SMS Notes

SYSTEM MODELLING AND SIMULATION
Module 1

Introduction: When simulation is the appropriate tool and when it is not appropriate,
Advantages and disadvantages of Simulation, Areas of application, Systems and system
environment; Components of a system, Discrete and continuous systems, Model of a
system, Types of Models, Discrete-Event System Simulation, Simulation examples,
Simulation of queuing systems. General Principles, Simulation Software, Concepts in
Discrete-Event Simulation, The Event-Scheduling / Time-Advance Algorithm, Manual
simulation Using Event Scheduling

Introduction to simulation

= A simulation: imitation of the operation of a real-world process or system over time:

Involves generation of an artificial history of a system.
Observes that history and draws inferences about system characteristics.

= Can be used as:

Analysis tool for predicting the effect of changes to existing systems.
Design tool to predict performance of new systems.

= Many real-world systems are very complex that cannot be solved mathematically.

Hence, numerical, computer-based simulation can be used to imitate the system
behavior.

A set of assumptions

-

concerning the behavior of a system

When to use Simulation?

= Simulation can be used for the purposes of:

Study and experiment with internal interactions of a complex system.

Observe the effect of system alterations on model behavior.

Gain knowledge about the system through design of simulation model.

Use as a pedagogical device to reinforce analytic solution methodologies, also to
verify analytic solutions.

Experiment with new designs or policies before implementation.

Determine machine requirements through simulating different capabilities.

For training and learning.

Show animation.

Model complex system.
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When Not to Use Simulation?

= Simulation should not be used when:

Problem can be solved by common sense.

Problem can be solved analytically.

If it is easier to perform direct experiments.

If the costs exceed the savings.

If the resources or time to perform simulation studies are not available.

If no data, not even estimates, is available.

If there is not enough time or personnel to verify/validate the model.

If managers have unreasonable expectations: overestimate the power of
simulation.

If system behavior is too complex or cannot be defined.

Advantages and Disadvantages of Simulation

= Advantages

New polices, operating procedures, decision rules, information flows,
organizational procedures, and so on can be explored without disrupting ongoing
operations of the real system.

New hardware designs, physical layouts, transportation systems, and so on, can be
tested without committing resources for their acquisition.

Hypotheses about how or why certain phenomena occur can be tested for
feasibility.

Insight can be obtained about the interaction of variables.

Insight can be obtained about the importance of variables to the performance of
the system.

Bottleneck analysis can be performed indicating where work-in-process,
information, materials, and so on are being excessively delayed.

A simulation study can help in understanding how the system operates rather than
how individuals think the system operates.

“What-if” questions can be answered. This is particularly useful in the design of
new system

= Disadvantages

Model building requires special training. It is an art that is learned over time and
through experience. Furthermore, if two models are constructed by two competent
individuals, they may have similarities, but it is highly unlikely that they will be
the same.

Simulation results may be difficult to interpret. Since most simulation outputs are
essentially random variables (they are usually based on random inputs), it may be
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hard to determine whether an observation is a result of system interrelationships
or randomness.

Simulation modeling and analysis can be time consuming and expensive.
Skimping on resources for modeling and analysis may result in a simulation
model or analysis that is not sufficient for the task.

Simulation is used in some cases when an analytical solution is possible, or even
preferable, as discussed in Section 1.2. This might be particularly true in the
simulation of some waiting lines where closed-form queuing models are
available.

Areas of Application

= The applications of simulation are vast.

= The Winter Simulation Conference: an excellent way to learn more about the latest in
simulation applications and theory.

= Some areas of applications:

= Manufacturing

Construction engineering and project management.
Military.

Logistics, supply chain, and distribution.
Transportation modes and traffic.

Business process simulation.

Healthcare.

Computer and communication systems.

=  WSC(Winter Simulation Conference) : http://www.wintersim.org

Manufacturing Applications
» Analysis of electronics assembly operations
» Design and evaluation of a selective assembly station for high-precision
scroll compressor shells
» Comparison of dispatching rules for semiconductor manufacturing using
large-facility models
» Evaluation of cluster tool throughput for thin-film head production
Determining optimal lot size for a semiconductor back-end factory
» Optimization of cycle time and utilization in semiconductor test
manufacturing
» Analysis of storage and retrieval strategies in a warehouse
» Investigation of dynamics in a service-oriented supply chain
» Model for an Army chemical munitions disposal facility
Semiconductor Manufacturing
» Comparison of dispatching rules using large-facility models
» The corrupting influence of variability

Y
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>
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A new lot-release rule for wafer fabs

Assessment of potential gains in productivity due to proactive reticle
management

Comparison of a 200-mm and 300-mm X-ray lithography cell

Capacity planning with time constraints between operations

300-mm logistic system risk reduction

e Construction Engineering

>
>
>
>
>

Construction of a dam embankment

Trenchless renewal of underground urban infrastructures
Activity scheduling in a dynamic, multiproject setting
Investigation of the structural steel erection process
Special-purpose template for utility tunnel construction

e Military Application

>
>

>
>
>

Modeling leadership effects and recruit type in an Army recruiting station
Design and test of an intelligent controller for autonomous underwater
vehicles

Modeling military requirements for nonwarfighting operations
Multitrajectory performance for varying scenario sizes

Using adaptive agent in U.S Air Force pilot retention

e Logistics, Transportation, and Distribution Applications

>

YVVVYVY VYV

YV V V

>

Evaluating the potential benefits of a rail-traffic planning algorithm
Evaluating strategies to improve railroad performance

Parametric modeling in rail-capacity planning

Analysis of passenger flows in an airport terminal

Proactive flight-schedule evaluation

Logistics issues in autonomous food production systems for extended-
duration space exploration

Sizing industrial rail-car fleets

Product distribution in the newspaper industry

Design of a toll plaza

Choosing between rental-car locations

Quick-response replenishment

e Business Process Simulation

>
>
>
>

Impact of connection bank redesign on airport gate assignment
Product development program planning

Reconciliation of business and systems modeling

Personnel forecasting and strategic workforce planning

e Human Systems

>
>

Modeling human performance in complex systems
Studying the human element in air traffic control
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Systems and System Environment

= A system is a group of objects joined together in some regular interaction or
interdependence to accomplish some purpose.
e e.g., a production system: machines, component parts & workers operate jointly
along an assembly line to produce vehicle.
e Affected by changes occurring outside the system.
= System environment: “outside the system”, defining the boundary between system and it
environment is important.

Components of a System

= Entity: an object of interest in the system.

= Attribute: a property of an entity.

= Activity: a time period of specified length.

= State: the collection of variables necessary to describe the system at any time, relative to
the objectives of the study.

= Event: an instantaneous occurrence that may change the state of the system.

= Endogenous: to describe activities and events occurring within a system.

= Exogenous: to describe activities and events in an environment that affects the system.

Table 1.1. Examples of Systems and Components

System Entities  Autributes Aclivities Events State Variables
Banking Customers Checking account  Making deposits  Arrival, Number of busy tellers; number
balance ' departure ol customers waiting
Rapid rail Riders Oripination; Traveling Arivalat  Number of riders waiting at each
destination station; station; number of dders in
amrivalal  _ transit
destination
Production Machines  Speed;capacity;  Welding; Breskdown  Status of machines (busy, idle,
breakdownrate  stamping - or down)
Communications Messages Length; Transmitting ~ Arrivalat  Number waiting to be transmitted
destination destination
Inventory Warehouse Capacity Wilhdrawing -~ Demand Levels of inventory; backlopged
- demands

Discrete and Continuous Systems

= Systems can be categorized as discrete or continuous.

e Bank : a discrete system
e The head of water behind a dam : a continuous system
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Discrete System:

= |s one in which the state variable change only at a discrete set of points in time.

= The bank is an example, since the state variable the number of customer in the bank
changes only when a customer arrives or when the service provided a customer is
completed.

Continuous system:

= |s one in which the state variable change continuous over time.
= Head of water behind a dam, during and for some time after a rain storm water flow into
the lake behind the dam.

Model of a System

= Studies of systems are often accomplished with a model of a system.
= A model: a representation of a system for the purpose of studying the system.
e Asimplification of the system.
e Should be sufficiently detailed to permit valid conclusions to be drawn about the
real system.
e Should contain only the components that are relevant to the study.

Types of Models

= Two types of models: mathematical or physical.
= Mathematical model: uses symbolic notation and mathematical equations to represent a
system.
e Simulation is a type of mathematical model.
= Simulation models:
e Static or dynamic.
e Deterministic or stochastic.
e Discrete or continuous.
= Qur focus: discrete, dynamic, and stochastic models.
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= Static or Dynamic Simulation Models

e Static simulation model (called Monte Carlo simulation) represents a system at a
particular point in time.

e Dynamic simulation model represents systems as they change over time
= Deterministic or Stochastic Simulation Models
e Deterministic simulation models contain no random variables and have a known
set of inputs which will result in a unique set of outputs

e Stochastic simulation model has one or more random variables as inputs. Random
inputs lead to random outputs.
= The model of interest in this class is discrete, dynamic, and stochastic.

Discrete-Event System Simulation

= The simulation models are analyzed by numerical rather than by analytical methods

e Analytical methods employ the deductive reasoning of mathematics to solve the
model.

e Numerical methods employ computational procedures to solve mathematical
models.

Steps in a Simulation Study

1
Problem
formulation

2

Setting of

objectives

and overall
project plan

¥

3 4
Model Data
conceptualization collection

Figure 1.3. Steps in a simulation study.
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= Problem formulation
e Policy maker/Analyst understand and agree with the formulation.
= Setting of objectives and overall project plan
= Model conceptualization
e The art of modeling is enhanced by an ability to abstract the essential features of a
problem, to select and modify basic assumptions that characterize the system, and
then to enrich and elaborate the model until a useful approximation results.
= Data collection
e As the complexity of the model changes, the required data elements may also
change.
= Model translation
e GPSS/H™ or special-purpose simulation software
= Verified?
e |s the computer program performing properly?
e Debugging for correct input parameters and logical structure
= Validated?
e The determination that a model is an accurate representation of the real system.
e Validation is achieved through the calibration of the model
= Experimental design
e The decision on the length of the initialization period, the length of simulation
runs, and the number of replications to be made of each run.
= Production runs and analysis
e To estimate measures of performances
= More runs?
= Documentation and reporting
e Program documentation : for the relationships between input parameters and
output measures of performance, and for a modification
® Progress documentation: the history of a simulation, a chronology of work done
and decision made.
= |mplementation
= Four phases according to Figure 1.3
e First phase : a period of discovery or orientation
(Step 1, step2)
e Second phase : a model building and data collection
(Step 3, step 4, step 5, step 6, step 7)
e Third phase : running the model
(Step 8, step 9, step 10)
e Fourth phase : an implementation
(Step 11, step 12)
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Simulation Examples
= The simulations are carried out by following steps:

e Determine the characteristics of each of the inputs to the simulation. Quite often,
these may be modeled as probability distributions, either continuous or discrete.

e Construct a simulation table. Each simulation table is different, for each is
developed for the problem at hand.

e For each repetition i, generate a value for each of the p inputs, and evaluate the
function, calculating a value of the response yi. The input values may be
computed by sampling values from the distributions determined in step 1. A
response typically depends on the inputs and one or more previous responses.

= Simulation examples are in queuing, inventory, reliability and network analysis.

= The simulation table provides a systematic method for tracking system state over time.

Simulation of Queuing Systems

Waiting Line

Server

Calling population

Fig. 2.1 Queuing System

= A queuing system is described by its calling population, the nature of the arrivals, the
service mechanism, the system capacity, and the queuing discipline.

= |n the single-channel queue, the calling population is infinite.

e If a unit leaves the calling population and joins the waiting line or enters service,
there is no change in the arrival rate of other units that may need service.
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Arrivals for service occur one at a time in a random fashion.
e Once they join the waiting line, they are eventually served.

= Service times are of some random length according to a probability distribution which
does not change over time.

= The system capacity has no limit, meaning that any number of units can wait in line.

e Finally, units are served in the order of their arrival (often called FIFO: First In,
First out) by a single server or channel

= Arrivals and services are defined by the distribution of the time between arrivals and the
distribution of service times, respectively.

= For any simple single- or multi-channel queue, the overall effective arrival rate must be
less than the total service rate, or the waiting line will grow without bound.

® |n some systems, the condition about arrival rate being less than service rate may
not guarantee stability

= System state: the number of units in the system and the status of the server(busy or idle).

= Event: a set of circumstances that cause an instantaneous change in the state of the
system.

® In a single-channel queuing system there are only two possible events that can
affect the state of the system.

» the arrival event: the entry of a unit into the system
» The departure event: the completion of service on a unit.
= Simulation clock: used to track simulated time.

= |f a unit has just completed service, the simulation proceeds in the manner shown in the
flow diagram of Figure 2.2.

¢ Note that the server has only two possible states: it is either busy or idle.

Departure
Event

Another unit
waiting?

Remove the waiting unit
from the queue

!

‘ Begin servicing the unit

Begin server
idle time

Fig. 2.2 Service-just-completed flow diagram

= The arrival event occurs when a unit enters the system.
e The unit may find the server either idle or busy.
> ldle: the unit begins service immediately
» Busy: the unit enters the queue for the server.
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Arrival
Event

Unit enters Mo Yes | Unit enters queue
service for service

Fig. 2.3 Unit-entering-system flow diagram

Quepe stalus

Mol emply Empty

Sarver Busy Ernler quene | Enter quecus

stalus Idle Impossible | Enter service

Figure 2.4 Potential unit actions uvpon arrival.

Mieue Status

Not empty Empty

Server Busy %’/f’ Impossible
oulcomes 1dle Impossible ?_/// /

Figure 2.5 Server outcomes after the completion of service.

