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SYSTEM MODELLING AND SIMULATION 

Module 1 

 

 

 

 

 

Introduction to simulation 

 A simulation: imitation of the operation of a real-world process or system over time: 

 Involves generation of an artificial history of a system. 

 Observes that history and draws inferences about system characteristics. 

 Can be used as: 

 Analysis tool for predicting the effect of changes to existing systems. 

 Design tool to predict performance of new systems. 

 Many real-world systems are very complex that cannot be solved mathematically.   

 Hence, numerical, computer-based simulation can be used to imitate the system 

behavior. 

 

When to use Simulation? 

 Simulation can be used for the purposes of: 

 Study and experiment with internal interactions of a complex system. 

 Observe the effect of system alterations on model behavior. 

 Gain knowledge about the system through design of simulation model. 

 Use as a pedagogical device to reinforce analytic solution methodologies, also to 

verify analytic solutions. 

 Experiment with new designs or policies before implementation. 

 Determine machine requirements through simulating different capabilities. 

 For training and learning. 

 Show animation. 

 Model complex system. 

Introduction:  When simulation is the appropriate tool and when it is not appropriate, 

Advantages and disadvantages of Simulation, Areas of application, Systems and system 

environment; Components of a system, Discrete and continuous systems, Model of a 

system, Types of Models, Discrete-Event System Simulation, Simulation examples, 

Simulation of queuing systems. General Principles, Simulation Software, Concepts in 

Discrete-Event Simulation, The Event-Scheduling / Time-Advance Algorithm, Manual 

simulation Using Event Scheduling 
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When Not to Use Simulation? 

 Simulation should not be used when: 

 Problem can be solved by common sense. 

 Problem can be solved analytically. 

 If it is easier to perform direct experiments. 

 If the costs exceed the savings. 

 If the resources or time to perform simulation studies are not available. 

 If no data, not even estimates, is available. 

 If there is not enough time or personnel to verify/validate the model. 

 If managers have unreasonable expectations: overestimate the power of 

simulation. 

 If system behavior is too complex or cannot be defined. 

Advantages and Disadvantages of Simulation 

 Advantages 

 New polices, operating procedures, decision rules, information flows, 

organizational procedures, and so on can be explored without disrupting ongoing 

operations of the real system. 

 New hardware designs, physical layouts, transportation systems, and so on, can be 

tested without committing resources for their acquisition. 

 Hypotheses about how or why certain phenomena occur can be tested for 

feasibility. 

 Insight can be obtained about the interaction of variables. 

 Insight can be obtained about the importance of variables to the performance of 

the system. 

 Bottleneck analysis can be performed indicating where work-in-process, 

information, materials, and so on are being excessively delayed. 

 A simulation study can help in understanding how the system operates rather than 

how individuals think the system operates. 

 “What-if” questions can be answered. This is particularly useful in the design of 

new system 

 Disadvantages 

 Model building requires special training. It is an art that is learned over time and 

through experience. Furthermore, if two models are constructed by two competent 

individuals, they may have similarities, but it is highly unlikely that they will be 

the same. 

 Simulation results may be difficult to interpret. Since most simulation outputs are 

essentially random variables (they are usually based on random inputs), it may be 
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hard to determine whether an observation is a result of system interrelationships 

or randomness. 

 Simulation modeling and analysis can be time consuming and expensive. 

Skimping on resources for modeling and analysis may result in a simulation 

model or analysis that is not sufficient for the task. 

 Simulation is used in some cases when an analytical solution is possible, or even 

preferable, as discussed in Section 1.2. This might be particularly true in the 

simulation of some waiting lines where closed-form queuing models are 

available. 

Areas of Application 

 The applications of simulation are vast. 

 The Winter Simulation Conference: an excellent way to learn more about the latest in 

simulation applications and theory. 

 Some areas of applications: 

 Manufacturing 

 Construction engineering and project management. 

 Military. 

 Logistics, supply chain, and distribution. 

 Transportation modes and traffic. 

 Business process simulation. 

 Healthcare. 

 Computer and communication systems. 

 WSC(Winter Simulation Conference) : http://www.wintersim.org 

 Manufacturing Applications 

 Analysis of electronics assembly operations 

 Design and evaluation of a selective assembly station for high-precision 

scroll compressor shells 

 Comparison of dispatching rules for semiconductor manufacturing using 

large-facility models 

 Evaluation of cluster tool throughput for thin-film head production 

 Determining optimal lot size for a semiconductor back-end factory 

 Optimization of cycle time and utilization in semiconductor test 

manufacturing 

 Analysis of storage and retrieval strategies in a warehouse 

 Investigation of dynamics in a service-oriented supply chain 

 Model for an Army chemical munitions disposal facility 

 Semiconductor Manufacturing 

 Comparison of dispatching rules using large-facility models 

 The corrupting influence of variability 

http://www.wintersim.org/
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 A new lot-release rule for wafer fabs 

 Assessment of potential gains in productivity due to proactive reticle 

management 

 Comparison of a 200-mm and 300-mm X-ray lithography cell 

 Capacity planning with time constraints between operations 

 300-mm logistic system risk reduction 

 Construction Engineering 

 Construction of a dam embankment 

 Trenchless renewal of underground urban infrastructures 

 Activity scheduling in a dynamic, multiproject setting 

 Investigation of the structural steel erection process 

 Special-purpose template for utility tunnel construction 

 Military Application 

 Modeling leadership effects and recruit type in an Army recruiting station 

 Design and test of an intelligent controller for autonomous underwater 

vehicles 

 Modeling military requirements for nonwarfighting operations 

 Multitrajectory performance for varying scenario sizes 

 Using adaptive agent in U.S Air Force pilot retention 

 Logistics, Transportation, and Distribution Applications 

 Evaluating the potential benefits of a rail-traffic planning algorithm 

 Evaluating strategies to improve railroad performance 

 Parametric modeling in rail-capacity planning 

 Analysis of passenger flows in an airport terminal 

 Proactive flight-schedule evaluation 

 Logistics issues in autonomous food production systems for extended-

duration space exploration 

 Sizing industrial rail-car fleets 

 Product distribution in the newspaper industry 

 Design of a toll plaza 

 Choosing between rental-car locations 

 Quick-response replenishment 

 Business Process Simulation 

 Impact of connection bank redesign on airport gate assignment 

 Product development program planning 

 Reconciliation of business and systems modeling 

 Personnel forecasting and strategic workforce planning 

 Human Systems 

 Modeling human performance in complex systems 

 Studying the human element in air traffic control 
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Systems and System Environment 

