exponent is optional.

Some examples of valid real constants:

3E4

23e-6

0.34E6

Some examples of invalid real constants:

23E - No digit specified for exponent

23e4.5 - Exponent should not be a fraction

23,4e5 - Commas are not allowed

256*e8- * not allowed

2. Character Constants

Any character enclosed with in single quotes (‘) is called character constant.
A character constant:

• May be a single alphabet, single digit or single special character placed
with in single quotes.

• Has a maximum length of 1 character.

Here are some examples,

• ‘C’

• ‘c’

• ‘:’

• ‘*’

 273Paper - II Programming in C

 3. String Constants

A string constant is a sequence of alphanumeric characters enclosed in
double quotes whose maximum length is 255 characters.

Following are the examples of valid string constants:

• “My name is Krishna”

• “Bible”

• “Salary is 18000.00”

Following are the examples of invalid string constants:

My name is Krishna - Character are not enclosed in double quotation
marks.

“My name is Krishna - Closing double quotation mark is missing.

‘My name is Krishna’ - Characters are not enclosed in double quotation
marks

b. Reserve Words/Keywords

In C language , some words are reserved to do specific tasks intended for
them and are called Keywords or Reserve words. The list reserve words are

auto do goto

break double if

case else int

char extern long

continue float register

default for return

short sezeof static

struct switch typedef

union unsigned void

while const entry

violate enum noalias

 Computer Science and Engineering274

c. Delimiters

This is symbol that has syntactic meaning and has got significance. These
will not specify any operation to result in a value. C language delimiters list is
given below

Symbol Name Meaning

Hash Pre-processor directive

, comma Variable delimiter to separate variable

: colon label delimiter

; Semicolon statement delimiter

() parenthesis used for expressions

{ } curly braces used for blocking of statements

[] square braces used along with arrays

d. Variables / Identifiers

These are the names of the objects, whose values can be changed during
the program execution. Variables are named with description that transmits the
value it holds.

[A quantity of an item, which can be change its value during the execution
of program is called variable. It is also known as Identifier].

Rules for naming a variable:-

 It can be of letters, digits and underscore(_)

 First letter should be a letter or an underscore, but it should not be a
digit.

 Reserve words cannot be used as variable names.

Example: basic, root, rate, roll-no etc are valid names.

 Declaration of variables:

Syntax type Variable list

int i, j i, j are declared as integers

float salary salary is declared ad floating point variable

Char sex sex is declared as character variable

 275Paper - II Programming in C

 2.4 Operators
An Operator is a symbol that operates on a certain data type. The data

items that operators act upon are called operands. Some operators require
two operands, some operators act upon only one operand. In C, operators can
be classified into various categories based on their utility and action.

1. Arithmetic Operators 5. Increment & Decrement Operator

2. Relational Operators 6. Conditional Operator

3. Logical Operator 7. Bitwise Operator

4. Assignment Operator 8. Comma Operator

1. Arithmetic Operators

The Arithmetic operators performs arithmetic operations. The Arithmetic
operators can operate on any built in data type. A list of arithmetic operators are

Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo division

2. Relational Operators

Relational Operators are used to compare arithmetic, logical and character
expressions. The Relational Operators compare their left hand side expression
with their right hand side expression. Then evaluates to an integer. If the Expression
is false it evaluate to “zero”(0) if the expression is true it evaluate to “one”

Operator Meaning

< Less than

> Greater than

<= Less than or Equal to

>= Greater than or Equal to

= = Equal to

 Computer Science and Engineering276

!= Not Equal to

The Relational Operators are represented in the following manner:

Expression-1 Relational Operator Expression-2

The Expression-1 will be compared with Expression -2 and depending on
the relation the result will be either “TRUE” OR “FALSE”.

Examples :

Expression Evaluate to

(5 <= 10) ———————— 1

(-35 > 10) ———————— 0

(X < 10) ———————— 1 (if value of x is less than 10)

0 Other wise

(a + b) = = (c + d) 1 (if sum of a and b is equal to sum of c, d)

0 Other wise

3. Logical Operators

A logical operator is used to evaluate logical and relational expressions.
The logical operators act upon operands that are themselves logical expressions.
There are three logical operators.

Operators Expression

&& Logical AND

|| Logical OR

! Logical NOT

Logical And (&&): A compound Expression is true when two expression
when two expressions are true. The && is used in the following manner.

Exp1 && Exp2.

The result of a logical AND operation will be true only if both operands are
true.

The results of logical operators are:

Exp1 Op. Exp2 Result

True && True True

 277Paper - II Programming in C

True && False False

False && False False

False && True False

Example: a = 5; b = 10; c = 15;

 Exp1 Exp2 Result

1. (a< b) && (b < c) => True

2. (a> b) && (b < c) => False

3. (a< b) && (b > c) => False

4. (a> b) && (b > c) => False

Logical OR: A compound expression is false when all expression are
false otherwise the compound expression is true. The operator “||” is used as It
evaluates to true if either exp-1 or exp-2 is true. The truth table of “OR” is Exp1
|| Exp2

Exp1 Operator Exp2 Result:

True || True True

True || False True

False || True True

False || False False

Example: a = 5; b = 10; c = 15;

Exp1 Exp2 Result

1. (a< b) || (b < c) => True

2. (a> b) || (b < c) => True

3. (a< b) || (b > c) => True

4. (a> b) || (b > c) => False

Logical NOT: The NOT (!) operator takes single expression and
evaluates to true(1) if the expression is false (0) or it evaluates to false (0) if
expression is true (1). The general form of the expression.

! (Relational Expression)

The truth table of NOT :

 Computer Science and Engineering278

Operator. Exp1 Result

! True False

! False True

Example: a = 5; b = 10; c = 15

1. !(a< b) False

2. !(a> b) True

4. Assignment Operator

An assignment operator is used to assign a value to a variable. The most
commonly used assignment operator is =. The general format for assignment
operator is :

<Identifer> = < expression >

Where identifier represent a variable and expression represents a constant,
a variable or a Complex expression.

If the two operands in an assignment expression are of different data types,
then the value of the expression on the right will automatically be converted to
the type of the identifier on the left.

Example: Suppose that I is an Integer type Variable then

1. I = 3.3 3 (Value of I)

2. I = 3.9 3 (Value of I)

3. I = 5.74 5 (Value of I)

Multiple assignment

< identifier-1 > = < identifier-2 > = - - - = < identifier-n > = <exp>;

Example: a,b,c are integers; j is float variable

1. a = b = c = 3;

2. a = j = 5.6; then a = 5 and j value will be 5.6

C contains the following five additional assignment operators

1. += 2.-= 3. += 4. *= 5. /=

The assignment expression is: - Exp1 < Operator> Exp-2

Ex: I = 10 (assume that)

 279Paper - II Programming in C

Expression Equivalent to Final Value of ‘I’

1. I + = 5 I = I + 5 15

2. I - = 5 I = I - 5 10

3. I * = 5 I = I * 5 50

4. I / = 5 I = I / 5 10

5. Increment & Decrement Operator

The increment/decrement operator act upon a Single operand and produce
a new value is also called as “unary operator”. The increment operator ++
adds 1 to the operand and the Decrement operator – subtracts 1 from the
operand.

Syntax: < operator >< variable name >;

The ++ or – operator can be used in the two ways.

Example : ++ a; Pre-increment (or) a++ Post increment —a; Pre-
Decrement (or) a— Post decrement

1. ++ a Immediately increments the value of a by 1.

2. a ++ The value of the a will be increment by 1 after it is utilized.

Example 1: Suppose a = 5 ;

Statements Output

printf (“a value is %d”, a); a value is 5

printf (“a value is %d”, ++ a); a value is 6

printf (“a value is %d “, a) ; a value is 6

Example 2: Suppose : a = 5 ;

Statements Output

printf (“a value is %d “, a); a value is 5

printf (“a value is %d “, a++); a value is 5

printf (“a value is %d “,a); a value is 6

a and a- will be act on operand by decrement value like increment operator.

6. Conditional operator (or) Ternary operator (? :)

 Computer Science and Engineering280

It is called ternary because it uses three expression. The ternary operator
acts like If- Else construction.

Syn :(<Exp –1 > ? <Exp-2> : <Exp-3>);

Expression-1 is evaluated first. If Exp-1 is true then Exp-2 is evaluated
other wise it evaluate Exp-3 will be evaluated.

Flow Chart :

Exp-1

Exp-2 Exp-3

Exit

Example:

1. a = 5 ; b = 3;

(a> b ? printf (“a is larger”) : printf (“b is larger”));

Output is :a is larger

2. a = 3; b = 3;

(a> b ? printf (“a is larger”) : printf (“b is larger”));

Output is :b is larger

7. Bit wise Operator

A bitwise operator operates on each bit of data. These bitwiseoperator
can be divided into three categories.

i. The logical bitwise operators.

ii. The shift operators

iii. The one’s complement operator.

i) The logical Bitwise Operator :There are three logical bitwise operators.

Meaning Operator:

a) Bitwise AND &

b) Bitwise OR |

c) Bitwise exclusive XOR ̂

 281Paper - II Programming in C

Suppose b1 and b2 represent the corresponding bits with in the first and
second operands, respectively.

B1 B2 B1 & B2 B1 | B2 B1 ^ B2

1 1 1 1 0

1 0 0 1 1

0 1 0 1 1

0 0 0 0 0

The operations are carried out independently on each pair of corresponding
bits within the operand thus the least significant bits (ie the right most bits) within
the two operands. Will be compared until all the bits have been compared. The
results of these comparisons are

A Bitwise AND expression will return a 1 if both bits have a value of 1.
Other wise, it will return a value of 0.

A Bitwise OR expression will return a 1 if one or more of the bits have a
value of 1. Otherwise, it will return a value of 0.

A Bitwise EXCLUSIVE OR expression will return a 1 if one of the bits
has a value of 1 and the other has a value of 0. Otherwise, if will return a value
of 0.

Example::Variable Value Binary Pattern

X 5 0101

Y 2 0010

X & Y 0 0000

X | Y 7 0111

X ^ Y 7 0111

ii) The Bitwise shift Operations: The two bitwise shift operators are
Shift left (<<) and Shift right (>>). Each operator requires two operands.
The first operand that represents the bit pattern to be shifted. The second is an
unsigned integer that indicates the number of displacements.

Example: c = a << 3;

The value in the integer a is shifted to the left by three bit position. The
result is assigned to the c.