Problems:
Single channel queuing system problem formulas:
1. Time Customer wait in queue= Time service begin — Arrival Time
2. Time Service End= Service time + Time service begin
3. Time customer Spend In system= Time service end-Arrival Time
4. ldle Time of Server=Time service Begin (N)-Time Service end (N-1)
Standard Formulas:
1. Average waiting time (i.e. customer wait)=total time customer wait in queue / Total
number of customer
2. Probability (Wait i.e. customer wait) =Number of Customer who wait / Total number
of customer
3. Probability of idle server (idle time of server) =total idle time of server / total run time
of simulation
4. Average service time=total service time/total number of customer
5. Average times between arrivals=sum of all times between arrival/number of arrivals-1
6. Average waiting time those who wait in queue=total time customer wait in queue/total
number of customer who wait
7. Average time customer spend In the system=Total time customer spend in system/total
number of customer
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SMS Notes

General Principles

Note

Develops a common framework for the modeling of complex systems.
Covers the basic blocks for all discrete-event simulation models.

Introduces and explains the fundamental concepts and methodologies underlying all
discrete-event simulation packages.

e These concepts and methodologies are not tied to any particular simulation
package.

Deals exclusively with dynamic, stochastic systems.

Discrete-event models are appropriate for those systems for which changes in system
state occur only at discrete points in time.

e Covers general principles and concepts:
» Event scheduling/time advance algorithm.
» The three prevalent world views.
e Introduces some of the notions of list processing.
System: a collection of entities that interact together over time, e.g., people and machines.
Model: an abstract representation of a system.

System state: a collection of variables that contain all the info necessary to describe the
system at any time.

Entity: any object or component in the system, e.g., a server, a customer, a machine.
Attributes: the properties of a given entity.

Lists: a collection of associated entities, ordered in some  logical fashion such as sets,
queues and chains.

Event: an instantaneous occurrence that changes the state of a system, e.g., an arrival of a
new customer.

Event list: a list of event notices for future events, ordered by time of occurrence such as
the future event list (FEL)

Activity: duration of time of specified length which is known when it begins, e.g., a
service time.

Simulation Clock: a variable representing simulated time.

- different simulation packages use different terminology for the same or similar concepts.
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SMS Notes

Event Scheduling/Time Advance Algorithm

= The mechanism for advancing simulation time and guaranteeing that all events occur in
correct chronological order is based on the future event list (FEL).

= At any given time t, the FEL contains all previously scheduled future events and their
associated event times (ty,t, ...)

e FEL is ordered by event time, and the event time satisfy:

t<sthis <3< ...<t, where t is the value of CLOCK

Update Remaove event from
system Advance FEL and execute
snapshot ¢, |L_clockto fis event, =7 +1

0ld zystem snapshot at Hime ¢

System
CLOCK State .. Future Event List
¥ (5,1, 6} {3, }— Type 3 event to occur at ime §;

{1, t3}— Type 1 event to occur at ime &
{1, #3}— Type 1 event to occur at time #3

{2, £n}— Type 2 event to occur at dme &,

Event-schedulingftime-advance algorithm
Step 1. Remove the event notice for the imminent event
{event 3, ime ¢, ) from FEL
Step 2. Advance CLOCK to imminent event time
{i.e., advance CLLOCK from f to ¢ }.
Step 3. Execute imminent event update system state,
change entity atiributes, and zet membership az needed.
Step 4. Generate future events {if necessary) and
place their event notices on FEL ranked by event time.
{Example: Event 4 to occur at time t*, where & < * < 3.)
Step 5. Update cumulative statizstics and counters.

MNew system snapshot at time £

Kystem
CLOCK State . Future Event List
h (5,1, 5} {1, t2}— Type 1 event to occur at ime &

{4, #¥*}— Type 4 event to occur at ime t*
(1,233— Type 1 event to occur at Hime &

{2, £,}— Type 2 event to occur at dme &,

Figure 3.2 Advancing simulation time and updating system image.

Mr. Srinivasa R, Dept. of CSE Page 13



SMS Notes

Manual Simulation Using Event Scheduling

In an event-scheduling simulation, a simulation table is used to record the successive system
snapshots as time advances.
Let us consider the example of a grocery shop which has only one checkout counter. (Single-
Channel Queue) The system consists of those customers in the waiting line plus the one (if any)
checking out. The model has the following components:
= System state (LQ(t), LS(t)) :
e LQ(t) is the number of customers in the waiting line
e LS(t) is the number being served (0 or 1) at time t
= Entities: The server and customers are not explicitly modeled, except in terms of the
state variables above.
= Events:
e Arrival (A)
e Departure (D)
e Stopping event (E), scheduled to occur at time 60.
= Event notices (event type, event time) :
e (A, t), representing an arrival event to occur at future time t
e (D, 1), representing a customer departure at future time t
e (E, 60), representing the simulation-stop event at future time 60.
= Activities:
e Interarrival time
e Service time
= Delay: Customer time spent in waiting line.
% FEL will always contain two or three event notices.
% Event logic — execution of arrival event.

Arrival event
occurs at CLOCK = ¢

Step 3 Step 3
No Yes
Set LS(2) =1 @ Incre%s;ll.Q(t)

Step 4

Generate service time s5%;
schedule new departure
event at time ¢ + s*

V4 siweps

Generate interarrival time a*;
schedule next arrival
event at time ¢ + a*

Y Step 5

Collect statistics

A

Return control to
time-advance routine
to continue simulation
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SMS Notes

DS

Step 3

Set LS(N =0

% Event logic — execution of departure event

Departure event

occurs at CLOCK = ¢

No

Step 3

Reduce LO(r)
byl

Step 4

Generate service time s¥%;
schedule new departure
event at time ¢ + s*

& 1 Step 5

Collect statistics

y

Return control to
time-advance routine
to continue simulation

Mr. Srinivasa R, Dept. of CSE
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SMS Notes

SYSTEM MODELLING AND SIMULATION
Module 2

Statistical Models in Simulation: Review of terminology and concepts, Useful statistical
models, discrete distributions, Continuous distributions, Poisson process, Empirical
distributions. Queuing Models: Characteristics of queuing systems, Queuing notation, Long-run
measures of performance of queuing systems, Long-run measures of performance of queuing
svstems, Steadv-state behavior of M/G/1 aueue, Networks of aueues

Statistical Models in Simulation

= The world the model-builder sees is probabilistic rather than deterministic.
e Some statistical model might well describe the variations.
= An appropriate model can be developed by sampling the phenomenon of interest:
e Select a known distribution through educated guesses
e Make estimate of the parameter(s)
e Test for goodness of fit
= In this chapter:
e Review several important probability distributions
e Present some typical application of these models

Review of Terminology and Concepts

= |n this section, we will review the following concepts:
Discrete random variables

Continuous random variables

Cumulative distribution function

Expectation

% Discrete Random Variables
e X is a discrete random variable if the number of possible values of X is finite, or
countably infinite.
e Example: Consider jobs arriving at a job shop.
e Let X be the number of jobs arriving each week at a job shop.
o Rx = possible values of X (range space of X) ={0,1,2,...}
o p(x;) = probability the random variable is x; = P(X = x;)
o p(x), i=12 .. must satisfy:
1. p(x)=0, foralli

2. ZZI p(x)=1

Mr. Srinivasa R, Dept. of CSE Page 1



SMS Notes

o The collection of pairs [x;, p(xi)/, i = 1,2,..., is called the probability distribution of X, and
p(x;) is called the probability mass function (pmf) of X.

=  Example: Assume the die is loaded so that the probability that a given face lands
up is proportional to the number of spots showing.

px)

5/21 —

P(Xi) 1/21 | 2/21 | 3/21 | 4/21 | 5/21 | 6/21

4/21 |-

3/21 —

o p(xy), i =12 ... must satisfy: L
1 p(Xi) >0, foralli 1721 |- I
2. Zzl p(x)=1

% Continuous Random Variables

= X is a continuous random variable if its range space Ry is an interval or a collection of
intervals.
= The probability that X lies in the interval [a, b] is given by:

P(a<X <b) = [ f(x)dx
= f(x), denoted as the pdf of X, satisfies:

1. f(x)=0, forall xin R,

2. [ f()dx=1

Rx

3.f(x)=0, if xisnotinR,

flx)

= Properties
1. P(X =x,) =0, because Xx°f(x)dx:0
2. P(a< X <b)=P(a< X <b)=P(a< X <b) = P(a< X <b)

= Example: The die-tossing experiment described in last example has a cdf given as
follows:

X (-o,1) | [1,2) [2,3) [3,4) [4,5) [5,6) [6,00)

F(x) 0 1/21 | 3/21 6/21 10/21 | 15/21 | 21/21

Mr. Srinivasa R, Dept. of CSE Page 2



SMS Notes

e [a,b)={a<x<b} nml -

18/21 |—

15/21 |—

12/21 |—

w21 |-
6/21 |—
321 |-
1 I 1 1

= Example: Life of an inspection device is given by X, a continuous random variable with

pdf:
1 x/2 ’ :
—e ", x=20 s
F(x) =12 _ =
0, otherwise

e X has an exponential distribution with mean 2 years
e Probability that the device’s life is between 2 and 3 years is:

P
P(2§x£3)—ELe dx=0.14

= Arandom variable X is uniformly distributed on the interval (a, b) if its PDF is given by

— ., a<x<b
f(X)=1p-a
0, otherwise

= The CDF is given by

0, X<a
F)=12"2  a<x<b
b-a
1 X>b
= The PDF and CDF when

a=1 and b=6:
1) Fx)

02} 1.0

J

08—

0.6 |-
01

0.4 -

0.2 -

(= ST Ty ————
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% Exponential Distribution
= A random variable X is said to be exponentially distributed with parameter if its PDF is

given by
-AX >
F(x) = A, x>0 |
0, otherwise
fx) Fx)
N ] P ——
0 X 0 X

% Gamma Distribution
= A function used in defining the gamma distribution is the gamma function, which is
defined for all g >0as

I'(B) = Txﬂ‘le‘xdx

= A random variable X i gamma distributed with parameters ~ and if its PDF is given

by
fix)
1.0
0.9
ﬁg (ﬂ&()ﬂl ﬂ&(' X>0 08l 6o
F)=11(8)
0, otherwise 06]- fuz

05+
04+ p=1
0
0.1
0.0 | 1 | | l | |

| | | | |
00 02 04 06 08 10 12 14 16 18 20 22 24 26 28 30y

«» Normal Distribution

= A random variable X with mean —oo<X<w and variance o2>0 has a normal
distribution if it has the PDF

X~ ‘u) ],—0 < X<

f(x)= 6\/— e><|0[——(

Mr. Srinivasa R, Dept. of CSE Page 4
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L X4

R/
A X4

Example: Suppose that X ~ N (50, 9).
56-50

F(56) = @( 3

) = ®(2) =0.9772

Example: The time in hours
required to load a ship, X, is
distributed as N(12, 4). The
probability that 12 or more
hours will be required to load

the ship is:

P(X>12)=1-F (12) = 1-0.50 = 0.50

(The shaded portions in both figures)

The probability that between
10 and 12 hours will be required

to load a ship is given by

Z

>

S

0.3413

A

#(z)

()JV

| n =0

P (10 <X <12) = F (12) — F (10) = 0.5000 — 0.1587 = 0.3413

The area is shown in shaded portions of the figure

Triangular Distribution

A random variable X has a triangular distribution if its PDF is given by

2(x—a)
(b-a)c—a)’

f(x)= 2(c—x)
(c—b)(c—a)’

as<x<b

b<x<c

0, elsewhere

Mr. Srinivasa R, Dept. of CSE
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Where a<b<c.

r&)

Height = 2/(c — a)

2
[ 7
(3}
Ead

% Lognormal Distribution

= Arandom variable X has a lognormal distribution if its PDF is given by

1 (Inx - u)®
——exp[-—=2], 0
0= Jarox P 02 1 X>
0, otherwise

where &%2>0

f(x)

«» Beta Distribution

= Arandom variable X is beta-distributed with parameters g, >0 andg, >0 if its PDF is

given by
Al _ )51
f _ %’ O<x<l1
(X)=1 B(A.5)
0, otherwise 5
where = e g \
F F 0.5 —| ’,"" “‘\\
BUA. /) = - (ﬂ%(ﬂﬁﬂz) B

Mr. Srinivasa R, Dept. of CSE Page 6
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o
A5

Poisson Process

Consider the time at which arrivals occur.

Let the first arrival occur at time A1, the second occur at time A;+A,, and so on.

The probability that the first arrival will occur in [0, t] is given by

] |

Aq

I T
r A]

A,

A+ A

Empirical Distributions

Example:

Customers arrive at lunchtime in groups of from one to eight persons.
The number of persons per party in the last 300 groups has been observed.

P(A <t)=1-e™*

The results are summarized in a table.
The histogram of the data is also included.

Arrivals  Frequency Relative Cumulative
per Frequency Relative
Party Frequency
1 30 0.10 0.10

2 110 0.37 0.47

3 45 0.15 0.62

4 71 0.24 0.86

5 12 0.04 0.90

6 13 0.04 0.94

7 7 0.02 0.96

8 12 0.04 1.00

The CDF in the figure is called the empirical distribution of the given data.