 A system is a group of objects joined together in some regular interaction or 

interdependence to accomplish some purpose. 

 e.g., a production system: machines, component parts & workers operate jointly 

along an assembly line to produce vehicle.  

 Affected by changes occurring outside the system. 

 System environment: “outside the system”, defining the boundary between system and it 

environment is important. 

Components of a System 

 Entity: an object of interest in the system. 

 Attribute: a property of an entity. 

 Activity: a time period of specified length. 

 State: the collection of variables necessary to describe the system at any time, relative to 

the objectives of the study. 

 Event: an instantaneous occurrence that may change the state of the system. 

 Endogenous: to describe activities and events occurring within a system. 

 Exogenous: to describe activities and events in an environment that affects the system. 

 

 

Discrete and Continuous Systems 

 Systems can be categorized as discrete or continuous. 

 Bank : a discrete system 

 The head of water behind a dam : a continuous system 
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Discrete System:  

 Is one in which the state variable change only at a discrete set of points in time.  

 The bank is an example, since the state variable the number of customer in the bank 

changes only when a customer arrives or when the service provided a customer is 

completed. 

Continuous system: 

 Is one in which the state variable change continuous over time. 

 Head of water behind a dam, during and for some time after a rain storm water flow into 

the lake behind the dam. 

Model of a System 

 Studies of systems are often accomplished with a model of a system. 

 A model: a representation of a system for the purpose of studying the system. 

 A simplification of the system. 

 Should be sufficiently detailed to permit valid conclusions to be drawn about the 

real system. 

 Should contain only the components that are relevant to the study. 

Types of Models 

 Two types of models: mathematical or physical. 

 Mathematical model: uses symbolic notation and mathematical equations to represent a 

system. 

 Simulation is a type of mathematical model. 

 Simulation models: 

 Static or dynamic. 

 Deterministic or stochastic. 

 Discrete or continuous. 

 Our focus: discrete, dynamic, and stochastic models. 

 



SMS Notes 
 

Mr. Srinivasa R, Dept. of CSE Page 7 

 Static or Dynamic Simulation Models 

 Static simulation model (called Monte Carlo simulation) represents a system at a 

particular point in time. 

 Dynamic simulation model represents systems as they change over time 

 Deterministic or Stochastic Simulation Models 

 Deterministic simulation models contain no random variables and have a known 

set of inputs which will result in a unique set of outputs 

 Stochastic simulation model has one or more random variables as inputs. Random 

inputs lead to random outputs. 

 The model of interest in this class is discrete, dynamic, and stochastic. 

Discrete-Event System Simulation 

 The simulation models are analyzed by numerical rather than by analytical methods 

 Analytical methods employ the deductive reasoning of mathematics to solve the 

model. 

 Numerical methods employ computational procedures to solve mathematical 

models. 

Steps in a Simulation Study 
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 Problem formulation  

 Policy maker/Analyst understand and agree with the formulation. 

 Setting of objectives and overall project plan 

 Model conceptualization 

 The art of modeling is enhanced by an ability to abstract the essential features of a 

problem, to select and modify basic assumptions that characterize the system, and 

then to enrich and elaborate the model until a useful approximation results. 

 Data collection 

 As the complexity of the model changes, the required data elements may also 

change. 

 Model translation 

 GPSS/H
TM

 or special-purpose simulation software 

 Verified? 

 Is the computer program performing properly? 

 Debugging for correct input parameters and logical structure 

 Validated? 

 The determination that a model is an accurate representation of the real system. 

 Validation is achieved through the calibration of the model 

 Experimental design 

 The decision on the length of the initialization period, the length of simulation 

runs, and the number of replications to be made of each run. 

 Production runs and analysis 

 To estimate measures of performances 

 More runs? 

 Documentation and reporting 

 Program documentation : for the relationships between input parameters and 

output measures of performance, and for a modification 

 Progress documentation: the history of a simulation, a chronology of work done 

and decision made. 

 Implementation 

 Four phases according to Figure 1.3 

 First phase : a period of discovery or orientation 

                     (Step 1, step2) 

 Second phase : a model building and data collection  

                     (Step 3, step 4, step 5, step 6, step 7) 

 Third phase : running the model 

                     (Step 8, step 9, step 10)  

 Fourth phase : an implementation 

                      (Step 11, step 12) 
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Simulation Examples 

 The simulations are carried out by following steps: 

 Determine the characteristics of each of the inputs to the simulation. Quite often, 

these may be modeled as probability distributions, either continuous or discrete. 

 Construct a simulation table. Each simulation table is different, for each is 

developed for the problem at hand.  

 For each repetition i, generate a value for each of the p inputs, and evaluate the 

function, calculating a value of the response yi. The input values may be 

computed by sampling values from the distributions determined in step 1. A 

response typically depends on the inputs and one or more previous responses. 

 Simulation examples are in queuing, inventory, reliability and network analysis. 

 The simulation table provides a systematic method for tracking system state over time. 