 Computer Science and Engineering282

A = 13; c= A<<3;

Left shit << c= 13 * 2 3 = 104;

Binary no 0000 0000 0000 1101

After left bit shift by 3 places ie,. a<<3

0000 0000 0110 1000

The right –bit – shift operator (>>) is also a binary operator.

Example: c = a >> 2 ;

The value of a is shifted to the right by 2 position

insert 0’s Right – shift >> drop off 0’s

0000 0000 0000 1101

After right shift by 2 places is a>>2

0000 0000 0000 0011 c=13>>2

c= 13/4=3

iii) Bit wise complement: The complement op.~ switches all the bits in a
binary pattern, that is all the 0’s becomes 1’s and all the 1’s becomes 0’s.

variable value Binary patter

x 23 0001 0111

~x 132 1110 1000

8. Comma Operator

A set of expressions separated by using commas is a valid construction in c
language.

Example :int i, j;

i= (j = 3, j + 2) ;

The first expression is j = 3 and second is j + 2. These expressions are
evaluated from left to right. From the above example I = 5.

Size of operator: The operator size operator gives the size of the data
type or variable in terms of bytes occupied in the memory. This operator allows
a determination of the no of bytes allocated to various Data items

Example :int i; float x; double d; char c; OUTPUT

 283Paper - II Programming in C

Printf (“integer : %d\n”, sizeof(i)); Integer : 2

Printf (“float : %d\n”, sizeof(i)); Float : 4

Printf (“double : %d\n”, sizeof(i)); double : 8

Printf (“char : %d\n”,sizeof(i)); character : 1

2.5 Expressions
An expression can be defined as collection of data object and operators

that can be evaluated to lead a single new data object. A data object is a constant,
variable or another data object.

Example : a + b

 x + y + 6.0

 3.14 * r * r

 (a + b) * (a – b)

 The above expressions are called as arithmetic expressions because
the data objects (constants and variables) are connected using arithmetic
operators.

Evaluation Procedure: The evaluation of arithmetic expressions is as per
the hierarchy rules governed by the C compiler. The precedence or hierarchy
rules for arithmetic expressions are

1. The expression is scanned from left to right.

2. While scanning the expression, the evaluation preference for the operators
are

*, /, % - evaluated first

 +, - - evaluated next

3. To overcome the above precedence rules, user has to make use of
parenthesis. If parenthesis is used, the expression/ expressions with in parenthesis
are evaluated first as per the above hierarchy.

Statements

Data Input & Output

An input/output function can be accessed from anywhere within a program
simply by writing the function name followed by a list of arguments enclosed in
parentheses. The arguments represent data items that are sent to the function.

 Computer Science and Engineering284

Some input/output Functions do not require arguments though the empty
parentheses must still appear. They are:

 Input Statements Output Statements

Formatted scanf() printf()

Unformatted getchar()gets() putchar()puts()

getchar()

Single characters can be entered into the computer using the C library
Function getchar(). It returns a single character from a standard input device.
The function does not require any arguments.

Syntax: <Character variable> = getchar();

Example: char c;

c = getchar();

putchar()

Single characters can be displayed using function putchar(). It returns a
single character to a standard output device. It must be expressed as an argument
to the function.

Syntax: putchar(<character variable>);

Example: char c;

————

putchar(c);

gets()

The function gets() receives the string from the standard input device.

Syntax: gets(<string type variable or array of char>);

Where s is a string.

The function gets accepts the string as a parameter from the keyboard, till
a newline character is encountered. At end the function appends a “null” terminator
and returns.

puts()

The function puts() outputs the string to the standard output device.

 285Paper - II Programming in C

Syntax: puts(s);

Where s is a string that was real with gets();

Example:

main()

{

char line[80];

gets(line);

puts(line);

}

scanf()

Scanf() function can be used input the data into the memory from the standard
input device. This function can be used to enter any combination of numerical
Values, single characters and strings. The function returns number of data items.

Syntax:-scanf (“control strings”, &arg1,&arg2,——&argn);

Where control string referes to a string containing certain required formatting
information and arg1, arg2——argn are arguments that represent the individual
input data items.

Example:

#include<stdio.h>

main()

{

char item[20];

intpartno;

float cost;

scanf(“%s %d %f”,&item,&partno,&cost);

}

Where s, d, f with % are conversion characters. The conversion characters
indicate the type of the corresponding data. Commonly used conversion
characters from data input.

 Computer Science and Engineering286

Conversion Characters

Characters Meaning

%c data item is a single character.

%d data item is a decimal integer.

%f data item is a floating point value.

%e data item is a floating point value.

%g data item is a floating point value.

%h data item is a short integer.

%s data item is a string.

%x data item is a hexadecimal integer.

%o data item is a octal interger.

printf()

The printf() function is used to print the data from the computer’s memory
onto a standard output device. This function can be used to output any
combination of numerical values, single character and strings.

Syntax: printf(“control string”, arg-1, arg-2,———arg-n);

Where control string is a string that contains formatted information, and
arg-1, arg-2 —— are arguments that represent the output data items.

Example:

#include<stdio.h>

main()

{

char item[20];

intpartno;

float cost;

———————

printf (“%s %d %f”, item, partno, cost);

} (Where %s %d %f are conversion characters.)

 287Paper - II Programming in C

 2.6 Assignment Statement
Assignment statement can be defined as the statement through which the

value obtained from an expression can be stored in a variable.

 The general form of assignment statement is

 < variable name> = < arithmetic expression> ;

Example: sum = a + b + c;

 tot = s1 + s2 + s3;

 area = ½ * b* h;

2.7 I/O Control Structure (if, If-else, for, while, do-while)
Conditional Statements

The conditional expressions are mainly used for decision making. The
following statements are used to perform the task of the conditional operations.

a. if statement.

b. If-else statement. Or 2 way if statement

c. Nested else-if statement.

d. Nested if –else statement.

e. Switch statement.

a. if statement

The if statement is used to express conditional expressions. If the given
condition is true then it will execute the statements otherwise skip the statements.

The simple structure of ‘if’ statement is

i. If (< condtional expressione>)

statement-1;

(or)

ii. If (< condtional expressione>)

{

 Computer Science and Engineering288

statement-1;

statement-2;

statement-3;

……………

……………

STATEMENT-N

}

The expression is evaluated and if the expression is true the statements will
be executed. If the expression is false the statements are skipped and execution
continues with the next statements.

Example: a=20; b=10;

if (a > b)

printf (“big number is %d” a);

b. if-else statements

The if-else statements is used to execute the either of the two statements
depending upon the value of the exp. The general form is

if(<exp>)

{

Statement-1;

Statement -2;

………….. “ SET-I”

……………

Statement- n;

}

else

{

Statement1;

Statement 2;

 289Paper - II Programming in C

………….. “ SET-II

……………

Statement n;

}

SET - I Statements will be executed if the exp is true.

SET – II Statements will be executed if the exp is false.

Example:

if (a> b)

printf (“a is greater than b”);

else

printf (“a is not greater than b”);

c. Nested else-if statements

If some situations if may be desired to nest multiple if-else statements. In
this situation one of several different course of action will be selected.

Syntax

if (<exp1>)

Statement-1;

else if (<exp2>)

Statement-2;

else if (<exp3>)

Statement-3;

else

Statement-4;

When a logical expression is encountered whose value is true the
corresponding statements will be executed and the remainder of the nested else
if statement will be bypassed. Thus control will be transferred out of the entire
nest once a true condition is encountered.

The final else clause will be apply if none of the exp is true.

 Computer Science and Engineering290

d. nestedif-else statement

It is possible to nest if-else statements, one within another. There are several
different form that nested if-else statements can take.

The most general form of two-layer nesting is

if(exp1)

if(exp3)

Statement-3;

else

Statement-4;

else

if(exp2)

Statement-1;

else

Statement-2;

One complete if-else statement will be executed if expression1 is true
and another complete if-else statement will be executed if expression1 is false.

e. Switch statement

A switch statement is used to choose a statement (for a group of statement)
among several alternatives. The switch statements is useful when a variable is to
be compared with different constants and in case it is equal to a constant a set of
statements are to be executed.

Syntax:

Switch (exp)

{

case

constant-1:

statements1;

case

constant-2:

 291Paper - II Programming in C

statements2;

———

———

default:

statement n;

}

Where constant1, constanat2 — — — are either integer constants or
character constants. When the switch statement is executed the exp is evaluated
and control is transferred directly to the group of statement whose case label
value matches the value of the exp. If none of the case label values matches to
the value of the exp then the default part statements will be executed.

If none of the case labels matches to the value of the exp and the default
group is not present then no action will be taken by the switch statement and
control will be transferred out of the switch statement.

A simple switch statement is illustrated below.

Example 1:

main()

{

char choice;

printf(“Enter Your Color (Red - R/r, White – W/w)”);

choice=getchar();

switch(choice= getchar())

{

case‘r’:

case‘R’:

printf (“Red”);

break;

case‘w’:

case‘W’:

 Computer Science and Engineering292

printf (“white”);

break;

default :

printf (“no colour”);

}

Example 2:

switch(day)

{

case 1:

printf (“Monday”);

break;

———

———

}

2.8 Structure for Looping Statements
Loop statements are used to execute the statements repeatedly as long as

an expression is true. When the expression becomes false then the control
transferred out of the loop. There are three kinds of loops in C.

a) while b) do-while c) for

a. while statement

while loop will be executed as long as the exp is true.

Syntax: while (exp)

{

statements;

}

The statements will be executed repeatedly as long as the exp is true. If the
exp is false then the control is transferred out of the while loop.

Example:

 293Paper - II Programming in C

int digit = 1;

While (digit <=5) FALSE

{

printf (“%d”, digit); TRUE

Cond Exp

Statements; ++digit;

}

The while loop is top tested i.e., it evaluates the condition before executing
statements in the body. Then it is called entry control loop.

b. do-while statement

The do-while loop evaluates the condition after the execution of the statements
in the body.

Syntax: do

Statement;

While<exp>;

Here also the statements will be executed as long as the exp value is true. If
the expression is false the control come out of the loop.

Example:

-int d=1;

do

{

printf (“%d”, d); FALSE

++d;

} while (d<=5); TRUE

Cond Exp

statements

exit

 Computer Science and Engineering294

The statement with in the do-while loop will be executed at least once. So
the do-while loop is called a bottom tested loop.

c. for statement

The for loop is used to executing the structure number of times. The for
loop includes three expressions. First expression specifies an initial value for an
index (initial value), second expression that determines whether or not the loop
is continued (conditional statement) and a third expression used to modify the
index (increment or decrement) of each pass.

Note: Generally for loop used when the number of passes is known in
advance.