Cumulative relative frequency

oy
o

I £ e
'S o &0

=
1Y)

Relative frequency

=

=]
%Y

=
o
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% Cumulative Distribution Function
= Cumulative Distribution Function (cdf) is denoted by F(x), where F(x) = P(X <= Xx)

e If X is discrete, then FO) =Y p(x)

all
X <X

e IfXiscontinuous, then  F()=[ f(t)dt

= Properties
1. Fisnondecreasing function. If a <b, then F(a) < F(b)
2. lim,__ F(x)=1
3. lim,_,_ F(x)=0
= All probability question about X can be answered in terms of the cdf, e.g.:

P(a< X <b)=F(b)-F(a), forall a<b

= Example: An inspection device has cdf:
S
2Jdo

e The probability that the device lasts for less than 2 years:
PO<X<2)=F(2-F(0)=F(2)=1-e"=0.632
e The probability that it lasts between 2 and 3 years:
P2<X<3)=F@B)-F()=(1-e®?)-(1-e")=0.145
% Expectation

= The expected value of X is denoted by E(X)
E(x)= zxi p(x;)

alli

e If Xisdiscrete
e IfXiscontinuous E() =] xf()dx

e ak.athe mean, m, or the 1* moment of X
e A measure of the central tendency
= The variance of X is denoted by V(X) or var (X) or ¢*
e Definition: V(X) = E[(X - E[X]?]
e Also, V(X) = E(X) - [EX)]?
e A measure of the spread or variation of the possible values of X around the mean

Mr. Srinivasa R, Dept. of CSE Page 8



SMS Notes

The standard deviation of X is denoted by o
e Definition: square root of V(X)
e Expressed in the same units as the mean

Example: The mean of life of the previous inspection device is:

_l “ va=X24y —x/2|" X124y _
E(X)_EL xe “dx=—Xe 0+J‘Oe dx=2

= To compute variance of X, we first compute E(X?):

00

—X/2 +_[:e’x’2dx: 8
0

axﬁzgﬁ&%”wx=—xze

Hence, the variance and standard deviation of the device’s life are:
V(X)=8-2*=4
o=,V(X)=2

Useful Statistical Models

= In this section, statistical models appropriate to some application areas are presented. The
areas include:
e Queueing systems
e Inventory and supply-chain systems
e Reliability and maintainability
e Limited data

% Queueing Systems

= In a queueing system, interarrival and service-time patterns can be probabilistic (for more
queueing examples, see Chapter 2).
= Sample statistical models for interarrival or service time distribution:
e Exponential distribution: if service times are completely random
e Normal distribution: fairly constant but with some random variability (either positive
or negative)
e Truncated normal distribution: similar to normal distribution but with restricted
value.
e Gamma and Weibull distribution: more general than exponential (involving location
of the modes of pdf’s and the shapes of tails.)
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% Inventory and supply chain

= Inrealistic inventory and supply-chain systems, there are at least three random variables:
e The number of units demanded per order or per time period
e The time between demands
e The lead time
= Sample statistical models for lead time distribution:
e Gamma
= Sample statistical models for demand distribution:
e Poisson: simple and extensively tabulated.
e Negative binomial distribution: longer tail than Poisson (more large demands).
e Geometric: special case of negative binomial given at least one demand has occurred.

% Reliability and maintainability

= Time to failure (TTF)
e Exponential: failures are random
e Gamma: for standby redundancy where each component has an exponential TTF
e Weibull: failure is due to the most serious of a large number of defects in a system of
components
e Normal: failures are due to wear

«» Other areas

= For cases with limited data, some useful distributions are:
e Uniform, triangular and beta
= Other distribution: Bernoulli, binomial and hyperexponential.

Discrete Distributions

= Discrete random variables are used to describe random phenomena in which only integer
values can occur.
= Inthis section, we will learn about:
e Bernoulli trials and Bernoulli distribution
e Binomial distribution
e Geometric and negative binomial distribution
e Poisson distribution

«+ Bernoulli Trials and Bernoulli distribution

= Bernoulli Trials:
e Consider an experiment consisting of n trials, each can be a success or a failure.
> Let X =1 if the jth experiment is a success
» and X; = 0 if the jth experiment is a failure
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e The Bernoulli distribution (one trial):

pl XJ :1,j:1,2,...,n
p;(X;)=p(x;)=41-p=0q, x;=0j=12,..n
0, otherwise

e where E(X)=pandV(X)=p(1l-p)=pq

= Bernoulli process:
e The n Bernoulli trials where trails are independent:

P(X1,X2, ..., Xn) = P1(X) P2(X2) ... Pn(Xn)
«» Binomial Distribution

=  The number of successes in n Bernoulli trials, X, has a binomial distribution.

The number of Probability that there

outcomes having the are
required number of X successes and (n-x)
successes and failures failures

e Themean Ex)=p+p+..+p=n*
e The variance, V(X) =pg + pqg + ... + pqg = n*pq

% Geometric & Negative Binomial Distribution
= Geometric distribution

e The number of Bernoulli trials, X, to achieve the 1% success:

q'p, x=012,..,n
X) =
Pix) {O, otherwise
e E(X) =1/p, and V(X) = g/p?
= Negative binomial distribution

e The number of Bernoulli trials, X, until the k™ success
e If Y is a negative binomial distribution with parameters p and k, then:

y-1)
p(X) = (k—J 9’ p", y=kk+Lk+2,.

0, otherwise

e E(Y)=k/p, and V(X) = kq/p?
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«+ Poisson Distribution

= Poisson distribution describes many random processes quite well and is mathematically quite
simple.

e wherea>0, pdf and cdf are:

e %a” X e
() =131 x=01,.. F(x)—iZ:o: :

0, otherwise
e EX)=a=V(X)

Py F(x)

0.30 |—

0.9
0.8
0.7
0.6
0.15 |—
0.5
0.4
0.10 |
0.3

0.2

I 1 - ! 1

| |
0 1 2 3 4 s 6 E 1 2 3 4 5 o 7 8
(a) (b)

0.05 |

1 1 1 1 1

= Example: A computer repair person is “beeped” each time there is a call for service. The
number of beeps per hour ~ Poisson(a = 2 per hour).
e The probability of three beeps in the next hour:

p(3) =e22%31=0.18
also, p(3) =F(@3)-F(2)=0.857-0.677=0.18
e The probability of two or more beeps in a 1-hour period:
p(2 or more) =1-p(0)-p(1)
=1-FQ)
=0.594
Continuous Distributions

= Continuous random variables can be used to describe random phenomena in which the
variable can take on any value in some interval.
= In this section, the distributions studied are:

e Uniform

e Exponential
e Normal

e Weibull

e Lognormal
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«» Uniform Distribution

= A random variable X is uniformly distributed on the interval (a,b), U(a,b), if its pdf and

cdf are:
L a<x<hb 0, X<a
f(X): E' - == _ X—a <
0, otherwise F(x) b a’ a<x<b
1 X>Db

= Properties
o P(x;y < X <Xyp) is proportional to the length of the interval
[F(x2) — F(x1) = (x2-x1)/(b-a)]
e E(X)=(at+h)/2 V(X) = (b-a)%/12

= U(0,1) provides the means to generate random numbers, from which random variates can
be generated.

% Exponential Distribution

= Arandom variable X is exponentially distributed with parameter | > 0 if its pdf and cdf are:

0

ie—ix, XZO _ 0, X<0
f(x)={o, elsewhere F(X)_{j e dt=1-e*, x>0

2 ftx)

» EX) =11 Vix) = 1/1

= Used to model interarrival times "

when arrivals are completely 14

random, and to model service

times that are highly variable

= For several different exponential o8

pdf’s (see figure), the value of N

intercept on the vertical axis is I, B
and all pdf’s eventually intersect. - S

=  Memoryless property

e Forall s and t greater or equal to O:
PX>s+t| X >s)=P(X>1)
e Example: A lamp ~ exp(l = 1/3 per hour), hence, on average, 1 failure per 3 hours.

» The probability that the lamp lasts longer than its mean life is:
P(X >3)=1-(1-e**) =e' = 0.368
» The probability that the lamp lasts between 2 to 3 hours is:
P2<=X<=3)=FQ3)-F(2)=0.145
» The probability that it lasts for another hour given it is operating for 2.5
hours:

P(X>35|X>25)=P(X>1)=e?=0.717
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*
°

Normal Distribution
= Arandom variable X is normally distributed has the pdf:

f(x)= L exp{—l(x_—”j } —0< X<

oN2r 2

e Mean: ~®P<HU<O
e Variance: ¢%>0

2

e Denoted as X ~ N(u,0)
= Special properties:

e lim_ _ f(x)=0,andlim_, f(x)=0

o f(u-xX)=f(u+x); the pdf is symmetric about .

e The maximum value of the pdf occurs at X = x; the mean and mode are equal.
= Evaluating the distribution:

e Use numerical methods (no closed form)

e Independent of u and o, using the standard normal distribution:

Z~N(0,1)
e Transformation of variables: let Z = (X - 1) / o,

F(x) = P(X SX):P(Z < X‘”j

(o)
(x-p)l o l —72/2
= —e " '“dz
LO 2 where @(Z)—JZ 1 gy
= [""" g(2)dz=0(*2) ' =2r

= Example: The time required to load an oceangoing vessel, X, is distributed as N(12,4)
e The probability that the vessel is loaded in less than 10 hours:

F(10)= cp(%j — d(~1) = 0.1587
» Using the symmetry property, ®(1) is the complement of @ (-1)

$(2) o(2)

0.1587
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< Weibull Distribution

= Arandom variable X has a Weibull distribution if its pdf has the form:

x—v ) x—v )’ ’

o0-120"") eXpH - } v

0, otherwise ]Q

= 3 parameters: 1
e Location parameter: v, (-0 <V <) 12

e Scale parameter: g, (8> 0) .

e Shape parameter. o, (>0) \/”,

* Example: v=0and o= 1: When 8= 1, ul
X~exp(Ad=1a) 0l

% Lognormal Distribution

= Arandom variable X has a lognormal distribution if its pdf has the form:

1 (Inx— ) 15
—eXp| ——— |, x>0 ]
f() =1 V2zox p{ 207 ]
0, otherwise -
u+02/2 0.5 |
e MeanE(X)=e
. 2H+02/2( 02
e Variance V(X) =e e -1)

= Relationship with normal distribution
2

2 Y
e WhenY~N(u o) thenX=e ~lognormal(y, o)
2

e Parameters pand o are not the mean and variance of the lognormal

Queuing Models

= Simulation is often used in the analysis of queueing models.
= A simple but typical queueing model:

Server

Waiting line of
Calling population customers
of potential customers

00 [ |
00 02 04 06 08 L0 12 14 1§ |

8 20 22 14

26

28 30 «x

= Queueing models provide the analyst with a powerful tool for designing and evaluating

the performance of queueing systems.
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= Typical measures of system performance:
e Server utilization, length of waiting lines, and delays of customers
e For relatively simple systems, compute mathematically
e For realistic models of complex systems, simulation is usually required.

Characteristics of Queueing Systems

= Key elements of queueing systems:
e Customer: refers to anything that arrives at a facility and requires service, e.g.,
people, machines, trucks, emails.
e Server: refers to any resource that provides the requested service, e.g.,
repairpersons, retrieval machines, runways at airport.

Calling Population

= Calling population: the population of potential customers, may be assumed to be finite or
infinite.

e Finite population model: if arrival rate depends on the number of customers being
served and waiting, e.g., model of one corporate jet, if it is being repaired, the
repair arrival rate becomes zero.

e Infinite population model: if arrival rate is not affected by the number of
customers being served and waiting, e.g., systems with large population of
potential customers.

System Capacity

= System Capacity: a limit on the number of customers that may be in the waiting line or
system.
e Limited capacity, e.g., an automatic car wash only has room for 10 cars to wait in
line to enter the mechanism.
e Unlimited capacity, e.g., concert ticket sales with no limit on the number of
people allowed waiting to purchase tickets.
Arrival Process

= For infinite-population models:
e Interms of interarrival times of successive customers.
e Random arrivals: interarrival times usually characterized by a probability
distribution.
» Most important model: Poisson arrival process (with rate 1), where A,
represents the interarrival time between customer n-1 and customer n, and
is exponentially distributed (with mean 1/1).
e Scheduled arrivals: interarrival times can be constant or constant plus or minus a
small random amount to represent early or late arrivals.
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» e.g., patients to a physician or scheduled airline flight arrivals to an

airport.

e At least one customer is assumed to always be present, so the server is never idle,
e.g., sufficient raw material for a machine.

= For finite-population models:

e Customer is pending when the customer is outside the queueing system, e.g.,
machine-repair problem: a machine is “pending” when it is operating, it becomes
“not pending” the instant it demands service form the repairman.

e Runtime of a customer is the length of time from departure from the queueing
system until that customer’s next arrival to the queue, e.g., machine-repair
problem, machines are customers and a runtime is time to failure.

e Let A9 A® ... be the successive runtimes of customer i, and S;:0. 5,0 pe the
corresponding successive system times:

|‘

A®

5,

l A2(3)

5,

-_|4

Machine 3:

Queue Behavior and Queue Discipline

Pending

Open
(system time)

First arrival
of machine 3

Pending

Second arrival
of machine 3

Open
(system time)

= Queue behavior: the actions of customers while in a queue waiting for service to begin,

for example:

o Balk: leave when they see that the line is too long,

e Renege: leave after being in the line when its moving too slowly,

e Jockey: move from one line to a shorter line.

= Queue discipline: the logical ordering of customers in a queue that determines which
customer is chosen for service when a server becomes free, for example:

e First-in-first-out (FIFO)

e Last-in-first-out (LIFO)
e Service in random order (SIRO)

e Shortest processing time first (SPT)
e Service according to priority (PR).

Service Times and Service Mechanism

= Service times of successive arrivals are denoted by S;, S,, Ss.
e May be constant or random.
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Page 17



SMS Notes

e {Si, Sz, Sz, ...} is usually characterized as a sequence of independent and
identically distributed random variables, e.g., exponential, Weibull, gamma,
lognormal, and truncated normal distribution.

= A queueing system consists of a number of service centers and interconnected queues.

e Each service center consists of some number of servers, c, working in parallel,
upon getting to the head of the line, a customer takes the 1% available server.

= Example: consider a discount warehouse where customers may:

e Serve themselves before paying at the cashier:

Service center 1

Queue 1

c=o
(self-service)

Service center 3

Arrivals Queue 3 Departures
f———

c=1
(cashier)

Service center 2

Queue 2 c=3

(3 clerks)

e Wait for one of the three clerks:

Service center 2

Server 1

Arrivals Departures
Server 2

Server 3

e Batch service (a server serving several customers simultaneously), or customer
requires several servers simultaneously.