 

Simulation of Queuing Systems 

 

 A queuing system is described by its calling population, the nature of the arrivals, the 

service mechanism, the system capacity, and the queuing discipline. 

 In the single-channel queue, the calling population is infinite.  

 If a unit leaves the calling population and joins the waiting line or enters service, 

there is no change in the arrival rate of other units that may need service. 
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 Arrivals for service occur one at a time in a random fashion.  

 Once they join the waiting line, they are eventually served.  

 Service times are of some random length according to a probability distribution which 

does not change over time.  

 The system capacity has no limit, meaning that any number of units can wait in line.  

 Finally, units are served in the order of their arrival (often called FIFO: First In, 

First out) by a single server or channel 

 Arrivals and services are defined by the distribution of the time between arrivals and the 

distribution of service times, respectively.  

 For any simple single- or multi-channel queue, the overall effective arrival rate must be 

less than the total service rate, or the waiting line will grow without bound.  

 In some systems, the condition about arrival rate being less than service rate may 

not guarantee stability 

 System state: the number of units in the system and the status of the server(busy or idle). 

 Event: a set of circumstances that cause an instantaneous change in the state of the 

system.  

 In a single-channel queuing system there are only two possible events that can 

affect the state of the system.  

 the arrival event: the entry of a unit into the system 

 The departure event: the completion of service on a unit.  

 Simulation clock: used to track simulated time. 

 If a unit has just completed service, the simulation proceeds in the manner shown in the 

flow diagram of Figure 2.2.  

 Note that the server has only two possible states: it is either busy or idle. 

 

 The arrival event occurs when a unit enters the system.  

 The unit may find the server either idle or busy.  

 Idle: the unit begins service immediately 

 Busy: the unit enters the queue for the server.  
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Problems:  

Single channel queuing system problem formulas:  

1. Time Customer wait in queue= Time service begin – Arrival Time  

2. Time Service End= Service time + Time service begin  

3. Time customer Spend In system= Time service end-Arrival Time  

4. Idle Time of Server=Time service Begin (N)-Time Service end (N-1)  

Standard Formulas:  

1. Average waiting time (i.e. customer wait)=total time customer wait in queue / Total 

number of customer  

2. Probability (Wait i.e. customer wait) =Number of Customer who wait / Total number 

of customer  

3. Probability of idle server (idle time of server) =total idle time of server / total run time 

of simulation  

4. Average service time=total service time/total number of customer  

5. Average times between arrivals=sum of all times between arrival/number of arrivals-1  

6. Average waiting time those who wait in queue=total time customer wait in queue/total 

number of customer who wait  

7. Average time customer spend In the system=Total time customer spend in system/total 

number of customer 
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General Principles 

 Develops a common framework for the modeling of complex systems. 

 Covers the basic blocks for all discrete-event simulation models. 

 Introduces and explains the fundamental concepts and methodologies underlying all 

discrete-event simulation packages. 

 These concepts and methodologies are not tied to any particular simulation 

package. 

 Deals exclusively with dynamic, stochastic systems. 

 Discrete-event models are appropriate for those systems for which changes in system 

state occur only at discrete points in time. 

 Covers general principles and concepts: 

 Event scheduling/time advance algorithm. 

 The three prevalent world views. 

 Introduces some of the notions of list processing. 

 System: a collection of entities that interact together over time, e.g., people and machines. 

 Model: an abstract representation of a system. 

 System state: a collection of variables that contain all the info necessary to describe the 

system at any time. 

 Entity: any object or component in the system, e.g., a server, a customer, a machine. 

 Attributes: the properties of a given entity. 

 Lists: a collection of associated entities, ordered in some  logical fashion such as sets, 

queues and chains. 

 Event: an instantaneous occurrence that changes the state of a system, e.g., an arrival of a 

new customer. 

 Event list: a list of event notices for future events, ordered by time of occurrence such as 

the future event list (FEL) 

 Activity: duration of time of specified length which is known when it begins, e.g., a 

service time. 

 Simulation Clock: a variable representing simulated time. 

Note: different simulation packages use different terminology for  the same or similar concepts. 
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Event Scheduling/Time Advance Algorithm 

 The mechanism for advancing simulation time and guaranteeing that all events occur in 

correct chronological order is based on the future event list (FEL). 

 At any given time t, the FEL contains all previously scheduled future events and their 

associated event times (t1,t2, …) 

 FEL is ordered by event time, and the event time satisfy: 

   t ≤ t1 ≤  t2 ≤  t3 ≤  … ≤  tn where t is the value of CLOCK 
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Manual Simulation Using Event Scheduling 

In an event-scheduling simulation, a simulation table is used to record the successive system 

snapshots as time advances.  

Let us consider the example of a grocery shop which has only one checkout counter. (Single-

Channel Queue) The system consists of those customers in the waiting line plus the one (if any) 

checking out. The model has the following components:  

 System state (LQ(t), LS(t)) : 

 LQ(t) is the number of customers in the waiting line   

 LS(t) is the number being served (0 or 1) at time t  

 Entities: The server and customers are not explicitly modeled, except in terms of the 

state variables above. 

 Events : 

 Arrival (A) 

 Departure (D) 

 Stopping event (E), scheduled to occur at time 60. 

 Event notices (event type, event time) : 

 (A, t ), representing an arrival event to occur at future time t 

 (D, t ), representing a customer departure at future time t 

 (E, 60), representing the simulation-stop event at future time 60. 

 Activities: 

 Interarrival time 

 Service time 

 Delay: Customer time spent in waiting line. 

 FEL will always contain two or three event notices. 

 Event logic – execution of arrival event. 
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 Event logic – execution of departure event 
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SYSTEM MODELLING AND SIMULATION 

Module 2 

 

 

 

 

Statistical Models in Simulation 

 The world the model-builder sees is probabilistic rather than deterministic.   