Syntax: for (exp1;exp2;exp3)

{

Statement –1;

Statement – 2;

—————; FALSE

—————;

Statement - n; TRUE

}

exp2

Statements;

exp3

Exit loop

exp1

start

Where expression-1 is used to initialize the control variable. This expression
is executed this expression is executed is only once at the time of beginning of
loop.

Where expression-2 is a logical expression. If expression-2 is true, the
statements will be executed, other wise the loop will be terminated. This expression
is evaluated before every execution of the statement.

 295Paper - II Programming in C

Where expression-3 is an increment or decrement expression after
executing the statements, the control is transferred back to the expression-3
and updated. There are different formats available in for loop. Some of the
expression of loop can be omit.

Formate - I

for(; exp2; exp3)

Statements;

In this format the initialization expression (i.e., exp1) is omitted. The initial
value of the variable can be assigned outside of the for loop.

Example 1

int i = 1;

for(; i<=10; i++)

printf (“%d \n”, i);

Formate - II

for(; exp2 ;)

Statements;

In this format the initialization and increment or decrement expression (i.e
expression-1 and expression-3) are omitted. The exp-3 can be given at the
statement part.

Example 2

int i = 1;

for(; i<=10;)

{

printf (“%d \n”,i);

i++;

}

Formate - III

for(; ;)

Statements;

 Computer Science and Engineering296

In this format the three expressions are omitted. The loop itself assumes
the expression-2is true. So Statements will be executed infinitely.

Example 3

int i = 1;

for (; i<=10;)

{

printf (“%d \n”,i);

i++;

}

2.9 Nested Looping Statements
Many applications require nesting of the loop statements, allowing on loop

statement to be embedded with in another loop statement.

Definition

Nesting can be defined as the method of embedding one control structure
with in another control structure.

While making control structure s to be reside one with in another ,the
inner and outer control structures may be of the same type or may not be of
same type. But ,it is essential for us to ensure that one control structure is
completely embedded within another.

 /*program to implement nesting*/

 #include <stdio.h>

 main()

{

int a,b,c,

for (a=1,a< 2, a++)

{

printf (“%d”,a)

for (b=1,b<=2,b++)

{

 297Paper - II Programming in C

print f(%d”,b)

for (c=1,c<=2,c++)

{

print f(“ My Name is Sunny \n”);

}

}

}

}

2.10 Multi Branching Statement (switch), Break, and
Continue

For effective handling of the loop structures, C allows the following types
of control break statements.

a. Break Statement b. Continue Statement

a. Break Statement

The break statement is used to terminate the control form the loops or to
exit from a switch. It can be used within a for, while, do-while, for.

The general format is :

break;

If break statement is included in a while, do-while or for then control will
immediately be transferred out of the loop when the break statement is
encountered.

Example

for (; ;) normal loop

{

break

Condition

within loop

scanf (“%d”,&n);

if (n < -1)

 Computer Science and Engineering298

break;

sum = sum + n;

}

b. The Continue Statement

The continue statement is used to bypass the remainder of the current pass
through a loop. The loop does not terminate when a continue statement is
encountered. Rather, the remaining loop statements are skipped and the proceeds
directly to the next pass through the loop. The “continue” that can be included
with in a while a do-while and a for loop statement.

General form :

continue;

The continue statement is used for the inverse operation of the break
statement .

Condition

with in loop

Remaining part of loop

continue

Example

while (x<=100)

{

if (x <= 0)

{

printf (“zero or negative value found \n”);

continue;

}

}

The above program segment will process only the positive whenever a
zero or negative value is encountered, the message will be displayed and it
continue the same loop as long as the given condition is satisfied.

 299Paper - II Programming in C

 2.11 Differences between Break and Continue

2.12 Unconditional Branching (Go To Statement)
goto statement

The go to statement is used to alter the program execution sequence by
transferring the control to some other part of the program.

Syntax

Where label is an identifier used to label the target statement to which the
control would be transferred the target statement will appear as:

Syntax

goto<label>;

label :

statements;

Break
1. Break is a key word used to
terminate the loop or exit from the
block. The control jumps to next
statement after the loop or block
2. Break statements can be used with
for, while, do-while, and switch
statement. When break is used in
nested loops, then only the innermost
loop is terminated.

3. Syntax:{ statement1; statement2;
statement3; break;}

4. Example :Switch (choice){ Case
‘y’: printf(“yes”); break; Case ‘n’:
printf(“NO”); break;}
5. When the case matches with the
choice entered, the corresponding case
block gets executed. When ‘break’
statement is executed, the control
jumps out of the switch statement.

Continue
1. Continue is a keyword used for
containing the next iteration of the
loop

2. This statement when occurs in a
loop does not terminate it rather skips
the statements after this continue
statement and the control goes for
next iteration. ‘Continue’ can be used
with for, while and do- while loop.
3. Syntax: { statement1;
continue; statement2;
statement3; break; }
4. Example:- I = 1, j=0;While(i<=
7){ I = I + 1; If((I = = 6) Continue;
j = j + 1;}
5. In the above loop, when value of ‘
i becomes 6’ continue statement is
executed. So, j= j+1 is skipped and
control is transferred to beginning of
while loop.

 Computer Science and Engineering300

Example 1

#include <stdio.h>

main();

{

inta,b;

printf (“Enter the two numbers”);

scanf (“%d %d”,&a,&b);

if (a>b)

gotobig;

else

gotosmall;

big :printf (“big value is %d”,a);

gotostop;

small :printf (“small value is %d”,b);

gotostop;

stop;

}

Simple Programs Covering Above Topics
Practice Programs

1. Write a C program to find out smallest value among A, B,C.

Ans:

include <stdio.h>

int a,b,c;

clrscr();

scanf(%d %d %d, &a, &b, &c);

if (a<b)

{

 301Paper - II Programming in C

if(a<c)

printf(“a is small/n”)

else

}

02. Write a ‘C’ programe for 5th multiplication table with the help of
goto statement.

Ans.

#include<stdio.h>

main()

{

int t, n = 1, P;

Printf(“Enter table number:”);

Scanf(“%d,&t);

A:

if (n<=10)

{

P=t * n;

Printf(“%d * %d = %d \n”, t,n,p);

n++;

goto A;

}

else

printf(“Out of range”);

}

03. Write a ‘C’ program to find greatest among three numbers.

Ans. #include<stdio.h>

void main()

 Computer Science and Engineering302

{

int a,b,c;

printf(“enter the values of a,b,c,”);

scanf(“%d%d%d”, &a,&b,&c);

if((a>b)&&(c>b))

{

if(a>c)

printf(“a is the max no”);

else

printf(“C is the max no”);

}

else if ((b>c)&&(a>c))

{

if(b>a)

printf(“b is the max no”);

else

printf(“a is the max no”);

}

else if ((b>a)&&(c>a))

{

if(b>c)

printf(“b is the max no”);

else

printf(“C is the max no”);

}

}

 303Paper - II Programming in C

 Model Questions
Short Answer Type Question - 2 Marks

1. Write the structure of C program

2. Define a variable and a constant in C.

3. What is an expression in C.

4. What are the operators used in C.

5. Mention the significance of main() function.

6. What are formatted and Unformatted Input-output statements.

7. Write the syntax of scanf() and printf() statements.

8. Write the syntax do loop control structure.

9. Write short notes on go to statement?

10. Mention difference between While loop and do…While loop.

11.What is Nested Loop?

12. Write the syntax of While statement.

13. Write the syntax of for… loop statement.

14. Write about ‘Switch” Statement.

15. Write the syntax of Simple if statement.

16. Write the syntax of if … else statement.

17. What is Preprocessor statement in C.

18. What are different types of errors occurred during the execution of C
program.

19. What is Variable and Constant in C? What are types of Constants in
C.

20. What are basic data types in C.

21. What is String Constant.

Long Answer Type Questions - 6 Marks
01. Explain the basic structure of C program.

02. Write about data types used in C.

 Computer Science and Engineering304

03. What is Constant? Explain various types of constants in C. (or)

04. Explain various types of Operators in C.

05. Explain formatted and un-formatted input and output statements in C

06. Explain various conditional control structures in C.

07. Explain various conditional looping statements in C.

08. Write the differences between Break and Continue

Note: Practice some more programs related using above statements.

3UNIT

Functions

Structure
3.0 Introduction

3.1 Functions

3.2 Differences between Function and Procedures

3.3 Advantages of Functions

3.4 Advanced features of Functions

3.5 Recursion

Learning Objectives
• Define a Function

• Stress on Return statement

• Write programs using function call techniques.

• Function prototype

• Differentiate Local and Global variables

• Recursion.

 Computer Science and Engineering306

 3.0 Introduction
Experienced programmer used to divide large (lengthy) programs in to

parts, and then manage those parts to be solved one by one. This method of
programming approach is to organize the typical work in a systematic manner.
This aspect is practically achieved n C language thorough the concept known as
‘Modular Programming”.

The entire program is divided into a series of modules and each module is
intended to perform a particular task. The detailed work to be solved by the
module is described in the module (sub program) only and the main program
only contains a series of modulus that are to be executed. Division of a main
program in to set of modules and assigning various tasks to each module depends
on the programmer’s efficiency.

Whereas there is a need for us repeatedly execute one block of statements
in one place of the program, loop statements can be used. But, a block of
statements need to be repeatedly executed in many parts of the program, then
repeated coding as well as wastage of the vital computer resource memory will
wasted. . If we adopt modular programming technique, these disadvantages
can be eliminated. The modules incorporated in C are called as the
FUNCTIONS, and each function in the program is meant for doing specific
task. C functions are easy to use and very efficient also.

3.1 Functions
Definition

 A function can be defined as a subprogram which is meant for doing a
specific task.

In a C program, a function definition will have name, parentheses pair contain
zero or more parameters and a body. The parameters used in the parenthesis
need to be declared with type and if not declared, they will be considered as of
integer type.

The general form of the function is :

 function type name <arg1,arg2,arg3, ————,argn>)

 data type arg1, arg2,;

 data type argn;

{

body of function;

 307Paper - II Programming in C

——————————

——————————

——————————

return (<something>);

 }

From the above form the main components of function are

• Return type

• Function name

• Function body

• Return statement

Return Type

Refers to the type of value it would return to the calling portion of the
program. It can have any of the basic data types such as int, float, char, etc.
When a function is not supposed to return any value, it may be declared as type
void

Example

void function name(- - - - - - - - - -);

int function name(- - - - - - - - - -);

char function name (— - - - - - -);

Function Name

The function name can be any name conforming to the syntax rules of the
variable.

A function name is relevant to the function operation.