Queueing Notation

= A notation system for parallel server queues: A/B/c/N/K
e A represents the interarrival-time distribution,
e B represents the service-time distribution,
e c represents the number of parallel servers,
e N represents the system capacity,
e K represents the size of the calling population.

Mr. Srinivasa R, Dept. of CSE Page 18



SMS Notes

= Primary performance measures of queueing systems:
e P, steady-state probability of having n customers in system,
e Py(t): probability of n customers in system at time t,

o A arrival rate,

o 1.  effective arrival rate,

o service rate of one server,

o [ server utilization,

o A interarrival time between customers n-1 and n,

o S service time of the nth arriving customer,

e W, total time spent in system by the nth arriving customer,
e W, total time spent in the waiting line by customer n,

e L(t): the number of customers in system at time t,

e Lo(t): the number of customers in queue at time t,

o L: long-run time-average number of customers in system,
e Lo long-run time-average number of customers in queue,
e W : long-run average time spent in system per customer,

e Wq: long-run average time spent in queue per customer.

Long-run Measures of performance of queueing systems

= The primary long run measures of performance of queueing system are the long run time
average number of customer in s/m(L) & queue(Lq)

= The long run average time spent in s/m(w) & in the queue(wg) per customer

= Server utilization or population of time that a server is busy (p).

Time-Average Number in System L
= Consider a queueing system over a period of time T,

e Let T; denote the total time during [0,T] in which the system contained exactly i
customers, the time-weighted-average number in a system is defined by:

[zlziTi: i(ﬂj
T io \ T

e Consider the total area under the function is L(t), then,

lE. 1
L:?Zoll'l'iz?jo L(t)dt

e The long-run time-average # in system, with probability 1:

~ 1 T
[==[ LOdt>L as T
T b
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e The time-weighted-average number in queue is:

~ 1&. 1,7
LQ=?§|TP=?IO Lt)dt>L, as T oo

e G/G/1/N/K example: consider the results from the queuing system (N > 4, K > 3).

L(#)
s = L =[0(3) +1(12) + 2(4) +3(1)]/ 20
=23/20=1.15cusomters
o S _
: : 0, if L({t)=0
5 5 LQ(t):{Lt 1, if L) >1
1T1|.T_1; ) il ()_’ I ()_
B L | L, = 0W9) +14)+2) _ 5 3customers
SRS L. SIS . X ST '

Average Time Spent in System per Customer w

= The average time spent in system per customer, called the average system time, is:

Where Wy, Wy, ..., Wy are the individual times that each of the N customers spend
in the system during [0,T].

e For stable systems: Ww—w as N —>o
e If the system under consideration is the queue alone:

. N
WQ:NZ:;Wi —>w, as N-oow»

e G/G/1/N/K example (cont.): the average system time is

= 4.6 time units

5 5

Server Utilization
= Definition: the proportion of time that a server is busy.

e Observed server utilization, 2 is defined over a specified time interval [0, T].
e Long-run server utilization is p.
e For systems with long-run stability: 5 p as T -

= For G/G/1/%/% queues:
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e Any single-server queueing system with average arrival rate / customers per time
unit, where average service time E(S) = 1/u time units, infinite queue capacity and
calling population.

e Conservation equation, L = Aw, can be applied.

e For a stable system, the average arrival rate to the server, /15, must be identical to A.

e The average number of customers in the server is:
e Ingeneral, for a single-server queue:

L=p>L=paTowx
and p=AE(s)= 4
H A
. -2
> For asingle-server stable queue: =, =
» For an unstable queue (4 > m), long-run server utilization is 1

=  For G/G/c/x/% queues:
e A system with c identical servers in parallel.
e If an arriving customer finds more than one server idle, the customer chooses a
server without favoring any particular server.
e For systems in statistical equilibrium, the average number of busy servers, Ls, is:
L, =AE(S)=A/m.
e The long-run average server utilization is:

o= L = a , Where A <cu forstablesystems

C Ccu
Server Utilization and System Performance
= System performance varies widely for a given utilization p.

e For example, a D/D/1 queue where E(A) = 1/ A and E(S) = 1/ u, where:
L=p=2Aluy, W=ES)=1/py, Lo=Wqu=0.
» By varying A and g, server utilization can assume any value between 0
and 1.
» Yet there is never any line.
e In general, variability of interarrival and service times causes lines to fluctuate in
length.

= Example: A physician who schedules patients every /0 minutes and spends S minutes

th . . -
with the i patient: ¢ _ 9 minutes with probability 0.9

12 minutes with probability 0.1
-1

e Arrivals are deterministic, A1 =A2 =...=4 =10.

2
e Services are stochastic, £(S) = 9.3 min and V(S O) =0.81 min .
I
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e On average, the physician's utilization = p = A/4=0.93 < 1.
e Consider the system is simulated with service times: 51= 9, SZ= 12, S3= 9, S4= 9, 55= 9,

.. The system becomes:
e The occurrence of a relatively long service time (Sz = 12) causes a waiting line to form

temporarily.

Costs in Queueing Problems
= Costs can be associated with various aspects of the waiting line or servers:

e System incurs a cost for each customer in the queue, say at a rate of $10 per hour
per customer.
» The average cost per customer is:

$1O*WQ / W " is the time customer j

N
> ——-=8$10*W, L ,- :
spends in queue

j=1

> If 1 customers per hour arrive (on average), the average cost per hour is:

. $10* W, A "
(ﬂ, customer)( Q j:$10*ZWQ =$10* |_Q / hour
hour customer

e Server may also impose costs on the system, if a group of c parallel servers (1 <c
<o) have utilization r, each server imposes a cost of $5 per hour while busy.
» The total server cost is: $5*cp.

Steady-State Behavior of Infinite-Population Markovian Models

= Markovian models: exponential-distribution arrival process (mean arrival rate = ).

= Service times may be exponentially distributed as well (M) or arbitrary (G).

= A queueing system is in statistical equilibrium if the probability that the system is in a
given state is not time dependent:

P(L(t) =n)=Pq(t) =P

= Mathematical models in this chapter can be used to obtain approximate results even when
the model assumptions do not strictly hold (as a rough guide).

= Simulation can be used for more refined analysis (more faithful representation for
complex systems).

= For the simple model studied in this chapter, the steady-state parameter, L, the time-

average number of customers in the system is:
nP

n

NgE

L =

n=0

e Apply Little’s equation to the whole system and to the queue alone:

L 1
w:z, Wy =W——

7,
Ly = Aw,
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»  G/G/c/o/0 example: to have a statistical equilibrium, a necessary and sufficient condition
isA/(cu) <1.

M/G/1 Queues

= Single-server queues with Poisson arrivals & unlimited capacity.
=  Suppose service times have mean 1/ and variance o and r = A/u < 1, the steady-state
parameters of M/G/1 queue:

p=Alu, R=1-p
prl+o’y’) | _pilro’y’)

L=p+ ,
2(1- p) o 20-p)
2 2 2 2
W=£+l(1/,u +0o )’ W, = AQ/ u+0°)
H 2(1-p) 2(1-p)

» No simple expression for the steady-state probabilities Pg, P, ...
» L —Lg = pisthe time-average number of customers being served.
> Average length of queue, Lg, can be rewritten as:

|_Q _ ,02 . 2262
2(1-p) 2(1-p)
= If Aand u are held constant, Lo depends on the variability, 02, of the service times.
= Example: Two workers competing for a job, Able claims to be faster than Baker on
average, but Baker claims to be more consistent,
e Poisson arrivals at rate A= 2 per hour (1/30 per minute).
e Able: 1/ = 24 minutes and o = 20° = 400 minutes’:

_ (1/30)°[24% +400]
Lo = 2(1-4/5)

= 2.711customers

» The proportion of arrivals who find Able idle and thus experience no delay
is Po = 1-p = 1/5 = 20%.
e Baker: 1/ = 25 minutes and o° = 2% = 4 minutes?:

(1/30)°[25% + 4]

LQ = =2.097 customers
2(1-5/6)

» The proportion of arrivals who find Baker idle and thus experience no
delay is Po = 1-p = 1/6 = 16.7%.
e Although working faster on average, Able’s greater service variability results in
an average queue length about 30% greater than Baker’s.

= Suppose the service times in an M/G/1 queue are exponentially distributed with mean
1/, then the variance is o = 1/4/7.
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e M/M/1 queue is a useful approximate model when service times have standard
deviation approximately equal to their means.

e The steady-state parameters:
p=2lu, B =@1-p)p'
2
L:L:L’ L, = A _p
p-i 1-p uu=-2) 1-p
W= ! _ , Wy A __ P
u—-A  pl-p)

2

-

Culu=2)  p-p)
= Example: M/M/1 queue with service rate =10 customers per hour.

= Consider how L and w increase as arrival rate, A, increases from 5 to 8.64 by
increments of 20%:

= If A/u> 1, waiting lines tend to continually grow in length.

A 5.0 6.0 7.2 8.64 10.0
P 0.500 0.600 0.720 0.864 1.000
L 1.00 1.50 2.57 6.35 o0
w 0.20 0.25 0.36 0.73 i

= Increase in average system time (w) and average number in system (L) is highly
nonlinear as a function of p.

Effect of Utilization and Service Variability

= For almost all queues, if lines are too long, they can be reduced by dgcreasing

server utilization (p) or by decreasing the service time variability (o ).
= A measure of the variability of a distribution, coefficient of variation (cv):
(CV)Z — V (X )2
[E(X)]
e The larger cv is, the more variable is the distribution relative to its expected
value

= Consider Lq for any M/G/1 queue: : |
Single-server Poisson arrivals

L _ pz (1 + Gzﬂz) Hyplerexpc)nemiﬂl (Icv)i =4 \\/ / ///
Q =" (cv) =2

w3

2(1- . —
( ,0) Expr?unu.ll \
Erlang (cv)” = 0.5
ov)? = 025
(L»]l 0. -\\Z

~

Mean number waiting, L

(P Y1+ (ev)
- 1_ p 2 Constant
}i

L for M/M/I queue
” a Corrects the M/M/1 7
formula to account for a

non-exponential service 0 02 04 06 08

time dist’n
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Multiserver Queue

*  M/M/c/xo/o queue: c channels operating in parallel.
e Each channel has an independent and identical exponential service-time
distribution, with mean 7/4.
e To achieve statistical equilibrium, the offered load (A/u) must satisfy A/ < c,
where A/(cu) = p is the server utilization.
e Some of the steady-state probabilities:

p=Alcu

& e PEES)

, ™R _ . pP(L(x)>c)
c(c)l-p)° 1-p

L
wW=—

A :
= Other common multiserver queueing models:

e M/G/c/x: general service times and c parallel server. The parameters can be
approximated from those of the M/M/c/x0/00 model.

e M/G/w: general service times and infinite number of servers, e.g., customer is its
own system, service capacity far exceeds service demand.

e M/M/C/N/x: service times are exponentially distributed at rate m and ¢ servers
where the total system capacity is N > ¢ customer (when an arrival occurs and the
system is full, that arrival is turned away).

Steady-State Behavior of Finite-Population Models

= When the calling population is small, the presence of one or more customers in the
system has a strong effect on the distribution of future arrivals.

= Consider a finite-calling population model with K customers (M/M/c/K/K):

e The time between the end of one service visit and the next call for service
is exponentially distributed, (mean = 1/4).
e Service times are also exponentially distributed.
e ¢ parallel servers and system capacity is K.
e Some of the steady-state probabilities:

(S0 B4}
b _ [ﬂ(%jpo n=01,..,c—1

" K! A\
— |~ |, n=c,c+l..K
(K —=n)!clc"* [,uj

K
L=>'nR, w=L/A, p=2lcu

n=0
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where 4, is the long run effectivearrival rate of customersto queue (or entering/exiting service)

K
Ao =Y (K—n)AP,
o Exa_mple: two workers who are responsible for10 milling machines.

» Machines run on the average for 20 minutes, then require an average 5-
minute service period, both times exponentially distributed: 4 = 1/20 and
u=1/5.

» All of the performance measures depend on PO:

Ro = Zi + (ij:iL(ijn l—0065
1= n)\20) & @o—n)rr"2{20 '

o Then, we can obtain the other Pn.
o Expected number of machines in system:

10
L =>"nP, =3.17 machines

o The average number of running machines:

K—-L=10-3.17 =6.83machines
Networks of Queues

= Many systems are naturally modeled as networks of single queues: customers departing
from one queue may be routed to another.

= The following results assume a stable system with infinite calling population and no limit
on system capacity:

e Provided that no customers are created or destroyed in the queue, then the
departure rate out of a queue is the same as the arrival rate into the queue (over
the long run).

e |If customers arrive to queue i at rate /1 and a fraction 0 < p < 1 of them are

routed to queue j upon departure, then the arrival rate form queue i to queue j is
}Lp (over the long run).

The overall arrival rate into queue j:

A =4q +Zjﬁ Pij

Arrival rate from Sum of arrival rates from
outside the network other aueues in network
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e If queue j has c < « parallel servers, each working at rate Hy then the long-run
utilization of eaéh server is p=1/(cu) (where p < 1 for stable queue).

e If arrivals from outside the rlmet\;vorklform a Polisson process with rate a for each
queue j, and if there are c_identical servers delivering exponentially djistributed
service times with mean 11/% then, in steady state, queue j behaves likes an
M/M/cj queue with arrival ratel

A=+ Apy

alli

= Discount store example:
= Suppose customers arrive at the rate 80 per hour and 40% choose self-service. Hence:

Arrival rate to service center 1 is /11 = 80(0.4) = 32 per hour
Arrival rate to service center 2 is /12 = 80(0.6) = 48 per hour.
c2 = 3 clerks and M= 20 customers per hour.
The long-run utilization of the clerks is:
p,= 48/(3*20) = 0.8
All customers must see the cashier at service center 3, the overall rate to service
center 3 is /13 = /11 + /12 = 80 per hour.