 Some statistical model might well describe the variations. 

 An appropriate model can be developed by sampling the phenomenon of interest: 

 Select a known distribution through educated guesses 

 Make estimate of the parameter(s) 

 Test for goodness of fit 

 In this chapter: 

 Review several important probability distributions 

 Present some typical application of these models 

Review of Terminology and Concepts 

 In this section, we will review the following concepts: 

 Discrete random variables 

 Continuous random variables 

 Cumulative distribution function 

 Expectation 

 Discrete Random Variables 

 X is a discrete random variable if the number of possible values of X is finite, or 

countably infinite. 

 Example: Consider jobs arriving at a job shop. 

 Let X be the number of jobs arriving each week at a job shop. 

       Rx = possible values of X (range space of X) = {0,1,2,…}  

       p(xi) = probability the random variable is xi = P(X = xi) 

o p(xi), i = 1,2, … must satisfy: 









1
1)(  2.

 allfor   ,0)(  1.

i i

i

xp

ixp
 

Statistical Models in Simulation: Review of terminology and concepts, Useful statistical 

models, discrete distributions, Continuous distributions, Poisson process, Empirical 

distributions. Queuing Models: Characteristics of queuing systems, Queuing notation, Long-run 

measures of performance of queuing systems, Long-run measures of performance of queuing 

systems, Steady-state behavior of M/G/1 queue, Networks of queues 
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o The collection of pairs [xi, p(xi)], i = 1,2,…, is called the probability distribution of X, and 

p(xi) is called the probability mass function (pmf) of X. 

 

 Example: Assume the die is loaded so that the probability that a given face lands 

up is proportional to the number of spots showing. 

x
i
 1 2 3 4 5 6 

P(x
i
) 1/21 2/21 3/21 4/21 5/21 6/21 

 

o p(xi), i = 1,2, … must satisfy: 

 

 

 

 Continuous Random Variables 

 X is a continuous random variable if its range space Rx is an interval or a collection of 

intervals. 

 The probability that X lies in the interval [a, b] is given by: 

 
 f(x), denoted as the pdf of X, satisfies: 

 

 

 Properties 

 

 

 Example: The die-tossing experiment described in last example has a cdf given as 

follows: 

x (-∞,1) [1,2) [2,3) [3,4) [4,5) [5,6) [6,∞) 

F(x) 0 1/21 3/21 6/21 10/21 15/21 21/21 
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 [a, b) = {a ≤ x ≤ b} 

  

 

 

 

 Example: Life of an inspection device is given  by X, a continuous random variable with 

pdf: 

 

 

 

 

 

 

 

 

 X has an exponential distribution with mean 2 years 

 Probability that the device’s life is between 2 and 3 years is: 

 

 

 A random variable X is uniformly distributed on the interval (a, b) if its PDF is given by  

 

 

 

 

 The CDF is given by 

 

 

 

 

 The PDF and CDF when  
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 Exponential Distribution 

 A random variable X is said to be exponentially distributed with parameter if its PDF is 

given by  

 

 

 Gamma Distribution 

 A function used in defining the gamma distribution is the gamma function, which is 

defined for all          as 

 

 A random variable X is gamma distributed with parameters      and     if its PDF is given 

by 

 

 

 

 

 

 

 

 Normal Distribution 

 A random variable X with mean                 and variance                has a normal 

distribution if it has the PDF  
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 Example: Suppose that X ~ N (50, 9). 

 F(56) =   

 

 

 

 Example: The time in hours  

required to load a ship, X, is  

distributed as N(12, 4). The  

probability that 12 or more  

hours will be required to load  

the ship is: 

 

P(X > 12) = 1 – F (12) = 1 – 0.50 = 0.50 

    (The shaded portions in both figures)  

 The probability that between 

 10 and 12 hours will be required  

 to load a ship is given by  

 

P (10 ≤ X ≤ 12) = F (12) – F (10) = 0.5000 – 0.1587 = 0.3413 

The area is shown in shaded portions of the figure 

 Triangular Distribution 

 A random variable X has a triangular distribution if its PDF is given by 
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Where  a ≤ b ≤ c. 

 

 Lognormal Distribution 

 A random variable X has a lognormal distribution if its PDF is given by  
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 Beta Distribution 

 A random variable X is beta-distributed with parameters             and            if its PDF is 

given by 
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 Poisson Process 

 Consider the time at which arrivals occur. 

 Let the first arrival occur at time A1, the second occur at time A1+A2, and so on. 

 
 The probability that the first arrival will occur in [0, t] is given by 

 

 

 Empirical Distributions 

 Example: 

 Customers arrive at lunchtime in groups of from one to eight persons.  

 The number of persons per party in the last 300 groups has been observed. 

 The results are summarized in a table. 

 The histogram of the data is also included. 

Arrivals 

per 

Party 

Frequency Relative 

Frequency 

Cumulative 

Relative 

Frequency 

1 30 0.10 0.10 

2 110 0.37 0.47 

3 45 0.15 0.62 

4 71 0.24 0.86 

5 12 0.04 0.90 

6 13 0.04 0.94 

7 7 0.02 0.96 

8 12 0.04 1.00 

 The CDF in the figure is called the empirical distribution of the given data. 