Example

output();

read data();

 Computer Science and Engineering308

Formal arguments

The arguments are called formal arguments (or) formal parameters,
because they represent the names of data items that are transferred into the
function from the calling portion of the program.

Any variable declared in the body of a function is said to be local to that
function, other variable which were not declared either arguments or in the function
body, are considered “globol” to the function and must be defined externally.

Example

int biggest (int a, int b)

{

————————————

————————————

————————————

return();

}

a, b are the formal arguments.

Function Body

Function body is a compound statement defines the action to be taken by
the function. It should include one or more “return” statement in order to return
a value to the calling portion of the program.

Example

int biggest(int a, int b)

{

if (a > b)

return(a); body of function.

else

return(b);

}

 309Paper - II Programming in C

Every C program consists of one or more functions. One of these functions
must be called as main. Execution of the program will always begin by carrying
out the instructions in main. Additional functions will be subordinate to main. If a
program contains multiple functions, their definitions may appear in any order,
though they must be independent of one another. That is, one function definition
can’t be embedded within another.

Generally a function will process information that is passed to it from the
calling portion of the program and return a single value. Information is passed to
the function via arguments (parameters) and returned via the “return” statement.

Some functions accept information but do not return anything (ex: printf())
whereas other functions (ex: scanf()) return multiple values.

3.1.1 The Return Statement
Every function subprogram in C will have return statement. This statement

is used in function subprograms to return a value to the calling program/function.
This statement can appear anywhere within a function body and we may have
more than one return statement inside a function.

The general format of return statement is

 return;

 (or)

 return (expression);

If no value is returned from function to the calling program, then there is no
need of return statement to be present inside the function.

Programs using function Call Techniques

 Example 1: Write a program to find factorial to the given positive integer
,using function technique.

include <stdio.h>

main()

{

 int n;

 printf (“ Enter any positive number\n”);

 scanf(“%d”, &n);

 Computer Science and Engineering310

 printf(“ The factorial of %d s %d \n”,fact (n));

}

fact(i)

int I;

{

 int j; f = 1 ;

 for (j = I; j>0; j - -)

 f = f * I;

 return (f) ;

}

In the above program function with name ‘fact’ is called by the main program.
The function fact is called with n as parameter. The value is returned through
variable f to the main program.

Example 2: Write a program to find the value of f(x) as f(x) = x 2 + 4, for
the given of x. Make use of function technique.

 # include <stdio.h>

 main()

{

 f ();

}

f ()

 { int x,y ;

 printf(“ Enter value of x \n”);

 scanf(“ %d”, & x);

 y = (x * x + 4);

 printf (“ The value of f (x) id %d \n”, y) ;

}

 311Paper - II Programming in C

 3.2 Differences between Function and Procedures

3.3 Advantages of Function
The main advantages of using a function are:

• Easy to write a correct small function

• Easy to read and debug a function.

• Easier to maintain or modify such a function

• Small functions tend to be self documenting and highly readable

• It can be called any number of times in any place with different
parameters.

Storage class

A variable’s storage class explains where the variable will be stored, its
initial value and life of the variable.

Iteration

The block of statements is executed repeatedly using loops is called Iteration

Procedure

1. Procedure is a sub program
which is included with in
main program.

2. Procedure donot return a
value.

3. Procedure cannot be
called again and again.

4. Global variables cannot be
used in procedure.

5. Procedures can be writ-
ten only in procedural pro-
gramming such as Dbase,
Foxpro.

Function

1. Functions is sub program
which is intended for specific
task. Eg. sqrt()

2. Functions may or may not
return a value.

3. Function once defined can
be called any where n number
of times.

4. In functions both local and
global variables can be used.

5. Functions can be written in
modular programming such as
C, C++

 Computer Science and Engineering312

Categories of Functions

A function, depending on, whether arguments are present or not and a
value is returned or not.

A function may be belonging to one of the following types.

1. Function with no arguments and no return values.

2. Function with arguments and no return values.

3. Function with arguments and return values

3.4 Advanced Featured of Functions
 a. Function Prototypes

 b. Calling functions by value or by reference

 c. Recursion.

a. Function Prototypes

The user defined functions may be classified as three ways based on the
formal arguments passed and the usage of the return statement.

a. Functions with no arguments and no return value

b. Functions with arguments no return value

c. Functions with arguments and return value.

a. Functions with no arguments and no return value

A function is invoked without passing any formal arguments from the calling
portion of a program and also the function does not return back any value to the
called function. There is no communication between the calling portion of a
program and a called function block.

Example:

#include <stdio.h>

main()

{

void message(); Function declaration

message(); Function calling

}

 313Paper - II Programming in C

void message()

{

printf (“GOVT JUNIOR COLLEGE \n”);

printf (“\t HYDERABAD”);

}

b. Function with arguments and no return value

This type of functions passes some formal arguments to a function but the
function does not return back any value to the caller. It is any one way data
communication between a calling portion of the program and the function block.

Example

#include <stdio.h>

main()

{

void square(int);

printf (“Enter a value for n \n”);

scanf (“%d”,&n);

square(n);

}

void square (int n)

{

int value;

value = n * n;

printf (“square of %d is %d “,n,value);

}

c. Function with arguments and return value

The third type of function passes some formal arguments to a function from
a calling portion of the program and the computer value is transferred back to
the caller. Data are communicated between the calling portion and the function
block.

 Computer Science and Engineering314

Example

#include <stdio.h>

main()

{

int square (int);

int value;

printf (“enter a value for n \n”);

scanf(“%d”, &n);

value = square(n);

printf (“square of %d is %d “,n, value);

}

int square(int n)

{

int p;

p = n * n;

return(p);

}

The keyword VOID can be used as a type specifier when defining a function
that does not return anything or when the function definition does not include
any arguments.

The presence of this keyword is not mandatory but it is good programming
practice to make use of this feature.

Actual and Formal Parameters (or) Arguments

Function parameters are the means of communication between the calling
and the called functions. The parameters may classify under two groups.

1. Formal Parameters

2. Actual Parameters

 315Paper - II Programming in C

1. Formal Parameters

The formal parameters are the parameters given in function declaration and
function definition. When the function is invoked, the formal parameters are
replaced by the actual parameters.

2. Actual Parameters

The parameters appearing in the function call are referred to as actual
parameters. The actual arguments may be expressed as constants, single variables
or more complex expression. Each actual parameter must be of the same data
type as its corresponding formal parameters.

Example

#include <stdio.h>

int sum (int a , int b)

{

int c;

c = a + b;

return(c);

}

main()

{

intx,y,z;

printf (“enter value for x,y \n”);

scanf (“%d %d”,&x,&y);

z = x + y;

printf (“ sum is = %d”,z);

}

The variables a and b defined in function definition are known as formal
parameters. The variables x and y are actual parameters.

 Computer Science and Engineering316

Local and Global Variable:

The variables may be classified as local or global variables.

Local Variable

The variables defined can be accessed only within the block in which they
are declared. These variables are called “Local” variables

Example

funct (int ,int j)

{

intk,m;

————;

————;

}

The integer variables k and m are defined within a function block of the
“funct()”. All the variables to be used within a function block must be either
defined at the beginning of the block or before using in the statement. Local
variables one referred only the particular part of a block of a function.

Global Variable

Global variables defined outside the main function block. Global variables
are not contained to a single function. Global variables that are recognized in
two or more functions. Their scope extends from the point of definition through
the remainder of the program.

b. Calling functions by value or by reference

The arguments are sent to the functions and their values are copied in the
corresponding function. This is a sort of information inter change between the
calling function and called function. This is known as Parameter passing. It is a
mechanism through which arguments are passed to the called function for the
required processing. There are two methods of parameter passing.

1. Call by Value

2. Call by reference.

1. Call by value: When the values of arguments are passed from calling
function to a called function, these values are copied in to the called function. If

 317Paper - II Programming in C

any changes are made to these values in the called function, there are
NOCHANGE the original values within the calling function.

Example

#include <stdio.h>

main();

{

int n1,n2,x;

int cal_by_val();

N1 = 6;

N2 = 9;

printf(n1 = %d and n2= %d\n”, n1,n2);

X = cal_by_Val(n1,n2);

Printf(n1 = %d and n2= %d\n”, n1,n2);

Printf(“ x= %d\n”, x);

/ * end of main*/

/*function to illustrate call by value*/

Cal_by_val(p1,p2)

int p1,p2;

{

int sum;

Sum = (p1 + p2);

P1 + = 2;

P2* = p1;

printf(p1 = %d and p2= %d\n”, p1,p2);

return(sum);

}

}

 Computer Science and Engineering318

When the program is executed the output will be displayed

N1 = 6 and n2 = 9

P1 = 8 and p2 = 72

N1 = 6 and n2 = 9

X = 15

There is NO CHANGE in the values of n1 and n2 before and after the
function is executed.

2. Cal by Reference: In this method, the actual values are not passed,
instead their addresses are passed. There is no copying of values since their
memory locations are referenced. If any modification is made to the values in
the called function, then the original values get changed with in the calling function.
Passing of addresses requires the knowledge of pointers.

Example

This program accepts a one-dimensional array of integers and sorts them
in ascending order. [This program involves passing the array to the function].

include <stdio.h>

main();

{

int num[20], I,max;

void sort_nums();

printf(“ enter the size of the array”\n”);

scanf(“%d”, &max);

for(i=0; i<max;I++)

sort_nums(num,max) /* Function reference*/

printf(“sorted numbers are as follows\n”);

for(i=0; i<max;I++)

printf(“%3d\n”,num[i]);

/* end of the main*/

/* function to sort list of numbers*/

 319Paper - II Programming in C

Void sort_nums(a,n)

Int a[],n;

{

Int I,j,dummy;

For(i=0;i<n;i++)

{

For(j=0; j<n; j++)

{

If (a[i] >a[j])

{

Dummy = a[i];

a[i] = a[j];

a[j] = dummy;

}

}

}

}

3.5 Recursion
One of the special features of C language is its support to recursion. Very

few computer languages will support this feature.

Recursion can be defines as the process of a function by which it can call
itself. The function which calls itself again and again either directly or indirectly
is known as recursive function.

 The normal function is usually called by the main () function, by mans of
its name. But, the recursive function will be called by itself depending on the
condition satisfaction.

For Example,

main ()

{

 Computer Science and Engineering320

 f1() ; ——— Function called by main

 ——————

 ——————

 ——————

}

f1() ; ——— Function definition

{

 ——————

 ——————

 ——————

 f1() ; ——— Function called by itself

}

In the above, the main () function s calling a function named f1() by
invoking it with its name. But, inside the function definition f1(), there is another
invoking of function and it is the function f1() again.