> If M= 90 per hour, then the utilization of the cashier is:

P, = 80/90 = 0.89
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SYSTEM MODELLING AND SIMULATION
Module 3

Random-Number Generation: Properties of random numbers, Generation of pseudo-
random numbers, Techniques for generating random numbers, Techniques for
generating random numbers, Tests for Random Numbers, Random - Variate
Generation, Inverse transform technique Acceptance-Rejection technique, Inverse
transform technique Acceptance-Rejection technique.

RANDOM-NUMBER GENERATION

Random numbers are a necessary basic ingredient in the simulation of almost all discrete
systems. Most computer languages have a subroutine, object, or function that will generate a
random number. Similarly simulation languages generate random numbers that are used to
generate event times and other random variables.

Properties of Random Numbers
= Two important statistical properties:
e Uniformity
e Independence.

= Random Number, R;, must be independently drawn from a uniform distribution with pdf:

1 0<x<1 (x
f(x):{ X fx)

0, otherwise 1

o1

E(R)zJdeXzX?

0

Figure: pdf for random numbers

Generation of Pseudo-Random Numbers
» “Pseudo”, because generating numbers using a known method removes the potential for
true randomness.
= Goal: To produce a sequence of numbers in [0,1] that simulates, or imitates, the ideal
properties of random numbers (RN).
= |mportant considerations in RN routines:
o Fast
e Portable to different computers
e Have sufficiently long cycle
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e Replicable
e Closely approximate the ideal statistical properties of uniformity and
independence.

Techniques for Generating Random Numbers

Linear Congruential Method (LCM).
Combined Linear Congruential Generators (CLCG).
Random-Number Streams.

Linear Congruential Method
To produce a sequence of integers, Xi, Xy, ... between 0 and m-1 by following a recursive
relationship:

X, =(@X,+c)modm, 1=012,..

The The increment ghe modulus

multiplie

The selection of the values for a, ¢, m, and X, drastically affects the statistical properties
and the cycle length.

The random integers are being generated [0,m-1], and to convert the integers to random
numbers:

R, :L, 1=12,..

Example

Use Xo = 27,a =17, ¢ =43, and m = 100.

The X; and R; values are:
X1 = (17*27+43) mod 100 = 502 mod 100 = 2, R; = 0.02;
Xz = (17*2+32) mod 100 = 77, R, =0.77;
X3 = (17*77+32) mod 100 = 52, R3 = 0.52;

Characteristics of a Good Generator
Maximum Density
» Such that he values assumed by R;, i = 1,2, ..., leave no large gaps on [0,1]
» Problem: Instead of continuous, each R; is discrete
» Solution: a very large integer for modulus m
e Approximation appears to be of little consequence
Maximum Period
» To achieve maximum density and avoid cycling.
» Achieve by: proper choice of a, ¢, m, and X.
Most digital computers use a binary representation of numbers
» Speed and efficiency are aided by a modulus, m, to be (or close to) a power of 2.
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°

Combined Linear Congruential Generators
= Reason: Longer period generator is needed because of the increasing complexity of

stimulated systems.
= Approach: Combine two or more multiplicative congruential generators.
» Let X1, Xiz, ..., Xi be the i output from k different multiplicative congruential
generators.
» The j" generator:
e Has prime modulus m; and multiplier a; and period is mj.1
e Produces integers X;; is approx ~ Uniform on integers in [1, m-1]
e W;;=Xij;-1isapprox ~ Uniform on integers in [1, m-2]
o Suggested form:

K _ — X; =0
Xi :(Z(—l)JlXIJJmOd ml—l Hence’ Ri = rr;]l 1
= L= X,=0
m, '

The coefficient: Performs the
subtraction X, , ,

e The maximum possible period is:

_ (m-H(m, -1)...(m, 1)

P 2k—l

= Example: For 32-bit computers, L’Ecuyer [1988] suggests combining k = 2 generators
with m; = 2,147,483,563, a; = 40,014, m, = 2,147,483,399 and a, = 20,692. The
algorithm becomes:
Step 1: Select seeds
e Xyginthe range [1, 2,147,483,562] for the 1% generator
e Xainthe range [1, 2,147,483,398] for the 2" generator.
Step 2: For each individual generator,
X1,j+1 = 40,014 Xy1; mod 2,147,483,563
Xaj+1 = 40,692 Xy j mod 2,147,483,399.

Step 3: Xj+1 = (Xgj+1 - Xoj+1 ) mod 2,147,483,562.
Step 4: Return
X.
—H’l, X i >0
R —J27147,483563

1712 147,483562
2147483563 I

Step 5: Set j = j+1, go back to step 2.
» Combined generator has period: (m; — 1)(m, — 1)/2 ~ 2 x 10'®
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Random-Numbers Streams
= The seed for a linear congruential random-number generator:
e Isthe integer value X, that initializes the random-number sequence.
e Any value in the sequence can be used to “seed” the generator.
= A random-number stream:
e Refers to a starting seed taken from the sequence Xo, X3, ..., Xp.
e If the streams are b values apart, then stream i could defined by starting seed:
e Older generators: b = 10°; Newer generators: b = 10*".
= Assingle random-number generator with k streams can act like k distinct virtual random-
number generators
= To compare two or more alternative systems.
e Advantageous to dedicate portions of the pseudo-random number sequence to the
same purpose in each of the simulated systems.
Tests for Random Numbers
= Two categories:
e Testing for uniformity:
Ho: Ri~U[0,1]
Hi: Ri~U[0,1]
» Failure to reject the null hypothesis, Hyo, means that evidence of non-
uniformity has not been detected.
e Testing for independence:
Ho: Ri~ independently
Hi: Ri+ independently
» Failure to reject the null hypothesis, Hyo, means that evidence of
dependence has not been detected.
= Level of significance a, the probability of rejecting Ho when it is true:
o = P(reject Ho|Ho is true)
= When to use these tests:
e If a well-known simulation languages or random-number generators is used, it is
probably unnecessary to test
e If the generator is not explicitly known or documented, e.g., spreadsheet
programs, symbolic/numerical calculators, tests should be applied to many sample
numbers.
= Types of tests:
e Theoretical tests: evaluate the choices of m, a, and ¢ without actually generating
any numbers
e Empirical tests: applied to actual sequences of numbers produced. Our emphasis.
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Frequency Tests

/7

L X4

*

Test of uniformity
Two different methods:

e Kolmogorov-Smirnov test

e Chi-square test
Kolmogorov-Smirnov Test
Compares the continuous cdf, F(x), of the uniform distribution with the empirical cdf,
Sn(x), of the N sample observations.

e Weknow: F(x)=x, 0<x<1

e |f the sample from the RN generator is Ry, R, ..., Ry, then the empirical cdf, Sy(x)

1S: _ number of R, R,,..., R, which are < x

S (0= -

Based on the statistic: D = max| F(x) - Sn(X)|

e Sampling distribution of D is known (a function of N, tabulated in Table)
A more powerful test, recommended.
Example: Suppose 5 generated numbers are 0.44, 0.81, 0.14, 0.05, 0.93.

Arrange Ry from

step1: | Fa 0051014 i 044 10811 093 3= smallesttolargest

i 020 | 0.40 | 0.60 | 0.80 | 1.00
Sten 2 | MR 015 026 | 016 | - | 007 A D =mexN-Ry ]

ep 2: ; |

Ry= (YN [ 005 | - [ 004 [021] 0.2 I )
Step 3: D =max{Dr, Dr})=0.26 o
Step 4: For a =0.05,

D = 0.565 > D i ’

Thamadativg prishabibty
=
= S
T T
B
=

= E B E
— T T %

o

Hence, H;is notrejected.

ols

Tk
PR I TR TN T S
@l 0l ek oad ok 08 af ak 08 |8
LT » L Fo

Chi-square test
Chi-square test uses the sample statistic:

[ nisthe # of classes 1__: F;is the expected
L:?"“n (0,- _ EJ }E: #in the ith class
Xﬂ = Z el
il Ej 015 the observed
#in the ith class
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e Approximately the chi-square distribution with n-1 degrees of freedom (where the
critical values are tabulated in Table A.6)
e For the uniform distribution, E;, the expected number in the each class is:

E = ﬁ, where N is the total # of observation

n
= Valid only for large samples, e.g. N >= 50
Tests for Autocorrelation
= Testing the autocorrelation between every m numbers (m is a.k.a. the lag), starting with
the i™ number
e The autocorrelation P between numbers: Ri, Ri+m, Ri+2m, Ri+(M+1)m

e M is the largest integer such that i+(M +1)m < N
" Hypothesis: Hy: o, =0, if numbersareindependent

H,: p,, #0, if numbersare dependent

= |fthe values are uncorrelated:
e For large values of M, the distribution of the estimator of P denoted is

approximately normal.
= Test statistics is: .

. ZO is distributed normally with mean = 0 and variance = 1, and:

A 1 M
Pim = —M 1 LZ_(; Ri+km Ri+(k+l)m } -025

R V13M +7

6, =———
Pmo12(M +1)
= If p >0, the subsequence has positive autocorrelation
m

e High random numbers tend to be followed by high ones, and vice versa.
= If p <0, the subsequence has negative autocorrelation
m

e Low random numbers tend to be followed by high ones, and vice versa.
Normal Hypothesis Test

/2 /2

T Zal2 Zal2

|<— Fail to reject —>|
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Example
= Test whether the 3rd, 8th, 13th, and so on, for the following output on P. 265.
e Hence, «=0.05,i=3,m=5N=30,andM =4

_ 1 [(0.23)(0.28) +(0.25)(0.33) + (0.33)(0.27)
Pes = 4_+1[+ (0.28)(0.05) + (0.05)(0.36)
—_0.1945
5 —NBAT 108
s T 10(4+1)
. 0.1945
°”0.1280

}—0.25

=-1.516

e From Table A.3, Z s = 1.96. Hence, the hypothesis is not rejected.

Random-Variate Generation
= [llustrate some widely-used techniques for generating random variates.

e Inverse-transform technique

e Acceptance-rejection technique

A

% Inverse-transform Technique
= The concept:

For cdf function: r = F(x)
Generate r from uniform (0,1)
Find x:

r.
Steps in inverse-transform technique

-AX
Step 1. Compute the cdf of the desired random variable X: F(x) =1 —e

x20
Step 2. Set F(X) = R on the range of X
Step 3. Solve the equation F(x) = R for X in terms of R.
1-e” =R
e™ =1-R
—AX =In(1l-R)

1
X =-=InL-R
- In@=R)

Step 4. Generate (as needed) uniform random numbers R1, R2, R3, ... and compute the desired
random variates
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= Examples of other distributions for which inverse cdf works are:
e Uniform distribution
X=a+((-23)R
e Weibull distribution — time to failure — see steps on p278
1B
X=al[-In(1-R)]
e Triangular distribution
X = J2R, 0<R<1/2
" 2-J2(1-R),1/2<R<1

% Acceptance-Rejection technique
= Useful particularly when inverse cdf does not exist in closed form, a.k.a. thinning

= [llustration: To generate random variates, X ~ U(1/4, 1)
Generate R
Procedures: b l
Step 1. Generate R ~ U[0,1]
Step 2a. If R >= ¥4, accept X=R.
Step 2b. If R < ¥4, reject R, return to Step 1 ves
Output R’

= R does not have the desired distribution, but R conditioned (R’) on the event {R > Y.}

does
= Efficiency: Depends heavily on the ability to minimize the number of rejections.
NSPP

= Non-stationary Poisson Process (NSPP): a Possion arrival process with an arrival rate that
varies with time
= |dea behind thinning:
e Generate a stationary Poisson arrival process at the fastest rate, A* = max A(t)
e But “accept” only a portion of arrivals, thinning out just enough to get the desired
time-varying rate

Generate E ~ Exp(a*)
t=t+E

Condition
R <= 4(t)

yes

| Output E '~ t |
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= Poisson Distribution

e Step3 ifP<e

Stepl setn=0,P=1

Step 2 generate a random number Rp.;
And replace P by P * Ry+1

A

return to step 2
= Example: Generate a random variate for a NSPP

Data: Arrival Rates

Mean Time
Between Arrival
t Arrivals Rate A(t)

(min) (min) (#/min)
0 15 1/15
60 12 1/12

120 7 17

180 5 1/5

240 8 1/8
300 10 1/10
360 15 1/15
420 20 1/20
480 20 1/20

Procedures:

Step 1. *=max A(t)=1/5,t=0andi=1.

Step 2. For random number R = 0.2130,
E = -5In(0.213) = 13.13
t=13.13

Step 3. Generate R = 0.8830
A(13.13)/2*=(1/15)/(1/5)=1/3
Since R>1/3, do not generate the arrival

Step 2. For random number R = 0.5530,
E =-5In(0.553) = 2.96
t=13.13 + 2.96 = 16.09

Step 3. Generate R = 0.0240
A(16.09)/2*=(1/15)/(1/5)=1/3
Since R<1/3, T1 =1=16.09,

andi=i+1=2

, then accept, otherwise, reject the current n, increase n by 1 and

Mr. Srinivasa R, Dept. of CSE
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SMS Notes

SYSTEM MODELLING AND SIMULATION
Module 4

Input Modeling: Data Collection; Identifying the distribution with data, Parameter
estimation. Goodness of Fit Tests. Goodness of Fit Tests. Fitting a non-stationary
Poisson process, selecting input models without data. Fitting a non-stationary Poisson
process, selecting input models without data. Multivariate and Time-Series input
models. Estimation of Absolute Performance: Types of simulations with respect to
output analysis. Stochastic nature of output data, Measures of performance and their
estimation.

Input Modeling

= Input models provide the driving force for a simulation model.

= The quality of the output is no better than the quality of inputs.

= |n this chapter, we will discuss the 4 steps of input model development:
Collect data from the real system

Identify a probability distribution to represent the input process
Choose parameters for the distribution

Evaluate the chosen distribution and parameters for goodness of fit.