 

tetAP  1)( 1
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 Cumulative Distribution Function 

 Cumulative Distribution Function (cdf) is denoted by F(x), where F(x) = P(X <= x) 

 If X is discrete, then  

 

 If X is continuous, then   

 Properties 

 

 

 All probability question about X can be answered in terms of the cdf, e.g.: 

 

 Example: An inspection device has cdf:  

 

 

 The probability that the device lasts for less than 2 years: 

 

 The probability that it lasts between 2 and 3 years:   

 

 Expectation 

 The expected value of X is denoted by E(X) 

 If X is discrete   

 If X is continuous    

 a.k.a the mean, m, or the 1st moment of X 

 A measure of the central tendency 

 The variance of X is denoted by V(X) or var (X) or 2 

 Definition:   V(X) = E[(X – E[X]2] 

 Also,   V(X) = E(X2) – [E(x)]2 

 A measure of the spread or variation of the possible values of X around the mean 
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 The standard deviation of X is denoted by  

 Definition: square root of V(X) 

 Expressed in the same units as the mean 

 

 Example: The mean of life of the previous inspection device is: 

 

 

 To compute variance of X, we first compute E(X2): 

 

 

 Hence, the variance and standard deviation of the device’s life are: 

 

 

Useful Statistical Models 

 In this section, statistical models appropriate to some application areas are presented.  The 

areas include: 

 Queueing systems 

 Inventory and supply-chain systems 

 Reliability and maintainability 

 Limited data 

 Queueing Systems 

 In a queueing system, interarrival and service-time patterns can be probabilistic (for more 

queueing examples, see Chapter 2). 

 Sample statistical models for interarrival or service time distribution: 

 Exponential distribution: if service times are completely random 

 Normal distribution: fairly constant but with some random variability (either positive 

or negative) 

 Truncated normal distribution: similar to normal distribution but with restricted 

value. 

 Gamma and Weibull distribution: more general than exponential (involving location 

of the modes of pdf’s and the shapes of tails.) 
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 Inventory and supply chain 

 In realistic inventory and supply-chain systems, there are at least three random variables:  

 The number of units demanded per order or per time period 

 The time between demands 

 The lead time 

 Sample statistical models for lead time distribution: 

 Gamma 

 Sample statistical models for demand distribution:  

 Poisson: simple and extensively tabulated. 

 Negative binomial distribution: longer tail than Poisson (more large demands). 

 Geometric: special case of negative binomial given at least one demand has occurred. 

 Reliability and maintainability 

 Time to failure (TTF) 

 Exponential: failures are random 

 Gamma: for standby redundancy where each component has an exponential TTF 

 Weibull: failure is due to the most serious of a large number of defects in a system of 

components 

 Normal: failures are due to wear 

 Other areas 

 For cases with limited data, some useful distributions are: 

 Uniform, triangular and beta  

 Other distribution: Bernoulli, binomial and hyperexponential. 

Discrete Distributions 

 Discrete random variables are used to describe random phenomena in which only integer 

values can occur. 

 In this section, we will learn about: 

 Bernoulli trials and Bernoulli distribution 

 Binomial distribution 

 Geometric and negative binomial distribution 

 Poisson distribution 

 Bernoulli Trials and Bernoulli distribution     

 Bernoulli Trials:  

 Consider an experiment consisting of n trials, each can be a success or a failure. 

 Let Xj = 1 if the jth experiment is a success 

 and Xj = 0 if the jth experiment is a failure 
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 The Bernoulli distribution (one trial): 

 

 

 

 

 where E(Xj) = p and V(Xj) = p (1-p) = p q 

 Bernoulli process:  

 The n Bernoulli trials where trails are independent: 

   p(x1,x2,…, xn) = p1(x1) p2(x2) … pn(xn) 

 Binomial Distribution 

 The number of successes in n Bernoulli trials, X, has a binomial distribution. 

     

 

 

 

 

 

 

 The mean, E(x) = p + p + … + p = n*p 

 The variance, V(X) = pq + pq + … + pq = n*pq  

 Geometric & Negative Binomial Distribution 

 Geometric distribution 

 The number of Bernoulli trials, X, to achieve the 1st success: 

 

 

 E(x) = 1/p, and V(X) = q/p2 

 Negative binomial distribution 

 The number of Bernoulli trials, X, until the kth success  

 If Y is a negative binomial distribution with parameters p and k, then: 

 

 

 

 E(Y) = k/p, and V(X) = kq/p2 
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 Poisson Distribution 

 Poisson distribution describes many random processes quite well and is mathematically quite 

simple. 

 where a > 0, pdf  and cdf are: 

 

 

 E(X) = a = V(X) 

 

 Example: A computer repair person is “beeped” each time there is a call for service.  The 

number of beeps per hour ~ Poisson(a = 2 per hour). 

 The probability of three beeps in the next hour: 

p (3)  = e-223/3! = 0.18 

also, p(3) = F(3) – F(2) = 0.857-0.677=0.18 

 The probability of two or more beeps in a 1-hour period: 

p(2 or more)  = 1 – p(0) – p(1)  

     = 1 – F(1)  

     = 0.594 

Continuous Distributions 

 Continuous random variables can be used to describe random phenomena in which the 

variable can take on any value in some interval. 

 In this section, the distributions studied are: 

 Uniform 

 Exponential 

 Normal 

 Weibull 

 Lognormal 
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 Uniform Distribution 

 A random variable X is uniformly distributed on the interval (a,b), U(a,b), if its pdf and 

cdf are: 

   

 

 Properties 

 P(x1 < X < x2) is proportional to the length of the interval   

[F(x2) – F(x1) = (x2-x1)/(b-a)] 

 E(X) = (a+b)/2  V(X) = (b-a)
2
/12 

 U(0,1) provides the means to generate random numbers, from which random variates can 

be generated. 

 Exponential Distribution 

 A random variable X is exponentially distributed with parameter l > 0 if its pdf and cdf are: 

 

 

 

 

 

 

 

 

 

 Memoryless property 

 For all s and t greater or equal to 0: 

P(X > s+t | X > s) = P(X > t) 

 Example: A lamp ~ exp(l = 1/3 per hour), hence, on average, 1 failure per 3 hours. 