Example programs on Recursion

Example 1 : Write a program to find the factorial of given non-negative
integer using recursive function.

#include<stdio.h>

main ()

{

int result, n;

printf(“ Enter any non-negative integer\n”);

scanf (“ %d”, & n);

result = fact(n);

printf (“ The factorial of %d is %d \n”, n, result);

}

 321Paper - II Programming in C

fact(n)

int n;

{

int i ;

i = 1;

if (i = = 1) return (i);

else

{

i = i * fact (n - 1);

return (i);

}

}

Example 2: Write ‘C’ program to generate Fibonacci series up to a limit
using recursion function. .

#include<stdio.h>

#include<conio.h>

int Fibonacci (int);

void main ()

{

int i, n;

clrscr ();

printf (“Enter no. of Elements to be generated” \n)

scanf (“%d”, &n);

for (i=1; i<n; i++)

printf (“%d”, Fibonacci (i));

getch();

}

 Computer Science and Engineering322

int Fibonacci (int n)

{

int fno;

if (n= =1)

return 1;

else

if (n= =2);

 return 1;

else

fno=Fibonacci (n-1) + Fibonacci (n-2);

return fno;

}

Model Questions
Short Answer Type Question - 2 Marks

01. What is function? Write its syntax.

02. What is I/O function? List different types of I/O functions

03. What are the advantages of functions?

04. Write differences between Global and Local variables.

05. List categories of functions

06. What is storage class?

07. What is Iteration

08. What is recursion?

Long Answer Type Question - 6 Marks
01. What is Function? Explain in detail

02. Explain different types of functions with an example.

03. Explain about I/O functions.

04. Discuss about Global and Local variables.

 323Paper - II Programming in C

05. Explain about Call-by-value with an example.

06. Explain about Call-by-reference with an example.

07. Discuss about Functions and Procedures..

 Computer Science and Engineering324

4UNIT

Arrays in ‘C’

Structure
4.0 Introduction

4.1 Definition of Array

4.2 Types of Arrays

4.3 Two - Dimensional Array

4.4 Declare, initialize array of char type

Learning Objectives
• To understand the importance of Array

• Definition of array

• Declaration and Initializing of an Array

• Types of Arrays

• Examples of an Array

4.0 Introduction
 If we deal with similar type of variables in more number at a time, we may

have to write lengthy programs along with long list of variables. There should be

 325Paper - II Programming in C

more number of assignment statements in order to manipulate on variables. When
the number of variables increases, the length of program also increase.

In the above situations described above, where more number of same types
of variables is used, the concept of ARRAYS is employed in C language. These
are very much helpful to store as well as retrieve the data of similar type.

An Array describes a contiguously allocated non-empty set of objects with
the same data type. The using arrays many number of same type of variables
can be grouped together. All the elements stored in the array will referred by a
common name.

4.1 Definition of Array
Array can be defined as a collection of data objects which are stored in

consecutive memory locations with a common variable name.

OR

Array can be defined as a group of values referred by the same variable
name.

OR

An Array can be defined as a collection of data objects which are stored in
consecutive memory locations with a common variable name.

The individual values present in the array are called elements of array. The
array elements can be values or variables also.

4.2 Types of Arrays
Basically arrays can divide in to

1. One Dimensional Array

 An array with only one subscript is called as one-dimensional array or 1-
d array. It is used to store a list of values, all of which share a common name
and are separable by subscript values

 2. Two Dimensional Array

 An array with two subscripts is termed as two-dimensional array.

A two-dimensional array, it has a list of given variable -name using two
subscripts. We know that a one-dimensional array can store a row of elements,
so, a two-dimensional array enables us to store multiple rows of elements.

 Computer Science and Engineering326

 4.2.1 Initialization of Array
Array can be made initialized at the time of declaration itself. The general

form of array initialization is as below

type name[n] = [element1, element2, …. element n];

The elements 1, element2… element n are the values of the elements in the
array referenced by the same.

Example1:- int codes[5] = [12,13,14,15,16];

Example2:- float a[3] = [1.2, 1.3, 1.4];

Example3:- char name [5] = [‘S’, ‘U’, ‘N’, ‘I’, ‘L’];

In above examples, let us consider one, it a character array with 5 elements
and all the five elements area initialized to 5 different consecutive memory
locations.

name[0] = ‘S’

name[1] = ‘U’

name[2] = ‘N’

name[3] = ‘I’

name[4] = ‘L’

Rules for Array Initialization

1. Arrays are initialized with constants only.

2. Arrays can be initialized without specifying the number of elements in
square brackets and this number automatically obtained by the compiler.

3. The middle elements of an array cannot be initialized. If we want to
initialize any middle element then the initialization of previous elements is
compulsory.

4. If the array elements are not assigned explicitly, initial values will be set
to zero automatically.

5. If all the elements in the array are to be initialized with one and same
value, then repletion of data is needed.

 327Paper - II Programming in C

4.2.2 Declaration of Array
The array must be declared as other variables, before its usage in a C

program. The array declaration included providing of the following information
to C compiler.

- The type of the array (ex. int, float or char type)

- The name of the array (ex A[],B[] , etc)

- Number of subscripts in the array (i.e whether one – dimensional
or Two-dimensional)

- Total number of memory locations to be allocated.

The name of the array can be kept by the user (the rule similar to naming to
variable).

There is no limit one on dimensions as well as number of memory locations
and it depends o the capacity of computer main memory..

The general form for array declaration is

Type name[n] ; { one dimensional array}

Ex : int marks[20];

 char name[15];

 float values [10];

 An array with only one subscript is called as one-dimensional array or
1-d array. It is used to store a list of values, all of which share a common name
and are separable by subscript values.

Declaration of One-dimensional Arrays:

The general form of declaring a one-dimensional array is

Where data-type refers to any data type supported by C, array-name should
be a valid C identifier; the size indicates the maximum number of storage locations
(elements) that can be stored.

Each element in the array is referenced by the array name followed by a
pair of square brackets enclosing a subscript value. The subscript value is indexed

array-name [size];data-type

 Computer Science and Engineering328

from 0 to size -1. When the subscript vale is 0, first element in the array is
selected, when the subscript value is 1, second element is selected and so on.

Example

int x [6];

Here, x is declared to be an array of int type and of size six. Six contiguous
memory locations get allocated as shown below to store six integer values.

Each data item in the array x is identified by the array name x followed by
a pair of square brackets enclosing a subscript value. The subscript value is
indexed from 0 to 5. i.e., x[0] denotes first data item, x[1] denotes second data
item and x[5] denotes the last data item.

Initialization of One-Dimensional Arrays:

Just as we initialize ordinary variables, we can initialize one-dimensional
arrays also, i.e., locations of the arrays can be given values while they are declared.

The general form of initializing an array of one-dimension is as follows:

data - type array - name [size] = {list of values};

The values in the list are separated by commas.

Example

int x [6] = {1, 2, 3, 4, 5, 6 };

as a result of this, memory locations of x get filled up as follows:

Points to be considered during the declaration

1. If the number of values in initialization value - is less then the size of an
array, only those many first locations of the array are assigned the values. The
remaining locations are assigned zero.

Example: int x [6] = {7, 8, 6 };

The size of the array x is six, initialization value - consists of only three
locations get 0 assigned to them automatically, as follows:

1 2 3 4 5 6
x[0] x[1] x[2] x[3] x[4] x[5]

1 2 3 4 5 6
x[0] x[1] x[2] x[3] x[4] x[5]

 329Paper - II Programming in C

2. If the number of values listed within initialization value - list for any
array is greater than the six the array, compiler raises an error.

Example:

int x [6] = {1, 2, 3, 4, 5, 6, 7, 8 };

The size of the array x is six. But the number of values listed within the
initialization - list is eight. This is illegal.

3. If a static array is declared without initialization value - list then the all
locations are set to zero.

Example:

static int x [6];

4. If size is omitted in a 1-d array declaration, which is initialized, the
compiler will supply this value by examining the number of values in the initialization
value - list.

Example:

int x [] = {1, 2, 3, 4, 5, 6 };

Since the number of values in the initialization value-list for the array x is six,
the size of x is automatically supplied as six.

5. There is no array bound checking mechanism built into C-compiler. It
is the responsibility of the programmer to see to it that the subscript value does
not go beyond size-1. If it does, the system may crash.

Example:

int x [6];

x [7] = 20;

7 8 6 0 0 0
x[0] x[1] x[2] x[3] x[4] x[5]

0 0 0 0 0 0
x[0] x[1] x[2] x[3] x[4] x[5]

0 0 0 0 0 0
x[0] x[1] x[2] x[3] x[4] x[5]

 Computer Science and Engineering330

Here, x [7] does not belong to the array x, it may belong to some other
program (for example, operating system) writing into the location may lead to
unpredictable results or even to system crash.

6. Array elements can not be initialized selectively.

Example:

An attempt to initialize only 2nd location is illegal, i.e.,

int x [6] = { , 10 } is illegal.

Similar to arrays of int type, we can even declare arrays of other data types
supported by C, also.

Example

char ch [6];

ch is declared to be an array of char type and size 6 and it can accommodate
6 characters.

Example:

float x [6];

x is declared to be an array of float type and size 6 and it can accommodate
6 values of float type. Following is the scheme of memory allocation for the
array x:

Note

A one array is used to store a group of values. A loop (using, for loop) is
used to access each value in the group.

Example

Program to illustrate declaration, initialization of a 1-d array

#include<stdio.h>

ch[0] ch[1] ch[2] ch[3] ch[4] ch[5]

x[0] x[1] x[2] x[3] x[4] x[5]

 331Paper - II Programming in C

#include<conio.h>

void main()

{

int i, x [6] = {1, 2, 3, 4, 5, 6 };

clrscr();

printf(“The elements of array x \n”);

for(i=0; i<6; i++)

printf(“%d”, x [i]);

getch();

}

Input – Output:

The elements of array x

1 2 3 4 5 6

4.3 Two - Dimenstional Array
An array with two subscripts is termed as two-dimensional array.

A two-dimensional array, it has a list of given variable -name using two
subscripts. We know that a one-dimensional array can store a row of elements,
so, a two-dimensional array enables us to store multiple rows of elements.

Example: Table of elements or a Matrix.

Syntax of two-dimensional arrays:

The syntax of declaring a two-dimensional array is:

data - type array - name [rowsize] [colsize];

Where, data-type refers to any valid C data type, array -name refers to
any valid C identifier, row size indicates the number of rows and column size
indicates the number of elements in each column.