Data Collection

= One of the biggest tasks in solving a real problem. GIGO - garbage-in-garbage-out
= Suggestions that may enhance and facilitate data collection:
e Plan ahead: begin by a practice or pre-observing session, watch for unusual
circumstances
e Analyze the data as it is being collected: check adequacy
e Combine homogeneous data sets, e.g. successive time periods, during the same
time period on successive days
e Be aware of data censoring: the quantity is not observed in its entirety, danger of
leaving out long process times
e Check for relationship between variables, e.g. build scatter diagram
e Check for autocorrelation
e Collect input data, not performance data

Input Data Examples

= Queueing Systems
e Interarrival time
e Service time

= |nventory Systems

Mr. Srinivasa R, Dept. of CSE Page 1



SMS Notes

e Demand
e Leadtime
= Reliability Systems
e Time to failure

Identifying the Distribution

1. Histograms
Selecting families of distribution
Parameter estimation
Goodness-of-fit tests

o

% Histograms
= A frequency distribution or histogram is useful in determining the shape of a distribution
= The number of class intervals depends on:
e The number of observations
e The dispersion of the data
e Suggested: the square root of the sample size
= For continuous data:
e Corresponds to the probability density function of a theoretical distribution
= For discrete data:
e Corresponds to the probability mass function
= |f few data points are available: combine adjacent cells to eliminate the ragged
appearance of the histogram

Frequency
=R S R L - I |

[l

0 2 4 6 8 10 12 14 16 18 20 22
Upper limit of cell

@

Same data with
different interval
sizes

Frequency

7 15 23
Upper limit of cell

(b)

20

=3

=

Frequency

wn

=]

7 1 15 19 23
Upper limit of cell

©

w
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*
°

Selecting the Family of Distributions

A family of distributions is selected based on:
e The context of the input variable
e Shape of the histogram
Frequently encountered distributions:
o Easier to analyze: exponential, normal and Poisson
e Harder to analyze: beta, gamma and Weibull
Use the physical basis of the distribution as a guide, for example:
e Binomial: # of successes in n trials
e Poisson: # of independent events that occur in a fixed amount of time or space
e Normal: distribution of a process that is the sum of a number of component
processes
e Exponential: time between independent events, or a process time that is
memoryless
e Weibull: time to failure for components
e Discrete or continuous uniform: models complete uncertainty
e Triangular: a process for which only the minimum, most likely, and maximum
values are known
e Empirical: resamples from the actual data collected
Remember the physical characteristics of the process
e Isthe process naturally discrete or continuous valued?
e Isit bounded?
No “true” distribution for any stochastic input process
Goal: obtain a good approximation

Quantile-Quantile Plots

Q-Q plot is a useful tool for evaluating distribution fit
o asubjective method
If X is a random variable with cdf F, then the g-quantile of X is the y such that

F(y)=P(X<y)=q, for 0<g<1
e When F has an inverse, y=F 1(q)
Let {yj,j = 1,2, ..., n} be the observations in ascending order
The plot of y; versus F1((j-0.5)/n) is
o Approximately a straight line if F is a member of an appropriate family of
distributions
o The line has slope 1 if F is a member of an appropriate family of distributions
with appropriate parameter values

Mr. Srinivasa R, Dept. of CSE Page 3
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= Example: Check whether the door installation times follow a normal distribution.
e The observations are now ordered from smallest to largest:

i Value J Value j Value
1 99.55 6 99.98 11 100.26
2 99.56 7 100.02 12 100.27
3 99.62 8 100.06 13 100.33
4 99.65 9 100.17 14 100.41
5 99.79 10 100.23 15 100.47

e y; are plotted versus F( (j-0.5)/n) where F has a normal distribution with the
sample mean (99.99 sec) and sample variance (0.2832% sec?)
= Example (continued): Check whether the door installation times follow a normal
distribution.

Straight line, -
supporting the >
hypothesis of a - "

normal distribution . 1°

Niwmal quantile

Superimposed
density function of /_\
the normal / \

distribution 7

= <

9.4 998 02 1006
- Seconds

= Consider the following while evaluating the linearity of a g-q plot:
e The observed values never fall exactly on a straight line
e The ordered values are ranked and hence not independent, unlikely for the points
to be scattered about the line
e Variance of the extremes is higher than the middle. Linearity of the points in the
middle of the plot is more important.
= Q-Q plot can also be used to check homogeneity
e Check whether a single distribution can represent both sample sets
e Plotting the order values of the two data samples against each other

Parameter Estimation

= Next step after selecting a family of distributions
= If observations in a sample of size n are X1, Xy, ..., X, (discrete or continuous), the sample
mean and variance are:

n n 2 v 2
i X SZZZizlxi —nX
n n-1

X
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= |fthe data are discrete and have been grouped in a frequency distribution:

n n 2 v 2
Zj:lfjxj SQZijlfjxj_nx
n n-1

X =
where fj is the observed frequency of value X;

= When raw data are unavailable (data are grouped into class intervals), the approximate
sample mean and variance are:

c n 2 v 2
Zj:lfjxj Szzzj':lfjmj_nx
n n-1

X =

where fj is the observed frequency of in the jth class interval
m; is the midpoint of the jth interval, and c is the number of class intervals
= A parameter is an unknown constant, but an estimator is a statistic.
= Vehicle Arrival Example: Table 9.1 in book can be analyzed to obtain:

n=100, f, =12, X, =0, f, =10, X, =1....,
and z; f, X, =364, and Z'J‘_Zl f;X7=2080

e The sample mean and variance are
X = 354 3.64
100
g7 _ 2080-100*(3.64)* :
99
~7.63 —

e The histogram suggests X to have a Possion distribution
» However, note that sample mean is not equal to sample variance.
» Reason: each estimator is a random variable, is not perfect.

Suggested Estimators

= Poisson Distribution Z" X
. va i=1" !

o Estimate mean X = -

= Exponential Distribution A n

e Estimate rate N
Zi:lxi
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= Normal Distribution
e Estimate mean and variance

X = X SZZZi:1Xi2_nx2
n n-1

+» Goodness-of-Fit Tests

= Conduct hypothesis testing on input data distribution using:
e Kolmogorov-Smirnov test
e Chi-square test
= No single correct distribution in a real application exists.
e If very little data are available, it is unlikely to reject any candidate distributions
e Ifalot of data are available, it is likely to reject all candidate distributions

Chi-Square test

= [ntuition: comparing the histogram of the data to the shape of the candidate density or
mass function

= Valid for large sample sizes when parameters are estimated by maximum likelihood

= By arranging the n observations into a set of k class intervals or cells, the test statistics is:

2
: Oi — Ei Expected Frequency
E. E =n"p
I I

Observed where P is the
Freauency theoretical prob. of the
ith interval.

which approximately follows the chi-square distribution with k-s-1 degrees of freedom,
where s = # of parameters of the hypothesized distribution estimated by the sample
statistics.

= The hypothesis of a chi-square test is:

Ho: The random variable, X, conforms to the distributional assumption
with the parameter(s) given by the estimate(s).

Hi: The random variable X does not conform.

= |fthe distribution tested is discrete and combining adjacent cell is not required (so that

Ei > minimum requirement):
e Each value of the random variable should be a class interval, unless combining is

necessary, and

P = p(xi) = P(X = Xi)
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= |f the distribution tested is continuous:
po= [0 f(0dx=F(a)-F(a.)

where a;-1 and a; are the endpoints of the i class interval
and f(x) is the assumed pdf, F(x) is the assumed cdf.

e Recommended number of class intervals (k):

Sample Size, n Number of Class Intervals, k
20 Do not use the chi-square test
50 5to 10
100 10to 20
> 100 n*? to n/5

e Caution: Different grouping of data (i.e., k) can affect the hypothesis testing
result.

= Vehicle Arrival Example (continued):
Ho: the random variable is Poisson distributed.
Hi: the random variable is not Poisson distributed.

b ] O bzerved Frequency, O Expected Frequency, Ei ‘______m.. _ Elﬁ'Eu Ez- = np{x}

0 12 26 e = x
1 10 96 787 _,2
2 19 17.4 .15 «

3 17 211 0.e

4 19 18.2 4.41

3 6 14.0

G T 8.9

7 5 44

& 3 2.0
1‘3'} g g-g Combined because

11 1 0.1 of min &;
100 100.0 2763

e Degree of freedom is k-s-1 = 7-1-1 = 5, hence, the hypothesis is rejected at the
0.05 level of significance.

28 =27.68> yl0s =111

Kolmogorov-Smirnov Test

= |ntuition: formalize the idea behind examining a g-q plot
= The test compares the continuous cdf, F(x), of the hypothesized distribution with the
discrete empirical cdf, Sy(x), of the N sample observations.
e Based on the maximum difference statistics (Tabulated in A.8):
D = max| F(x) - Sn(X)|
= A more powerful test, particularly useful when:
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e Sample sizes are small,

e No parameters have been estimated from the data.
= No need to group the data

e No information is lost

e Eliminates the problem of interval specification

The Kolmogorov-Smirnov Test for Uniformity

= [ntuition: formalize the idea behind examining a g-q plot
= The test compares the continuous cdf, F(x), of the hypothesized distribution with the
discrete empirical cdf, Sy(x), of the N sample observations.
e Based on the maximum difference statistics (Tabulated in A.8):
D = max| F(x) - Sn(X)|
= A more powerful test, particularly useful when:

e Sample sizes are small,
e No parameters have been estimated from the data.
= No need to group the data

e No information is lost
e Eliminates the problem of interval specification

= STEP 1: Rank the data from smallest to largest. (R denotes the i th smallest observation
=>Rp) <=Rp<=... <=Rpn

» STEP 2: Compute D* = max {i/N - R} (over i)

D" = max {R¢—(i-1)/N } (over i)

» STEP 3: Compute D =max (D", D)

= STEP 4: Determine the critical value, D,, from Table A.8 for the specified significance
level, o, and the given sample size N

= STEP 5: If the sample statistic D is greater than the critical value, D, the null hypothesis
that the data are sampled from uniform distribution is rejected. Otherwise, we cannot

reject Ho

Examp Ie (l":: : 0.07 [)7H

&
T

Q

= 5 numbers generated:
= 0.44,0.81, 0.14, 0.05, 0.93
= We want to test uniformity using

the K-S test with oo = 0.05 (D, = 0.565)

= @ @
T

Cumulative probabilit

i
7N
—
]
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Ry, 0.05|0.14 | 0.44 | 081 | 093
iN 0.20 | 0.40 | 0.60 | 0.80 | 1.00
iIN-R;, 0.15[026| 0.16 | - | 0.07
Ry—(-1/N | 0.05( - | 004 | 021 | 0.13

= D= max (0.26, 0.21) = 0.26 => The uniformity of the underlying distribution for our
samples is not rejected

Selecting input models without data

= |fdata is not available, some possible sources to obtain information about the process are:

e Engineering data: often product or process has performance ratings provided by
the manufacturer or company rules specify time or production standards.

e Expert option: people who are experienced with the process or similar processes,
often, they can provide optimistic, pessimistic and most-likely times, and they
may know the variability as well.

e Physical or conventional limitations: physical limits on performance, limits or
bounds that narrow the range of the input process.

e The nature of the process.

= The uniform, triangular distributions are often used as input models.
= Sensitivity to input data must be tested.
= Example: Production planning simulation.
e Input of sales volume of various products is required, salesperson of product XYZ
says that:
> No fewer than 1,000 units and no more than 5,000 units will be sold.
» Given her experience, she believes there is a 90% chance of selling more
than 2,000 units, a 25% chance of selling more than 2,500 units, and only
a 1% chance of selling more than 4,500 units.

e Translating these information into a cumulative probability of being less than or

equal to those goals for simulation input:

i Interval (Sales) Cumulative Frequency, c;
1 1000 < x <2000 0.10
2 2000 < x <3000 0.75
3 3000 < x <4000 0.99
4 4000 < x <5000 1.00
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Multivariate and Time-Series Input Models

= Multivariate:
e For example, lead time and annual demand for an inventory model, increase in
demand results in lead time increase, hence variables are dependent.
= Time-series:
e For example, time between arrivals of orders to buy and sell stocks, buy and sell
orders tend to arrive in bursts, hence, times between arrivals are dependent.
» Consider the model that describes relationship between X and X :

(Xl—lul):ﬂ(xz—,uz)+g ¢ is arandom

variable with mean
Oandis
independent of X,

e pB=0, X and X are statistically independent
e >0, X and X tend to be above or below their means together
e j3<0, X and X tend to be on opposite sides of their means

= Covariance between xl and X2 ;

=0, =
e Where cov(xl, XZ) <0, then B (<0
>0, >0

= Correlation between X; and X, (values between -1 and 1):

p=corr(X,;, X,)= M
0,0,
= O, =0
e where corr(Xy, Xz) <0, then g <0
>0, >0

e The closer pisto -1 or 1, the stronger the linear relationship is between X; and Xa.