 The probability that the lamp lasts longer than its mean life is: 

 P(X > 3) = 1-(1-e-3/3) = e-1 = 0.368 

 The probability that the lamp lasts between 2 to 3 hours is: 

    P(2 <= X <= 3) = F(3) – F(2) = 0.145 

 The probability that it lasts for another hour given it is operating for 2.5 

hours: 

    P(X > 3.5 | X > 2.5) = P(X > 1) = e-1/3 = 0.717 
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times that are highly variable 

 For several different exponential 

pdf’s (see figure), the value of 

intercept on the vertical axis is l, 

and all pdf’s eventually intersect.
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 Normal Distribution 

 A random variable X is normally distributed has the pdf: 

 

 

 

 

 Mean:    

 Variance: 

 Denoted as X ~ N(,
2

) 
 Special properties:                                                     

  

 f(-x)=f(+x); the pdf is symmetric about . 

 The maximum value of the pdf occurs at x = ; the mean and mode are equal. 

 Evaluating the distribution: 

 Use numerical methods (no closed form) 

 Independent of  and  using the standard normal distribution:  
Z ~ N(0,1) 

 Transformation of variables: let Z = (X - ) / ,             
 

 

 

 

 

 

 Example: The time required to load an oceangoing vessel, X, is distributed as N(12,4) 

 The probability that the vessel is loaded in less than 10 hours: 

 

 

 Using the symmetry property, (1) is the complement of  (-1) 
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 Weibull Distribution  

  A random variable X has a Weibull distribution if its pdf has the form:
 

 

 

 

 3 parameters  :
 Location parameter:  

 Scale parameter:  

 Shape parameter.  

 Example:  and  = 0   = 1:
 

 

 

 Lognormal Distribution 

 A random variable X has a lognormal distribution if its pdf has the form: 

 

 

 

 

 

 Mean E(X) = e
+

2
/2

  

 Variance V(X) = e
+

2
/2 (

e


2
 

 - 1)
  Relationship with normal distribution

 When Y ~ N(, 
2

hen), t  X = e
Y

lognorma ~ l(, 
2

 )

 Parameters  and  
2

are not the mean and variance of the lognormal  
 

Queuing Models 

 Simulation is often used in the analysis of queueing models.  

 A simple but typical queueing model: 

 

 
 

 Queueing models provide the analyst with a powerful tool for designing and evaluating 

the performance of queueing systems. 
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 Typical measures of system performance:  

 Server utilization, length of waiting lines, and delays of customers 

 For relatively simple systems, compute mathematically 

 For realistic models of complex systems, simulation is usually required. 

Characteristics of Queueing Systems 

 Key elements of queueing systems: 

 Customer: refers to anything that arrives at a facility and requires service, e.g., 

people, machines, trucks, emails. 

 Server: refers to any resource that provides the requested service, e.g., 

repairpersons, retrieval machines, runways at airport. 

Calling Population 

 Calling population: the population of potential customers, may be assumed to be finite or 

infinite. 

 Finite population model: if arrival rate depends on the number of customers being 

served and waiting, e.g., model of one corporate jet, if it is being repaired, the 

repair arrival rate becomes zero. 

 Infinite population model: if arrival rate is not affected by the number of 

customers being served and waiting, e.g., systems with large population of 

potential customers. 

System Capacity 

 System Capacity: a limit on the number of customers that may be in the waiting line or 

system. 

 Limited capacity, e.g., an automatic car wash only has room for 10 cars to wait in 

line to enter the mechanism. 

 Unlimited capacity, e.g., concert ticket sales with no limit on the number of 

people allowed waiting to purchase tickets. 

Arrival Process 

 For infinite-population models: 

 In terms of interarrival times of successive customers. 

 Random arrivals: interarrival times usually characterized by a probability 

distribution. 

 Most important model: Poisson arrival process (with rate l), where An 

represents the interarrival time between customer n-1 and customer n, and 

is exponentially distributed (with mean 1/l). 

 Scheduled arrivals: interarrival times can be constant or constant plus or minus a 

small random amount to represent early or late arrivals. 
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 e.g., patients to a physician or scheduled airline flight arrivals to an 

airport. 

 At least one customer is assumed to always be present, so the server is never idle, 

e.g., sufficient raw material for a machine. 

 For finite-population models: 

 Customer is pending when the customer is outside the queueing system, e.g., 

machine-repair problem: a machine is “pending” when it is operating, it becomes 

“not pending” the instant it demands service form the repairman. 

 Runtime of a customer is the length of time from departure from the queueing 

system until that customer’s next arrival to the queue, e.g., machine-repair 

problem, machines are customers and a runtime is time to failure. 

 Let A1
(i)

, A2
(i)

, … be the successive runtimes of customer i, and S1
(i)

, S2
(i)

 be the 

corresponding successive system times: 

 

Queue Behavior and Queue Discipline 

 Queue behavior: the actions of customers while in a queue waiting for service to begin, 

for example: 

 Balk: leave when they see that the line is too long, 

 Renege: leave after being in the line when its moving too slowly, 

 Jockey: move from one line to a shorter line. 

 Queue discipline: the logical ordering of customers in a queue that determines which 

customer is chosen for service when a server becomes free, for example: 

 First-in-first-out (FIFO) 

 Last-in-first-out (LIFO) 

 Service in random order (SIRO) 

 Shortest processing time first (SPT) 

 Service according to priority (PR). 

Service Times and Service Mechanism 

 Service times of successive arrivals are denoted by S1, S2, S3. 

 May be constant or random. 
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 {S1, S2, S3, …} is usually characterized as a sequence of independent and 

identically distributed random variables, e.g., exponential, Weibull, gamma, 

lognormal, and truncated normal distribution. 