Row size and column size should be integer constants.

Total number of location allocated = (row size * column size).

 Computer Science and Engineering332

Each element in a 2-d array is identified by the array name followed by a
pair of square brackets enclosing its row-number, followed by a pair of square
brackets enclosing its column-number.

Row-number range from 0 to row size-1 and column-number range from
0 to column size-1.

Example: int y [3] [3];

y is declared to be an array of two dimensions and of data type Integer
(int), row size and column size of y are 3 and 3, respectively. Memory gets
allocated to store the array y as follows. It is important to note that y is the
common name shared by all the elements of the array.

Each data item in the array y is identifiable by specifying the array name y
followed by a pair of square brackets enclosing row number, followed by a pair
of square brackets enclosing column number.

Row-number ranges from 0 to 2. that is, first row is identified by row-
number 0, second row is identified by row-number 1 and so on.

Similarly, column-number ranges from 0 to 2. First column is identified by
column-number 0, second column is identified by column-number 1 and so on.

x [0] [0] refers to data item in the first row and first column

x [0] [2] refers to data item in the first row and third column

x [2] [3] refers to data item in the third row and fourth column

x [3] [4] refers to data item in the fourth row and fifth column

Initialization of Two-Dimensional Array

There are two forms of initializing a 2-d array.

First form of initializing a 2-d array is as follows:

x[0] [0] x[0] [1] x[0] [2]

x[1] [0] x[1] [1] x[1] [2]

x[2] [0] x[2] [1] x[2] [2]

0 1 2

Ro
w

 nu
m

be
rs

.

1

2

3

Column numbers

 333Paper - II Programming in C

Where, data-name refers to any data type supported by C. Array-name
refers to any valid C identifier. Row size indicates the number of rows, column
size indicates the number of columns of the array. initialier-list is a comma
separated list of values.

If the number of values in initializer-list is equal to the product of row size
and column size, the first row size values in the initializer-list will be assigned to
the first row, the second row size values will be assigned to the second row of
the array and so on

Example: int x [2] [4] = {1, 2, 3, 4, 5, 6, 7, 8 };

Since column size is 4, the first 4 values of the initializer-list are assigned to
the first row of x and the next 4 values are assigned to the second row of x as
shown hereinafter

1 2 3 4

5 6 7 8

Note: If the number of values in the initializer-list is less than the product of
rowsize and colsize, only the first few matching locations of the array would get
values from the initializer-list row-wise. The trailing unmatched locations would
get zeros.

Example: int x [2] [4] = {1, 2, 3, 4};

The first row of x gets filled with the values in the initializer-list. The second
row gets filled with zeros.

1 2 3 4

0 0 0 0

The second form of initializing a 2-d array is as follows:

data-type array-name [rowsize] [colsize]

= { {initializer-list1},

 {initializer-list2}, ………};The values in initializer-
list 1 are assigned to the locations in the first row. The values in initializer-list2
are assigned to the locations in the second row and so on.

Example: int x [2] [4] = { { 1, 2, 3, 4 }, { 5, 6, 7, 8 } };

data - type array - name [rowsize][colsize] = [initializer - list];

 Computer Science and Engineering334

As a result of this, the array x gets filled up as follows:

1 2 3 4

5 6 7 8

Note

1. If the number of values specified in any initializer-list is less than colsize
of x, only those may first locations in the corresponding row would get these
values. The remaining locations in that row would get 0.

Example: int x [2] [4] = { { 1, 2, 3 }, { 4, 5, 6, 7 } };

Since the first initializer-list has only three values, x [0] [0] is set to 1, x [0]
[1] is set to 2, x [0] [2] is set to 3 and the fourth location in the first row is
automatically set to 0.

1 2 3 0

4 5 6 7

2. If the number of values specified in any initializer-list is more than colsize
of x, compiler reports an error.

Example: int x [2] [4] = { { 1, 2, 3, 4, 5 }, { 6, 7, 8, 9 } };

colsize is 4, but the number of values listed in the first row is 5. This results
in compilation error.

3. Array elements can not be initialized selectively.

4. It is the responsibility of the programmer to ensure that the array bounds
do not exceed the rowsize and colsize of the array. If they exceed, unpredictable
results may be produced and even the program can result in system crash
sometimes.

5. A 2-d array is used to store a table of values (matrix).

Similar to 2-d arrays of int type, we can declare 2-arrays of any other data
type supported by C, also.

Example: float x [4] [5];

x is declared to be 2-d array of float type with 4 rows and 5 columns
double y [4] [5];

y is declared to be 2-d arrays of double type with 4 rows and 5 columns

Note

 335Paper - II Programming in C

A two-dimensional array is used to store a table of values. Two loops
(using for loops) are used to access each value in the table, first loop acts as a
row selector and second loop acts as a column selector in the table.

4.4 Declare, Initialize Array of Char Type
Declaration of Array of char type: A string variable is any valid C variable

name and is always declared as an array. The syntax of declaration of a string
variable is:

char string-name[size];

The size determines the number of character in the string name.

Example: An array of char type to store the above string is to be declared
as follows:

char str[8];

An array of char is also called as a string variable, since it can store a string
and it permits us to change its contents. In contrast, a sequence of characters
enclosed within a pair of double quotes is called a string constant.

Example: “Program” is a string constant.

Initialization of Arrays of char Type

The syntax of initializing a string variable has two variations:

Variation 1

char str1 [6] = { ‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘\0’};

Here, str1 is declared to be a string variable with size six. It can store
maximum six characters. The initializer – list consists of comma separated
character constants. Note that the null character ‘\0’ is clearly listed. This is
required in this variation.

Variation 2

char str2 [6] = { “Hello” };

Here, str2 is also declared to be a string variable of size six. It can store
maximum six characters including null character. The initializer-list consists of a

str[0] str[1] str[2] str[3] str[4] str[5] str[6] str[7]

P r o g r a m \0

 Computer Science and Engineering336

string constant. In this variation, null character ‘\0’ will be automatically added
to the end of string by the compiler.

In either of these variations, the size of the character array can be skipped,
in which case, the size and the number of characters in the initializer-list would
be automatically supplied by the compiler.

Example

char str1 [] = { “Hello” };

The size of str1 would be six, five characters plus one for the null character
‘\0’.

char str2 [] = { ‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘\0’};

The size of str2 would be six, five characters plus one for null character
‘\0’.

Example 1

Program to sort a list of numbers.

#include<stdio.h>

#include<conio.h>

void main()

{

int x [6], n, i, j, tmp;

clrscr();

printf (“Enter the no. of elements \n”);

scanf (“%d”, & n);

printf (“Enter %d numbers \n”, n);

for (i=0; i<n; i++)

scanf(“%d”, & x [i]);

/* sorting begins */

for (i=0; i<n; i++)

for (j=i + 1; j<n; j++)

if (x[i]>x[j])

 337Paper - II Programming in C

{

tmp = x [i];

x [i] = x [j];

x [j] = tmp;

}

/* sorting ends */

printf (“sorted list \n”);

for (i=0; i<n; i++)

printf (“%d”, x [i]);

getch();

}

Input – Output

Enter the no. of elements

5
Enter 5 numbers

10 30 20 50 40

Sorted list

10 20 30 40 50

Example 2 :

C program for addition of two matrices.

#include<stdio.h>

#include<conio.h>

#include<process.h>

void main()

{

int x [5] [5], y [5] [5], z [5] [5], m, n, p, q, i, j;

 Computer Science and Engineering338

clrscr ();

printf (“Enter number of rows and columns of matrix x \n”);

scanf (“%d %d”, &m, &n);

printf (“Enter number of rows and columns of matrix y \n”);

scanf (“%d %d”, &p, &q);

if ((m ! =P) | | (n!=q))

{

printf (“Matrices not compatible for addition \n”);

exit(1);

}

printf (“Enter the elements of x \n”);

for (i=0; i<m; i++)

for (j=0; j<n; j++)

scanf (“%d”, &x [i][j]);

printf (“Enter the elements of x \n”);

for (i=0; i<p; i++)

for (j=0; j<n; j++)

scanf (“%d”, &y [i] [j]);

/* Summation begins */

for (i=0; j<m; i++)

for (j=0; j<n; j++)

z[i] [j] = x [i] [j] + y [i] [j];

/* summation ends */

printf (“Sum matrix z \n);

for (i=0; i<m; i++)

{

for (j=0; j<n; j++)

 339Paper - II Programming in C

printf (“%d”, z[i] [j]);

printf (“\n”);

}

getch();

}

Example3

Write a program for multiplication of two matrices.

#include<stdio.h>

#include<conio.h>

#include<process.h>

void main()

{

int x [5] [5], y [5] [5], z [5] [5], m, n, p, q, I, j, k;

clrscr ();

printf (“Enter number of rows and columns of matrix x \n”);

scanf (“%d %d”, &m, &n);

printf (“Enter number of rows and columns of matrix y \n”);

scanf (%d %d”, &p, &q);

if (n!=p)

{

printf (“Matrices not compatible for multiplication \n”);

exit (1);

}

printf (“Enter the elements of x \n”);

for (i=0; i<m; i++)

for (j=0; j<n; j++)

scanf (“%d”, &x [i] [j]);

 Computer Science and Engineering340

printf (“Enter the elements of y \n”);

for (i=0; i<p; i++)

for (j=0; j<q; j++)

scanf (“%d”, &x [i] [j]);

printf (“Enter the elements of y \n”);

for (i=0; i<p; i++)

for (j=0; j<q; j++)

scanf (“%d”, &y [i] [j]);

/* Multiplication of matrices of x 7 y ends */

for (i=0; i<m; i++)

for (j=0; j<q; j++)

{ z [i] [j] = 0;

for (k=0; k<n; k++)

z [i] [j] + = x [i] [k] * y [k] [j];

}

/* Multiplication of matrices of x & y ends */

printf (“Product Matrix z \n”);

for (i=0; i<m; i++)

{

for (j=0; j<q; j++)

printf (“%d”, z[i] [j]);

printf (“\n”);

}

getch();

}

 341Paper - II Programming in C

Example 4: C program to print transpose of a matrix.

[The transpose of a matrix is obtained by switching the rows and columns
of matrix].