= Atime series is a sequence of random variables X;, Xz, Xs, ..., are identically distributed
(same mean and variance) but dependent.
e cov(X; Xwn) is the lag-h autocovariance
e corr(X;, Xw+h) is the lag-h autocorrelation
e If the autocovariance value depends only on h and not on t, the time series is
covariance stationary
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Multivariate Input Models

= |f X1 and X2 are normally distributed, dependence between them can be modeled by the
2 2

bivariate normal distribution with My by 050 and correlation p

2 2
e To Estimate My My O, O, see “Parameter Estimation”

e To Estimate r, suppose we have n independent and identically distributed pairs
X, X ), (X, X ), ... (X, X ), then:
11 21 12 22 1in 2n

. 1 & A A
COV(Xl,XZ)Zn 1§ ,(le_xl)(xzj_xz)
14

1 3 PN
:n_—l(,zl‘ Xy X5, —nxlxz)

Time-Series Input Models

= |If Xy, X2, X3,... is a sequence of identically distributed, but dependent and covariance-
stationary random variables, then we can represent the process as follows:
e Autoregressive order-1 model, AR(1)
e Exponential autoregressive order-1 model, EAR(1)
» Both have the characteristics that:

p,=corr(X,, X, )=p", forh=12,.
» Lag-h autocorrelation decreases geometrically as the lag increases, hence,
observations far apart in time are nearly independent
AR (1) Time-Series Input Models
= Consider the time-series model:
Xe=u+d(X ,—n)+eg, fort=23,..
where &,, &, ...arei.i.d. normallydistributed with 4, =0and variance o

= |f X; is chosen appropriately, then
2

2
o Xl, Xz, ... are normally distributed with mean = g, and variance = o /(1-¢)
h
e Autocorrelation p = o
2
= Toestimate ¢, i, 6 :
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p=X, 61=6°1-4°), §=
where cov( X,, X,,,) isthe lag-lautocovariance

EAR (1) Time-Series Input Models

= Consider the time-series model:

X {¢Xt1, with probability ¢
t =

: - fort=23,...
#X,, +¢, with probability 1-¢

where ¢,, &;,...arei.i.d. exponentially distributed with x, =1/4, and 0< ¢ <1

= |If X1 is chosen appropriately, then
o Xl, X2, ... are exponentially distributed with mean = 1/4
h
e Autocorrelation p = ¢ , and only positive correlation is allowed.

= Toestimate ¢, 1 :

. _ Ao COV( X, X,
A=1/X, ¢=p=%

where cov( X,, X,,,) is the lag-Lautocovariance

Type of Simulations

= Terminating verses non-terminating simulations
= Terminating simulation:

e Runs for some duration of time Tg, where E is a specified event that stops the

simulation.
e Starts at time 0 under well-specified initial conditions.
e Ends at the stopping time Tke.

e Bank example: Opens at 8:30 am (time 0) with no customers present and 8 of the
11 teller working (initial conditions), and closes at 4:30 pm (Time Tg = 480

minutes).

e The simulation analyst chooses to consider it a terminating system because the

object of interest is one day’s operation.
= Non-terminating simulation:
e Runs continuously or at least over a very long period of time.

e Examples: assembly lines that shut down infrequently, telephone systems,

hospital emergency rooms.
¢ Initial conditions defined by the analyst.
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e Runs for some analyst-specified period of time Te.
e Study the steady-state (long-run) properties of the system, properties that are not
influenced by the initial conditions of the model.
=  Whether a simulation is considered to be terminating or non-terminating depends on both
e The objectives of the simulation study and
e The nature of the system.

Stochastic Nature of Output Data

= Model output consist of one or more random variables (r. v.) because the model is an
input-output transformation and the input variables are r.v.’s.
= M/G/1 queueing example:
= Poisson arrival rate = 0.1 per minute;
service time ~ N(u =9.5, 0=1.75).
e System performance: long-run mean queue length, LQ(t).

e Suppose we run a single simulation for a total of 5,000 minutes
» Divide the time interval [0, 5000) into 5 equal subintervals of 1000
minutes.
» Average number of customers in queue from time (j-1)1000 to j(1000) is Yj

= M/G/1 queueing example (cont.):
e Batched average queue length for 3 independent replications:

Batching Interval Replication

(minutes) Batch, j 1Yy 2, Yy, 3, Y3
[0, 1000) 1 3.61 291 7.67
[1000, 2000) 2 3.21 9.00 19.53
[2000, 3000) 3 2.18 16.15 20.36
[3000, 4000) 4 6.92 24.53 8.11
[4000, 5000) 5 2.82 25.19 12.62
[0, 5000) 3.75 15.56 13.66

e Inherent variability in stochastic simulation both within a single replication and
across different replications.

e The average across 3 replications, Y,,Y,,Y,, can be regarded as independent
observations, but averages within a replication, Y1y, ..., Y15, are not.

Measures of performance

= Consider the estimation of a performance parameter, & (or ¢), of a simulated system.
Discrete time “tally” data: [Yl, Y2, - Yn], with ordinary mean: 6

» Average System Time
» Average Waiting Time
Continuous-time “time-persistent” data: {Y(t), 0 <t < TE} with time-weighted

mean: ¢
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» Average Queue Length
» Average Utilization

Point Estimator

= Point estimation for discrete-time data.

e The point estimator L1
0==>Y,
N5

e Isunbiased if E(9)=6

= Point estimation for continuous-time data.
e The point estimator:

N
¢=ij0 Y (t)dt

> Isbiased if E(d) =g
> An unbiased or low-bias estimator is desired.

Confidence-Interval Estimation
2

= Suppose the model is the normal distribution with mean #, variance o (both unknown).
th

o Let Yi be the average cycle time for parts produced on the i replication of the
simulation (its mathematical expectation is 6).
e Average cycle time will vary from day to day, but over the long-run the average

of the averages will be close to 6.
e Sample variance across R replications:

1 R
S?=—== (Y, -Y)
R—1i§ o

= Confidence Interval (CI):
e A measure of error.
e Where Y _are normally distributed.

- S

Y.. ita/Z,R—lﬁ

e We cannot know for certain how far Y is from & but Cl attempts to bound that
error.

e ACI, such as 95%, tells us how much we can trust the interval to actually bound
the error betweeny and 6. B

e The more replications we make, the less error there isinY (converging to 0 as R
goes to infinity).
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SMS Notes

SYSTEM MODELLING AND SIMULATION
Module 5

Output analysis for terminating simulations, Output analysis for steady-state
simulations Verification, Calibration and Validation: Optimization, Model building,
verification and validation, Verification of simulation models, Calibration and
validation of models. Ontimization via Simulation.

Output Analysis for Terminating Simulations
= A terminating simulation: runs over a simulated time interval [0, Tg].

= A common goal is to estimate:

0= E(1 pR? ) for discreteoutput
n4
é= E(Ti J'OTEY (t)dtj, for continuous output Y (t),0 <t <T.
E

= In general, independent replications are used, each run using a different random number
stream and independently chosen initial conditions.

Statistical Background

= |mportant to distinguish within-replication data from across-replication data.
= For example, simulation of a manufacturing system
e Two performance measures of that system: cycle time for parts and work in

process (WIP).
th th
o LetYij be the cycle time for the j part produced in the i replication.

e Across-replication data are formed by summarizing within-replication data.

e Across Replication:
e For example: the daily cycle time averages (discrete time data)
» The average: R
Y_.. = ZYi.
i=1

ol

» The sample variance: L &
S2=—D (Y, -Y)
T 20

» The confidence-interval half-width:

S
H :ta/Z,R—lﬁ
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= Within replication:
e For example: the WIP (a continuous time data)
» The average:
Y, == [v,ma
SN I

» The sample variance:

z_i Ti RVA"
S; 5 [" M @®-Y, Fat

= Overall sample average,Y , and the interval replication sample averages,Y , are always
unbiased estimators of the expected daily average cycle time or daily average WIP.

= Across-replication data are independent (different random numbers) and identically
distributed (same model), but within-replication data do not have these properties.

C.1. with Specified Precision

= The half-length H of a 100(1 — )% confidence interval for a mean &, based on the t
distribution, is given by:

2
S is the sample
variance

R is the # of
replications

= Suppose that an error criterion e is specified with probability 1 - «, a sufficiently large
sample size should satisfy:

P(Y -6 <&)21-a

= Assume that an initial sample of size R0 (independent) replications have been observed.
2 2

= Obtain an initial estimate S  of the population variance o .
0

= Then, choose sample size R such that R > RO:

e Sincet >z , aninitial estimate of R:
a/2, R-1 al2

&

t,nraSo )
* Risthe smallest integer satisfying R > R and R> (—“’2’2‘1 0]

2
R> (Z“’—ZSOJ , Z,,, 1Sthe standard normal distribution.

= Collect R - R0 additional observations.

=  The 100(1-2)% C.I. for &: o
Y.. ita/Z,R—lﬁ
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= (Call Center Example: estimate the agent’s utilization p over the first 2 hours of the
workday.

e Initial sample of size R0 = 4 is taken and an initial estimate of the population

2 2
variance is S0 =(0.072) =0.00518.

e The error criterion is £ = 0.04 and confidence coefficient is 1-a = 0.95, hence,
the final sample size must be at least:

2
(zo_ozf,soj _1.96° *0.20518: 1914
£ 0.04
e For the final sample size:
R 13 14 15
to025,R-1 2.18 2.16 2.14
(tyonaSo/ef] 1530 15.1 14.83

e R =15 s the smallest integer satisfying the error criterion, so R - RO = 11
additional replications are needed.
e After obtaining additional outputs, half-width should be checked.

Output Analysis for Steady-State Simulation

= Consider a single run of a simulation model to estimate a steady-state or long-run
characteristics of the system.
e The single run produces observations Yi, Y, ... (generally the samples of an
autocorrelated time series).
e Performance measure:
n
2=]lim 1ZYi, for discretemeasure (with probability 1)
=1

n—o rli

3=lim TijOTE Y (t)dt, forcontinuous measure (with probability 1)
E

Tg >
» Independent of the initial conditions.

= The sample size is a design choice, with several considerations in mind:
e Any bias in the point estimator that is due to artificial or arbitrary initial
conditions (bias can be severe if run length is too short).
e Desired precision of the point estimator.
e Budget constraints on computer resources.
= Notation: the estimation of q from a discrete-time output process.
e One replication (or run), the output data: Y1, Y2, Y3, ...
e With several replications, the output data for replication r: Y1, Y2, Yis, ...
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Initialization Bias

= Methods to reduce the point-estimator bias caused by using artificial and unrealistic
initial conditions:
e Intelligent initialization.
e Divide simulation into an initialization phase and data-collection phase.
= Intelligent initialization

e |Initialize the simulation in a state that is more representative of long-run
conditions.

e If the system exists, collect data on it and use these data to specify more nearly
typical initial conditions.

e If the system can be simplified enough to make it mathematically solvable, e.g.
queueing models, solve the simplified model to find long-run expected or most
likely conditions, use that to initialize the simulation.

= Divide each simulation into two phases:
An initialization phase, from time 0 to time To.

e A data-collection phase, from Ty to the stopping time To+Te.

e The choice of Ty is important:

» After Ty, system should be more nearly representative of steady-state
behavior.

e System has reached steady state: the probability distribution of the system state is
close to the steady-state probability distribution (bias of response variable is
negligible).

= M/G/1 queueing example: A total of 10 independent replications were made.

e Each replication beginning in the empty and idle state.
e Simulation run length on each replication was To+Tg = 15,000 minutes.
e Response variable: queue length, Lo(t,r) (at time t of the rth replication).
e Batching intervals of 1,000 minutes, batch means

= Ensemble averages:

e To identify trend in the data due to initialization bias
e The average corresponding batch means across replications:

R replications

e The preferred method to determine deletion point.
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= A plot of the ensemble averages,Y ..(n,d), versus 1000j, for j = 1,2, ..., 15.

X

1=

—-
=]
T

Average batch mean

e I - e -
T

| 1 | | 1 ] | 1 1 1 1 I | 1 |
1000 3000 5000 7000 9000 11,000 13,000 15,000 ¢

e [|llustrates the downward bias of the initial observations.
= Cumulative average sample mean (after deleting d observations):

e Not recommended to determine the initialization phase.

i gad)

al-

al-

=|- b—0—0 Nudcklion
A olkric L
1 Oy [3chote 2

13 4 & & T & % 10 31 kY i} 4 iF
' f TR S N S T SR R SR N

kS
Py
[ i) Loes] hoiid 122000 B3000 r

e |t is apparent that downward bias is present and this bias can be reduced by
deletion of one or more observations.
= No widely accepted, objective and proven technique to guide how much data to delete to
reduce initialization bias to a negligible level.
= Plots can, at times, be misleading but they are still recommended.
e Ensemble averages reveal a smoother and more precise trend as the # of
replications, R, increases.
e Ensemble averages can be smoothed further by plotting a moving average.
e Cumulative average becomes less variable as more data are averaged.
e The more correlation present, the longer it takes for Yj to approach steady state.
e Different performance measures could approach steady state at different rates.

Mr. Srinivasa R, Dept. of CSE Page 5



SMS Notes

Replication Method

= Use to estimate point-estimator variability and to construct a confidence interval.
= Approach: make R replications, initializing and deleting from each one the same way.
= |mportant to do a thorough job of investigating the initial-condition bias:

e Bias is not affected by the number of replications, instead, it is affected only by
deleting more data (i.e., increasing To) or extending the length of each run (i.e.
increasing Tg).

= Basic raw output data {Y, » = 1, ..., R;j = 1, ..., n} is derived by:

e Individual observation from within replication r.

e Batch mean from within replication r of some number of discrete-time
observations.

e Batch mean of a continuous-time process over time interval j.

= Each replication is regarded as a single sample for estimating €. For replication r:

_ 1
Y, (n,d) =g 2V
j

=d+1

= The overall point estimator:
R
V) =23V, (nd) and EY (nd)]=0,,
r=1

= |fdand nare chosen sufficiently large:
e 0 ~0

n,d
e Y (nd)isan approximately unbiased estimator of 6.
= To estimate standard error of Y , the sample variance and standard error:

1 & o 1 (&g po 7y O
§2__~ —Y)?=—"-|SY?-RY’| and se(Y)=—
A AR V)=

= Length of each replication (n) beyond deletion point (d):
(n-d)>10d
= Number of replications (R) should be as many as time permits, up to about 25
replications.
= For a fixed total sample size (n), as fewer data are deleted (*d):
e C.I. shifts: greater bias.
e Standard error of Y (n,d) decreases: decrease variance.

Reducing
bias

Increasing
variance
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= M/G/1 queueing example:

e Suppose R = 10, each of length Tg = 15,000 minutes, starting at time 0 in the
empty and idle state, initialized for To = 2,000 minutes before data collection
begins.

e Each batch means is the average number of customers in queue for a 1,000-
minute interval.

e The 1* two batch means are deleted (d = 2).

e The point estimator and standard error are:

Y(152)=843 and se(Y (152))=159

e The 95% C.I. for long-run mean queue length is:
Y ~t,0aS/VR<OLY +t,,.,S VR
8.43-2.26(1.59) < L, <8.42+2.26(1.59)

e A high degree of confidence that the long-run mean queue length is between 4.84
and 12.02 (if d and n are “large” enough).