 A queueing system consists of a number of service centers and interconnected queues. 

 Each service center consists of some number of servers, c, working in parallel, 

upon getting to the head of the line, a customer takes the 1
st
 available server. 

 Example: consider a discount warehouse where customers may: 

 Serve themselves before paying at the cashier: 

 

 Wait for one of the three clerks: 

 
 

 Batch service (a server serving several customers simultaneously), or customer 

requires several servers simultaneously. 

Queueing Notation 

 A notation system for parallel server queues:  A/B/c/N/K 

 A represents the interarrival-time distribution, 

 B represents the service-time distribution, 

 c represents the number of parallel servers, 

 N represents the system capacity, 

 K represents the size of the calling population. 
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 Primary performance measures of queueing systems: 

 Pn:  steady-state probability of having n customers in system, 

 Pn(t):  probability of n customers in system at time t, 

 :  arrival rate, 

  e: effective arrival rate, 

 : service rate of one server, 

 : server utilization, 

 An: interarrival time between customers n-1 and n, 

 Sn: service time of the nth arriving customer, 

 Wn: total time spent in system by the nth arriving customer, 

 Wn
Q
: total time spent in the waiting line by customer n, 

 L(t): the number of customers in system at time t, 

 LQ(t): the number of customers in queue at time t, 

 L: long-run time-average number of customers in system, 

 LQ: long-run time-average number of customers in queue, 

 w : long-run average time spent in system per customer, 

 wQ: long-run average time spent in queue per customer. 

Long-run Measures of performance of queueing systems  

 The primary long run measures of performance of queueing system are the long run time 

average number of customer in s/m(L) & queue(LQ)  

 The long run average time spent in s/m(w) & in the queue(wQ) per customer  

 Server utilization or population of time that a server is busy (p).  

Time-Average Number in System L 

 Consider a queueing system over a period of time T, 

 Let Ti denote the total time during [0,T] in which the system contained exactly i 

customers, the time-weighted-average number in a system is defined by: 

 

 

 

 Consider the total area under the function is L(t), then, 

 

 

 

 The long-run time-average # in system, with probability 1: 
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 The time-weighted-average number in queue is: 

 

 

 

 G/G/1/N/K example: consider the results from the queuing system (N > 4, K > 3). 

 

Average Time Spent in System per Customer w 

 The average time spent in system per customer, called the average system time, is: 

 

 

 Where W1, W2, …, WN are the individual times that each of the N customers spend 

in the system during [0,T]. 

 For stable systems: 

 If the system under consideration is the queue alone: 

 

 

 

 G/G/1/N/K example (cont.): the average system time is 

 

 

 

Server Utilization 

 Definition: the proportion of time that a server is busy. 

 Observed server utilization,   , is defined over a specified time interval [0,T]. 

 Long-run server utilization is . 

 For systems with long-run stability: 

 For G/G/1/∞/∞ queues: 
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 Any single-server queueing system with average arrival rate l customers per time 

unit, where average service time E(S) = 1/ time units, infinite queue capacity and 

calling population. 

 Conservation equation, L = w, can be applied. 

 For a stable system, the average arrival rate to the server, 
s
, must be identical to . 

 The average number of customers in the server is: 

 In general, for a single-server queue: 

 

 

 

 

 For a single-server stable queue: 

 For an unstable queue (> m), long-run server utilization is 1 

 For G/G/c/∞/∞ queues: 

 A system with c identical servers in parallel. 

 If an arriving customer finds more than one server idle, the customer chooses a 

server without favoring any particular server. 

 For systems in statistical equilibrium, the average number of busy servers, Ls, is: 

Ls, =  E(s) =  / m. 

 The long-run average server utilization is: 

 

 

Server Utilization and System Performance 

 System performance varies widely for a given utilization . 

 For example, a D/D/1 queue where E(A) = 1/ and E(S) = 1/, where: 

L =  =  /,   w = E(S) = 1/,   LQ = WQ = 0. 

 By varying  and , server utilization can assume any value between 0 

and 1. 

 Yet there is never any line. 

 In general, variability of interarrival and service times causes lines to fluctuate in 

length. 

 Example: A physician who schedules patients every 10 minutes and spends S
i
 minutes 

with the i
th

 patient: 

 

 Arrivals are deterministic, A
1
 = A

2
 = … = 

-1

 = 10. 

 Services are stochastic, E(S
i
) = 9.3 min and V(S

0
) = 0.81 min

2

. 
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 On average, the physician's utilization =  = 0.93 < 1. 

 Consider the system is simulated with service times: S
1
= 9, S

2
= 12, S

3
= 9, S

4
= 9, S

5
= 9, 

….  The system becomes: 

 The occurrence of a relatively long service time (S
2
 = 12) causes a waiting line to form 

temporarily. 

 

Costs in Queueing Problems 

 Costs can be associated with various aspects of the waiting line or servers: 

 System incurs a cost for each customer in the queue, say at a rate of $10 per hour 

per customer. 

 The average cost per customer is: 

 

 

 

 If    customers per hour arrive (on average), the average cost per hour is:  

 

 

 

 Server may also impose costs on the system, if a group of c parallel servers (1 ≤ c 

≤ ∞) have utilization r, each server imposes a cost of $5 per hour while busy. 

 The total server cost is:   $5*c. 

Steady-State Behavior of Infinite-Population Markovian Models 

 Markovian models: exponential-distribution arrival process (mean arrival rate = ). 

 Service times may be exponentially distributed as well (M) or arbitrary (G). 

 A queueing system is in statistical equilibrium if the probability that the system is in a 

given state is not time dependent:   

P( L(t) = n ) = Pn(t) = Pn. 