#include<stdio.h>

#include<conio.h>

void main ()

{

int a[3] [3], b[3] [3], i, j;

clrscr ();

printf (“Enter the elements of the matrix : \n”);

for (i=0; i<3; i++)

for (j=0; j<3; j++)

scanf (“%d”, &a[i] [j]);

printf (“given matrix is : \n”);

for (i=0; i<3; i++)

{

for (j=0; j<3; j++)

printf (“%d”, a[i] [j]);

printf (“\n”);

}

printf (“transpose of given matrix is : \n”);

for (i=0; i<3; i++)

{

for (j=0; j<3; j++)

{

b [i] [j] = a [j] [i];

printf (“%d”, b[i] [j]);

 Computer Science and Engineering342

printf (“\n”);

}

}

getch();

}

Example 5

Write a ‘C’ program to find the average marks of ‘n’ students of
five subjects for each subject using arrays.

Ans.

#include <stdio.h>

void main()

{

int Sno, S1,S2,S3;

float tot, avg;

char sname[10];

printf(“Enter student no;”);

scanf(“%d”, & Sname);

printf(“Enter subject - 1, sub - 2, sub - 3 marks;”);

scanf(“%d %d %d”, &s1,&s2,&s3);

tot = S1+S2+S3;

avg = tot/3;

printf(“total = %f”, tot);

printf(“Average = %f”, avg);

}
Example 6

Write a C program to check the given word is ‘Palindrome’ or not.

Ans.

#include<stdio.h>

 343Paper - II Programming in C

#include<conio.h>

void main ()

{

char str[80], rev[80];

int k, i, j, flag = 0;

clrscr ();

printf (“Enter any string (max. 80 chars) : \n”);

gets (str);

for (i=0; str[i]!= ‘\0’; i++);

for (j=i-1; k=0; j>=0; j—, k++)

rev[k] = str[j];

rev[k] = ‘\0’;

for (i=0; str[i]!= ‘\0’; i++)

{

if (str[i]!=rev[i])

{

flag=1;

break;

}

}

if (flag = =1);

printf (“Given string is not palindrome. \n”);

else

printf (“Given string is palindrome. \n”);

getch();

}

 Computer Science and Engineering344

 4.5 String Handling Functions in ‘C’
To perform manipulations on string data, there are built-in-fraction (library

function) Supported by ‘c’ compiler. The string functions are.

1. STRLEN (S1)

2. STRCMP (S1, S2)

3. STRCPY (S1, S2)

4. STRCAT (S1, S2)

1. STRLEN (S1): This function is used to return the length of the string
name S1,

Ex: S1 = ‘MOID’

STRLEN (S1) = 4

2. STRCMP (S1, S2): This is a library function used to perform
comparison between two strings. This function returns a value <zero when string
S1 is less than S2. The function return a value 0 whenS1=S2. Finally the function
return a value > 0 when S1>S2.

3. STRCPY (S1, S2): This is a library function used to copy the string
S2 to S1.

4. STRCAT (S1, S2): This is a library function used to join two strings
one after the other. This function concatenates string S2 at the end of string S1.

 Example5 : C program to concatenate the given two strings and print
new string.

#include<stdio.h>

#include<conio.h>

main ()

{

char s1[10], s2[10], s3[10],

int i,j,k;

printf (“Enter the first string : \n”);

scanf(“%s,S”,s1);

printf (“Enter the second string : \n”);

 345Paper - II Programming in C

scanf(“%s,S”,s2);

i = strlen(s1);

j = strlen(s2);

for (k=0,k<i,k++)

s3[k] = s1[k];

for (k=0,k<j,k++)

s3[i+k] = s2[k];

s3[i+j] = \0’;

printf(“ The new string is \n”.s3);

}

4.6 File Operations like fopen(), fclose(), fprint(), fscan()
The help of these functions the user can open a file with the data file

specifications, create and write information in to the file and can close the file.
The following are the file processing related functions.

a. FILE OPEN function fopen()

b. FILE CLOSE function fclose()

c. FILE INPUT functions getc() and fscanf()

d. FILE OUTPUT functions putc() and fprintf()

a. The function fopen()

This function is used to open a data file. Moreover, this function returns a
pointer to a file. The use of the function is

 file pointer = fopen(filename, mode);

Where file pointer is a pointer to a type FILE, the file name of the file name
is name of the file in which data is stored or retrieved (should be enclosed within
double quotes) and the mode denotes the type of operations to be performed
on the file (this also to be enclosed within double quotes).

But, before making this assignment ,the file pointer and fopen() should be
declared as FILE pointer type variables as under :

FILE *file pointer, * fopen() ;

 Computer Science and Engineering346

The mode can be one of the following types.

MODE MEANING

“r “ - read from the file

“w” - write to the file

“a” - append a file ie new data is added to the end of file

“ r+” -, open an existing file for the sake of updation.

“w +” - create a new file for reading and writing

“a +” - open a file for append, create a new one if the file does
not exist already

Examples

1. fptr = fopen(“rk. Dat”,”w”);

2. file= fopen(“sample.dat”, “r +”);

b. The functions fclose ()

The files that are opened should be closed after all the desired operations
are performed on it .This can be achieved through this function .The usage of
this function is:

 fclose (file pointer);

Where file pointer is returned value of the fopen () function.

Examples:

1. fclose (input file); 2. fclose (output file);

c. The functions getc() & fscanf()

1. getc () functions: this function is used a single character from a given
file ,whenever a file is referenced by a file pointer. The usage of this function is

 getc (file pointer);

2. fscanf ()function : This function is used to read a formatted data
from a specified file. The general usage of this function is

fscanf (f ptr, “Control String”, & list); where

fptr a file pointer to receive formatted data

Control string data specifications list

 347Paper - II Programming in C

 List the list of variables to be read

fscaf (infile , “%d %d ,” & no, &marks);

d. The functions putc()& fprint()

Example

1. putc() function: This function is used write a single character into a
file referenced by the file pointer. The usage of this function is

putc (ch, file pointer),

Where

ch - the character to be written

file pointer - a file pointer to the file that receives the character.

2. fprintf () function: this function is used t write a for matted data in to
a given file. The specified information is written on the specified file.

The general form of usage for this function is:

fprintf (fptr, “Control String”, list):

Where

Fptr file pointer to write a formatted data

Control string data specifications list

list- list of variables to be written.

Example

fprintf (out file,”%d %f”, basic , gross);

Model Questions
Short Answer Type Questions - 2 Marks

01. What is array?

02. What are the different types of arrays?

03. How to declare an array

04. Write a C program to print “IPE” using one dimensional array

05. What is two-dimensional array? Write its application.

06. What is the String handling functions.

 Computer Science and Engineering348

 Long Answer Type Questions - 6 Marks
01. Define an Array. Explain one-dimensional array

02. Explain about two - dimensional array?

03. Explain how to declare, initialize array of char type.

04. Write a C program to sort a list of numbers.

05. Write a C program for addition of two matrices.

06. Write a program for multiplication of two matrices.

07. Write a program to print transpose of a matrix.

08. Explain String handling functions in C.

09. Write a C program to concatenate the given two strings and print new
string.

10. Explain about File operations like fopen(), fclose(), fprint(),
fscan().

5UNIT

Structures in ‘C’

Structure
5.0 Introduction

5.1 Definition of Structure

5.2 Structure Declaration

5.3 Structurs and Arrays

5.4 Structure contains Pointers

5.5 Unions

5.6 Definition of Union

5.7 Differences between Structure and Union

Learning Objectives
• Importance of structures

• Definition of structure

• Implementation of arrays in structures

• Definition of Union

• Union declaration

• Differences between structures and Union

 Computer Science and Engineering350

 5.0 Introduction
 Arrays are useful to refer separate variables which are the same type. i.e.

Homogeneous referred by a single name. But, we may have situations where
there is a need for us to refer to different types of data (Heterogeneous) in order
to derive meaningful information.

Let us consider the details of an employee of an organization. His details
include employer’s number (Integer type), employee’s name (Character type) ,
basic pay (Integer type) and total salary (Float data type) . All these details
seem to be of different data types and if we group them together, they will result
in giving useful information about employee of the organization.

In above said situations, C provides a special data types called Structure,
which is highly helpful to organize different types of variables under a single
name.

5.1 Definition of Structure
 A group of one or more variables of different data types organized together

under a single name is called Structure.

Or

A collection of heterogeneous (dissimilar) types of data grouped together
under a single name is called a Structure.

A structure can be defined to be a group of logically related data items,
which may be of different types, stored in contiguous memory locations, sharing
a common name, but distinguished by its members.

Hence a structure can be viewed as a heterogeneous user-defined data
type. It can be used to create variables, which can be manipulated in the same
way as variables of built-in data types. It helps better organization and management
of data in a program.

 When a structure is defines the entire group s referenced through the
structure name. The individual components present in the structure are called
structure members and those can be accessed and processed separately.

5.2 Structure Declaration
The declaration of a structure specifies the grouping of various data items

into a single unit without assigning any resources to them. The syntax for declaring
a structure in C is as follows:

struct Structure Name

 351Paper - II Programming in C

{

Data Type member-1;

Data Type member-2;

 …. ….

DataType member-n;

};

The structure declaration starts with the structure header, which consists of
the keyword ‘struct’ followed by a tag. The tag serves as a structure name,
which can be used for creating structure variables. The individual members of
the structure are enclosed between the curly braces and they can be of the
similar or dissimilar data types. The data type of each variable is specified in the
individual member declarations.

Example:

Let us consider an employee database consisting of employee number,
name, and salary. A structure declaration to hold this information is shown below:

struct employee

{

int eno;

char name [80];

float sal;

};

The data items enclosed between curly braces in the above structure
declaration are called structure elements or structure members.

Employee is the name of the structure and is called structure tag. Note that,
some members of employee structure are integer type and some are character
array type.

The individual members of a structure can be variables of built – in data
types (int, char, float etc.), pointers, arrays, or even other structures. All member
names within a particular structure must be different. However, member names
may be the same as those of variables declared outside the structure. The individual
members cannot be initialized inside the structure declaration.

 Computer Science and Engineering352

Note

Normally, structure declarations appear at the beginning of the program
file, before any variables or functions are declared.

They may also appear before the main (), along with macro definitions,
such as #define.

In such cases, the declaration is global and can be used by other functions
as well.

5.2.1 Structure Variables
Similar to other types of variables, the structure data type variables can be

declared using structure definition.

struct

{

int rollno;

char name[20];

float average;

a, b;

}

 In the above structure definition, a and b are said to be structure type
variables. ‘a’ is a structure type variable containing rollno, name average as
members, which are of different data types. Similarly ‘b’ is also a structure type
variable with the same members of ‘a ‘.

5.2.2 Structure Initialization
The members of the structure can be initialized like other variables. This

can be done at the time of declaration.