Sample Size

= To estimate a long-run performance measure, 6, within ~ with confidence 100(1- «)%.
= M/G/1 queueing example (cont.):
e We know: Ry =10, d = 2 and Sy = 25.30.
e To estimate the long-run mean queue length, Lo, within ¢ = 2 customers with
90% confidence (a = 10%).
e Initial estimate:

2 2
- ( zO_OSSoj _1645 (225.30) 171
&

e Hence, at least 18 replications are needed, next try R = 18,19, ... using
. We found that:

R=19>(t)ss10 15,/ ¢ = (1.74%25.3/2)? =18.93

e Additional replications needed is R — Ry = 19-10 = 9.
= An alternative to increasing R is to increase total run length To+Te within each
replication.
e Approach:
» Increase run length from (To+TEg) to (R/Ro)(To+Tg), and
» Delete additional amount of data, from time 0 to time (R/Ro)To.
e Advantage: any residual bias in the point estimator should be further reduced.
e However, it is necessary to have saved the state of the model at time To+Tg and to
be able to restart the model.
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Initialization Data collection

phase phase )
I L 1
0 Ty To+ Ty

Initialization Data collection

. phase \ phase )
I Ll 1
0 (RIRg)T, (RIRoWTy + Tg)

Batch Means for Interval Estimation
= Using asingle, long replication:
e Problem: data are dependent so the usual estimator is biased.
e Solution: batch means.
= Batch means: divide the output data from 1 replication (after appropriate deletion) into a
few large batches and then treat the means of these batches as if they were independent.
= A continuous-time process, {Y(t), To<t < To+Te}:
e k batches of size m = Tg/k, batch means:
Y =% (‘j”jl)mv(t +T,)dt
e Adiscrete-time process, {Yi, i =d+1,d+2, ..., n}:

k batches of size m = (n — d)/k, batch means:

_ 1 {m
Yj:_ ZYHd
M i—(iDm+
Y.l ="'=Yd=%;*+1:"'=I;+:5:Ié+fn+1="'=I;'+2:;: :I:a'+(k—1)m+1=“'=ya*+.h5
hd hd T
dalated ¥ 7, %

= Starting either with continuous-time or discrete-time data, the variance of the sample
mean is estimated by:

s2 18 (V-Y] & Y7-kv?
o3 k-1 _,Z_ll k(k —1)

k k<
= |f the batch size is sufficiently large, successive batch means will be approximately
independent, and the variance estimator will be approximately unbiased.
= No widely accepted and relatively simple method for choosing an acceptable batch size m
(see text for a suggested approach). Some simulation software does it automatically.
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Verification, Calibration and Validation
= The goal of the validation process is:
e To produce a model that represents true behavior closely enough for decision-
making purposes
e To increase the model’s credibility to an acceptable level
= Validation is an integral part of model development
e Verification — building the model correctly (correctly implemented with good
input and structure)
e Validation — building the correct model (an accurate representation of the real
system)
= Most methods are informal subjective comparisons while a few are formal statistical
procedures

Modeling-Building, Verification & Validation

Real system
e Y
Calibration
and Conceptual
validation validation

Conceptual model

1. Assumptions on system components

. Structural assumptions, which define
the interactions between system
components

. Input parameters and data assumptions

Model
verification

Y

\_ Operational model
(Computerized

representation)

\J

Verification
= Purpose: ensure the conceptual model is reflected accurately in the computerized
representation.
= Many common-sense suggestions, for example:
e Have someone else check the model.
e Make a flow diagram that includes each logically possible action a system can
take when an event occurs.
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e Closely examine the model output for reasonableness under a variety of input
parameter settings. (Often overlooked!)

e Print the input parameters at the end of the simulation make sure they have not
been changed inadvertently.

Examination of Model Output for Reasonableness

=  Example: A model of a complex network of queues consisting many service centers.
e Response time is the primary interest, however, it is important to collect and print
out many statistics in addition to response time.
» Two statistics that give a quick indication of model reasonableness are
current contents and total counts, for example:
o If the current content grows in a more or less linear fashion as the
simulation run time increases, it is likely that a queue is unstable
o If the total count for some subsystem is zero, indicates no items
entered that subsystem, a highly suspect occurrence
o If the total and current count are equal to one, can indicate that an
entity has captured a resource but never freed that resource.
» Compute certain long-run measures of performance, e.g. compute the
long-run server utilization and compare to simulation results

Other Important Tools
= Documentation
e A means of clarifying the logic of a model and verifying its completeness
= Use of atrace
e A detailed printout of the state of the simulation model over time.

Calibration and Validation

= Validation: the overall process of comparing the model and its behavior to the real

system.
= Calibration: the iterative process of comparing the model to the real system and making
adjustments.
Compare model Initial
to reality model

Revise

A

Compare revised o (First revision

Real model to reality of model
system p

Revise

Y

Compare second Second revision
— - -
revision to reality of model

Revise

4
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No model is ever a perfect representation of the system
e The modeler must weigh the possible, but not guaranteed, increase in model
accuracy versus the cost of increased validation effort.
Three-step approach:
e Build a model that has high face validity.
e Validate model assumptions.
e Compare the model input-output transformations with the real system’s data.

High Face Validity
Ensure a high degree of realism: Potential users should be involved in model construction
(from its conceptualization to its implementation).
Sensitivity analysis can also be used to check a model’s face validity.
e Example: In most queueing systems, if the arrival rate of customers were to
increase, it would be expected that server utilization, queue length and delays
would tend to increase

Validate Model Assumptions
General classes of model assumptions:
e Structural assumptions: how the system operates.
e Data assumptions: reliability of data and its statistical analysis.
Bank example: customer queueing and service facility in a bank.
e Structural assumptions, e.g., customer waiting in one line versus many lines,
served FCFS versus priority.
e Data assumptions, e.g., interarrival time of customers, service times for
commercial accounts.
» Verify data reliability with bank managers.
» Test correlation and goodness of fit for data (see Chapter 9 for more
details).

Validate Input-Output Transformation
Goal: Validate the model’s ability to predict future behavior
e The only objective test of the model.
e The structure of the model should be accurate enough to make good predictions
for the range of input data sets of interest.
One possible approach: use historical data that have been reserved for validation purposes
only.
Criteria: use the main responses of interest.

Bank Example
Example: One drive-in window serviced by one teller, only one or two transactions are
allowed.

e Data collection: 90 customers during 11 amto 1 pm.
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» Observed service times {S;, i = 1,2, ..., 90}.
» Observed interarrival times {A;, i = 1,2, ..., 90}.
e Data analysis let to the conclusion that:
» Interarrival times: exponentially distributed with rate A = 45
> Service times: N(1.1, 0.2%)

The Black Box [Bank Example: Validate 1-O Transformation]
= A model was developed in close consultation with bank management and employees
= Model assumptions were validated
= Resulting model is now viewed as a “black box™:

ﬁndel Output Variables,\i‘\

Primary interest:

Input Variables

" Possion arrivals Y, =teller's utilization
Uncontrolle =451 Xy, Xiz, - Yo = average dglay
variables, X Services times, Model Y; = maximum line length

N(Ds, 0.22)° Xor, Xoo— \“black box?—\
. /

fXD)=Y —|/’ Secondary interest:

D, =1 (one teller) Y = observed arrival rate
Controlled ' i Y5 = average service time
Decision D2= T_T min 5~ g
variables, D || (mean service time) Ys = sample std. dev. of

| D;=1 (one line) service times

\ / w7 = average length of tiry

Comparison with Real System Data [Bank Example: Validate 1-O Transformation]
= Real system data are necessary for validation.
e System responses should have been collected during the same time period (from
11am to 1pm on the same Friday.)
= Compare the average delay from the model Y, with the actual delay Z,:
e Average delay observed, Z, = 4.3 minutes, consider this to be the true mean value
my = 4.3.
e When the model is run with generated random variates Xi, and Xzn, Y2 should be
close to Z,.
e Six statistically independent replications of the model, each of 2-hour duration,
are run.
Hypothesis Testing [Bank Example: Validate I-O Transformation]
= Compare the average delay from the model Y, with the actual delay Z, (continued):
e Null hypothesis testing: evaluate whether the simulation and the real system are
the same (w.r.t. output measures):

H,: E(Y,)=43minutes
H,: E(Y,) = 4.3minutes
» If Hp is not rejected, then, there is no reason to consider the model invalid

» If Ho is rejected, the current version of the model is rejected, and the
modeler needs to improve the model
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e Conduct the t test:

>

>

>
>

Chose level of significance (a = 0.5) and sample size (n = 6), see result in
Table 10.2.

Compute the same mean and sample standard deviation over the n
replications:

Z(Yzi _Y_z)2
ZY2I =251 minutes S=1iL - 0.81 minutes
i=1 n-1
Compute test statistics:
o] |Y ,u0| |251 43|—5 24 > i =2.571 (fora2-sided test)

“[s/iyn| [082/V6 |

Hence, reject Hyo. Conclude that the model is inadequate.
Check: the assumptions justifying a t test, that the observations (Y;) are
normally and independently distributed.

= Similarly, compare the model output with the observed output for other measures:
Y4 €374, Y5 <> Zs, and Ye <> Zg

Type Il Error [Validate 1-O Transformation]
= For validation, the power of the test is:
e Probability[ detecting an invalid model ] =1 -3
e 3 =P(Type Il error) = P(failing to reject H0|H1 is true)

e Consider failure to reject H0 as a strong conclusion, the modeler would want f3 to

be small.
e Value of 3 depends on:

e Sample size, n
e The true difference, &, between E(Y) and 1z 0 =

[E(Y)— 4]
O

= |n general, the best approach to control b error is:
e Specify the critical difference, o.
e Choose a sample size, n, by making use of the operating characteristics curve (OC

curve).

Type I and Il Error [Validate 1-O Transformation]

= Type | error (a):

e Error of rejecting a valid model.

e Controlled by specifying a small level of significance c.
= Type Il error (B):

e Error of accepting a model as valid when it is invalid.

e Controlled by specifying critical difference and find the n.
= For a fixed sample size n, increasing « will decrease .
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Confidence Interval Testing [Validate 1-O Transformation]

= Confidence interval testing: evaluate whether the simulation and the real system are close
enough.
= |fY is the simulation output, and x = E(Y), the confidence interval (C.l.) for u is:
= Validating the model:
e Suppose the C.I. does not contain x : Y £t,,,.5/n

> If the best-case error is > & model needs to be refined.
» If the worst-case error is < ¢, accept the model.
» If best-case error is < &, additional replications are necessary.
» Suppose the C.I. contains H
» If either the best-case or worst-case error is > ¢, additional replications are
necessary.

> If the worst-case error is < ¢, accept the model.
= Bank example: H= 4.3, and “close enough” is £ = 1 minute of expected customer delay.

e A 95% confidence interval, based on the 6 replications is
[1.65, 3.37] because:
Y 0655 /40

4.3+2.51(0.82//6)

e Falls outside the confidence interval, the best case |3.37 — 4.3| = 0.93 < 1, but the
worst case |1.65 — 4.3| = 2.65 > 1, additional replications are needed to reach a
decision.

Using Historical Output Data

= An alternative to generating input data:
e Use the actual historical record.
e Drive the simulation model with the historical record and then compare model
output to system data.
e In the bank example, use the recorded interarrival and service times for the
customers {An, Sp, n = 1,2,...}.
= Procedure and validation process: similar to the approach used for system generated input
data.
Using a Turing Test
= Use in addition to statistical test, or when no statistical test is readily applicable.
= Utilize persons’ knowledge about the system.
=  For example:
e Present 10 system performance reports to a manager of the system. Five of them
are from the real system and the rest are “fake” reports based on simulation output
data.
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e If the person identifies a substantial number of the fake reports, interview the
person to get information for model improvement.

e If the person cannot distinguish between fake and real reports with consistency,
conclude that the test gives no evidence of model inadequacy.

Optimization via Simulation

Optimization usually deals with problems with certainty, but in stochastic discrete-event
simulation, the result of any simulation run is a random variable.
Let X1,X2,...,xm be the m controllable design variables & Y(xi,Xz,...,.xm) be the observed
simulation output performance on one run:
e To optimize Y(X1,Xa, ...,xm) With respect to Xj,Xp,...,xm IS t0 maximize or minimize
the  mathematical expectation (long-run average) of performance,
ELY (X1, X2, ..., xm)]-
Example: select the material handling system that has the best chance of costing less than
$D to purchase and operate.
e Objective: maximize Pr(Y(xq,Xz, ...,xm)< D).
e Define a new performance measure:
1 ifY(X X,,..X,) <D

Y (X Xy X ) = )
(%% Xo) {O, otherwise
e Maximize E(Y (X1,Xz, ...,xm)) instead.

Robust Heuristics [Optimization via Simulation]

The most common algorithms found in commercial optimization via simulation software.
Effective on difficult, practical problems.

However, do not guarantee finding the optimal solution.

Example: genetic algorithms and tabu search.

It is important to control the sampling variability.

Control sampling variability [Optimization via Simulation]
To determine how much sampling (replications or run length) to undertaken at each
potential solution.

e Ideally, sampling should increase as heuristic closes in on the better solutions.

e If specific and fixed number of replications per solution is required, analyst
should:

Conduct preliminary experiment.

Simulate several designs (some at extremes of the solution space and some
nearer the center).

Compare the apparent best and apparent worst of these designs.

Find the minimum for the number of replications required to declare these
designs to be statistically significantly different.

After completion of optimization run, perform a 2" set of experiments on
the top 5 to 10 designs identified by the heuristic, rigorously evaluate
which are the best or near-best of these designs.

YV VYV VYV
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