Example 1

struct

{

 int day;

 int month;

 int year;

 353Paper - II Programming in C

 }

date = { 25,06,2012};

i.e

date. day = 25

date. month = 06

date. year = 2012

Example 2

struct address

{

 char name [20];

 char desgn [10];

 char place [10];

} ;

i.e

struct address my-add = { ‘Sree’, ‘AKM’, ‘RREDDY’);

i.e

my-add . name = ‘Sree’

my-add . desgn = AKM

my-add . place = RREDDY

As seen above, the initial values for structure members must be enclosed
with in a pair of curly braces. The values to be assigned to members must be
placed in the same order as they are specified in structure definition, separated
by commas. If some of the members of the structure are not initialized, then the
c compiler automatically assigns a value ‘zero’ to them.

Accessing of Structure Members

As seen earlier, the structure can be individually identified using the period
operator (.). After identification, we can access them by means of assigning
some values to them as well as obtaining the stored values in structure members.
The following program illustrates the accessing of the structure members.

 Computer Science and Engineering354

Example: Write a C program, using structure definition to accept the time
and display it.

/ * Program to accept time and display it */

include <stdio.h>

main()

{

struct

{

int hour, min;

float seconds;

 } time;

printf (“Enter time in Hours, min and Seconds\n”);

scanf (“ %d %d %f”, &time . hour, & time . min, & time . seconds);

printf (“ The accepted time is %d %d %f “ , time . hour, time . min, time
. seconds “);

}

5.2.3 Nested Structures
The structure is going to certain number of elements /members of different

data types. If the members of a structure are of structure data type, it can be
termed as structure with structure or nested structure.

Examaple

struct

{

int rollno;

char name[20];

float avgmarks;

 struct

 {

 355Paper - II Programming in C

 int day, mon, year;

 } dob’

 } student;

In the above declaration, student is a variable of structure type consisting
of the members namely rollno, name, avgmarks and the structure variable dob.

 The dob structure is within another structure student and thus structure
is nested. In this type of definitions, the elements of the require structure can be
referenced by specifying appropriate qualifications to it, using the period operator
(.) .

For example, student. dob. day refers to the element day of the inner
structure dob.

5.3 Structures and Arrays
Array is group of identical stored in consecutive memory locations with a

single / common variable name. This concept can be used in connection with the
structure in the following ways.

a. Array of structures

b. structures containing arrays (or) arrays within a structure

c. Arrays of structures contain arrays.

5.3.1 Array of Structures
Student details in a class can be stored using structure data type and the

student details of entire class can be seen as an array of structure.

Examaple

 struct student

{

 int rollno;

 int year;

 int tmarks;

}

struct student class[40];.

 Computer Science and Engineering356

In the above class [40] is structure variable accommodating a structure
type student up to 40.

 The above type of array of structure can be initialized as under

 struct student class [2] = { 001,2011,786},

 { 002, 2012, 710}

 };

i.e class[0] . rollno = 001

 class[0] . year = 2011

 class[0] . tmarks = 777 and

 class[1] . rollno = 002

 class[1] . year = 2012

 class[1] . tmarks = 777 .

5.3.2 Structures containing Arrays
A structure data type can hold an array type variable as its member or

members. We can declare the member of a structure as array data type similar
to int, float or char.

Example

struct employee

{

 char ename [20];

 int eno;

};

In above, the structure variable employee contains character array type
ename as its member. The initialization of this type can be done as usual.

 struct employee = { ‘ Rajashekar’, 7777};

5.3.3 Arrays of Structures Contain Arrays
Arrays of structures can be defined and in that type of structure variables

of array type can be used as members.

 357Paper - II Programming in C

Example

struct rk

{

int empno;

 char ename[20];

 flat salary;

 } mark[50];

In the above, mark is an array of 50 elements and such element in the array
is of structure type rk. The structure type rk, in turn contains ename as array
type which is a member of the structure. Thus mark is an array of sutures and
these structures in turn holds character names in array ename.

The initialization of the above type can be done as:

{

7777, ‘ Prasad’ , 56800.00}

};

i.e mark[0] . empno = 7777;

 mark[0] . eame = ‘Prasad’;

 mark[0] . salary = 56800.00

Program

Write a C program to accept the student name, rollno, average marks
present in the class of student and to print the name of students whose average
marks are greater than 40 by using structure concept with arrays.

include <stdio.h>

main()

{

 int i, n,

 struct

 {

 char name [20];

 Computer Science and Engineering358

 int rollno;

 flat avgmarks;

 }

class [40];

 printf (“ Enter the no. of students in the class\n”0;

scanf (“ %d”, & n);

for (i = 0, i < n, i++)

{

 print (“ Enter students name, rollno, avgmarks\n”);

 scanf (“ %s %d”, &class[i].name, class[i].rollno, &class[i].avgmarks)’

}

printf (“ The name of the students whose average”);

printf (“ marks is greater than 40 \n”);

for (i = 0, i < n, i++)

if (class[i].avgmarks > 40)

pirintf (“ %s”, class[i].name);

}

5.3.4 Advantages of Structure Type over Array Type
Variables

1. Using structures, we can group items of different types within a single
 entity, which is not possible with arrays, as array stores similar elements.

2. The position of a particular structure type variable within a group is not
needed in order to access it, whereas the position of an array member in
the group is required, in order to refer to it.

3. In order to store the data about a particular entity such as a ‘Book’,
using an array type, we need three arrays, one for storing the ‘name’,
another for storing the ‘price’ and a third one for storing the ‘number of
pages’ etc., hence, the overhead is high. This overhead can be reduced
by using structure type variable.

 359Paper - II Programming in C

4. Once a new structure has been defined, one or more variables can be
declared to be of that type.

5. A structure type variable can be used as a normal variable for accepting
the user’s input, for displaying the output etc.,

6. The assignment of one ‘struct’ variable to another, reduces the burden of
the programmer in filling the variable’s fields again and again.

7. It is possible to initialize some or all fields of a structure variable at once,
when it is declared.

8. Structure type allows the efficient insertion and deletion of elements but
arrays cause the inefficiency.

9. For random array accessing, large hash tables are needed. Hence, large
storage space and costs are required.

10. When structure variable is created, all of the member variables are
created automatically and are grouped under the given variable’s name.

5.4 Structure Contains Pointers
A pointer variable can also be used as a member in the structure.

Example:

struct

{

 int *p1;

 int * p2;

} *rr;

In the above, *rr is a pointer variable of structure type which holds inside it
another two pointer variables p1 and p2 as its members.

include <stdio.h>

main()

{

 sturct

 int *p1, *p2;

} *rr;

 Computer Science and Engineering360

 int a, b ;

 a = 70;

 b = 100’

 rr — p1 = &a;

 rr — p2 = & b;

 printf(“ The contents of pointer variables”);

 printf(“ Present in the structure as members are \n”);

 printf (‘%d %d”, *rr — p1, *rr — p2);

}

In the above program, two pointer variables p1 and p2 are declared as
members of the structure and their contents / variables are printer after assignment
in the program.

5.4.1 Self Referential Structures
Structures can have members which are of the type the same structure

itself in which they are included, This is possible with pointers and the
phenomenon is called as self referential structures.

A self referential structure is a structure which includes a member as pointer
to the present structure type.

The general format of self referential structure is

struct parent

{

memeber1;

memeber2;

———————;

———————;

 struct parent *name;

};

The structure of type parent is contains a member, which is pointing to
another structure of the same type i.e. parent type and name refers to the name
of the pointer variable.

 361Paper - II Programming in C

Here, name is a pointer which points to a structure type and is also an
element of the same structure.

Example

struct element

{

char name{20};

 int num;

struct element * value;

}

Element is of structure type variable. This structure contains three members

- a 20 elements character array called name

- An integer element called num

- a pointer to another structure which is same type called value. Hence it
is self referential structure.

These structure are mainly used in applications where there is need to arrange
data in ordered manner.

5.5 Unions
 Introduction

A Union is a collection of heterogeneous elements. That is, it is a group of
elements; each element is of different type. They are similar to structures. However,
there is a difference in the way the structures members and union members are
stored. Each member within a structure is assigned its own memory location.
But the union members all share the common memory location. Thus, unions are
used to save memory. Unions are chosen for applications involving multiple
members, where values need to be assigned to all of the members at any one
time.

5.6 Definition of Union
Union is a data type through which objects of different types and sizes can

be stored at different times.

The general form of union type variable declaration is

Union name

 Computer Science and Engineering362

{

data type member-1;

data type member-2;

data type member-3;

………………….

…………………

data type member-n;

}

The declaration includes a key word Union to declare the union data type.
It is followed by user defined name, followed by curly braces which includes the
members of the union

Example

union value

{

int no;

float sal;

char sex;

};

Characteristics of Union

1. Union stores values of different types in a single location in memory

2. A union may contain one of many different types of values but only one
is stored at a time.

3. The union only holds a value for one data type. If a new assignment is
made the previous value has no validity.

4. Any number of union members can be present. But, union type variable
takes the largest memory occupied by its members.

 363Paper - II Programming in C

 5.7 Differences between Structure and Unions

Model Questions
Short Answer Type Questions - 2 Marks

1. What is Structure? Write the syntax of “structure” (struct).

2. What is Pointer? Which variables are used to represent it?

3. What are the advantages of pointers?

 4. What are the operators used with pointers.

 Structure
1. Struct StructureName
{
datatype
member-1;
datatype
member-2;
 ….
 ….
datatype
member-n;
};
2. Every structure member is allocated
memory when a structure variable is
defined
3. All the members can be assigned
values at a time
4. All members of a structure can be
initialized at the same time

5. value assigned to one member will
not cause the change in other members

6. The usage of structure is efficient
when all members are actively used in
the program

 Union
1. Union name {
datatype
member-1;
datatype
member-2;
 ….
 ….
datatype
member-n;
};

2. The memory equivalent to the
largest item is allocated commonly for
all members
3. Values assigned to one ember may
cause the change in value of other
members.
4. Only one union member can be
initialized at a time
5. Value assigned to one member
may cause the change in value of
other members.
6. The usage o union is efficient when
members of it are not required to be
accessed at the same time.

 Computer Science and Engineering364

5.Write various operations performed by structure.

6 . What is a nested structure?

7. What advantage of structures over an Array?

8. What is Union? Write the syntax of Union.

Long Answer Type Questions - 6 Marks
1. What is Structure? Explain in detail.

2. Explain the advantages of structure type over the array the variable.

3. Explain about structure and arrays.

4. What is Union? Explain in detail.

5. What are differences between Structure and Unions?

	Unit 1
	Unit 2
	Unit 3
	Unit 4
	Unit 5