 Mathematical models in this chapter can be used to obtain approximate results even when 

the model assumptions do not strictly hold (as a rough guide). 

 Simulation can be used for more refined analysis (more faithful representation for 

complex systems). 

 For the simple model studied in this chapter, the steady-state parameter, L, the time-

average number of customers in the system is: 

 

 Apply Little’s equation to the whole system and to the queue alone: 
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 G/G/c/∞/∞ example: to have a statistical equilibrium, a necessary and sufficient condition 

is / (c) < 1. 

M/G/1 Queues 

 Single-server queues with Poisson arrivals & unlimited capacity. 

 Suppose service times have mean 1/  and variance 
 2

 and r = / < 1, the steady-state 

parameters of M/G/1 queue: 

 

 

 

 

 

 No simple expression for the steady-state probabilities P0, P1, …  

 L – LQ =  is the time-average number of customers being served. 

 Average length of queue, LQ, can be rewritten as: 

 

 

 If and  are held constant, LQ depends on the variability, 
2

, of the service times. 

 Example: Two workers competing for a job, Able claims to be faster than Baker on 

average, but Baker claims to be more consistent,  

 Poisson arrivals at rate = 2 per hour (1/30 per minute). 

 Able: 1/ = 24 minutes and 
 2
 = 20

2
 = 400 minutes

2
: 

 

 

 The proportion of arrivals who find Able idle and thus experience no delay 

is P0 = 1- = 1/5 = 20%. 

 Baker: 1/ = 25 minutes and 
 2
 = 2

2
 = 4 minutes

2
: 

 

 

 The proportion of arrivals who find Baker idle and thus experience no 

delay is P0 = 1- = 1/6 = 16.7%. 

 Although working faster on average, Able’s greater service variability results in 

an average queue length about 30% greater than Baker’s. 

 Suppose the service times in an M/G/1 queue are exponentially distributed with mean 

1/, then the variance is 
 2
 = 1/2
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 M/M/1 queue is a useful approximate model when service times have standard 

deviation approximately equal to their means. 

 The steady-state parameters: 

 

 

 

 

 Example: M/M/1 queue with service rate =10 customers per hour. 

 Consider how L and w increase as arrival rate, , increases from 5 to 8.64 by 

increments of 20%: 

 If / ≥ 1, waiting lines tend to continually grow in length. 

 

 

 

 Increase in average system time (w) and average number in system (L) is highly 

nonlinear as a function of . 

Effect of Utilization and Service Variability 

 For almost all queues, if lines are too long, they can be reduced by decreasing 

server utilization () or by decreasing the service time variability (
2

). 
 A measure of the variability of a distribution, coefficient of variation (cv): 

 

 

 

 The larger cv is, the more variable is the distribution relative to its expected 

value 

 Consider LQ for any M/G/1 queue: 
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Multiserver Queue 

 M/M/c/∞/∞ queue: c channels operating in parallel. 

 Each channel has an independent and identical exponential service-time 

distribution, with mean 1/. 

 To achieve statistical equilibrium, the offered load () must satisfy  < c, 

where /(c) =  is the server utilization. 

 Some of the steady-state probabilities: 

 

 

 

 

 

 

 Other common multiserver queueing models: 

 M/G/c/∞: general service times and c parallel server.  The parameters can be 

approximated from those of the M/M/c/∞/∞ model. 

 M/G/∞: general service times and infinite number of servers, e.g., customer is its 

own system, service capacity far exceeds service demand. 

 M/M/C/N/∞: service times are exponentially distributed at rate m and c servers 

where the total system capacity is N ≥ c customer (when an arrival occurs and the 

system is full, that arrival is turned away). 

Steady-State Behavior of Finite-Population Models 

 When the calling population is small, the presence of one or more customers in the 

system has a strong effect on the distribution of future arrivals. 

 Consider a finite-calling population model with K customers (M/M/c/K/K): 

 The time between the end of one service visit and the next call for service 

is exponentially distributed, (mean = 1/). 

 Service times are also exponentially distributed. 

 c parallel servers and system capacity is K. 

 Some of the steady-state probabilities: 
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 Example: two workers who are responsible for10 milling machines.  

 Machines run on the average for 20 minutes, then require an average 5-

minute service period, both times exponentially distributed:  = 1/20 and 

 = 1/5. 
 All of the performance measures depend on P

0
: 

 
 
 

o Then, we can obtain the other P
n
. 

o Expected number of machines in system: 

 
 

o The average number of running machines: 

 

Networks of Queues 

 Many systems are naturally modeled as networks of single queues: customers departing 

from one queue may be routed to another. 

 The following results assume a stable system with infinite calling population and no limit 

on system capacity: 

 Provided that no customers are created or destroyed in the queue, then the 

departure rate out of a queue is the same as the arrival rate into the queue (over 

the long run). 

 If customers arrive to queue i at rate 
i
, and a fraction 0  p

ij 


 
1 of them are 

routed to queue j upon departure, then the arrival rate form queue i to queue j is 


I
p

ij
 (over the long run). 

The overall arrival rate into queue j: 
 
 
 
 
 
 
 





K

n

ne

e

PnK
0

)(          

service) xitingentering/e(or  queue  tocustomers of rate arrival effectiverun  long  theis  where





machines 83.617.310 LK

machines 17.3
10

0


n

nnPL

065.0
20

5

2!2)!10(

!10

20

510
1

10

2
2

12

0

0 



















































n

n

n
n

n

nn
P


i

ijijj pa
 all



Arrival rate from 

outside the network 

Sum of arrival rates from 

other queues in network 



SMS Notes 
 

Mr. Srinivasa R, Dept. of CSE Page 27 

 If queue j has c
j
 < ∞ parallel servers, each working at rate 

j
, then the long-run 

utilization of each server is 
j
=

j
/(c

j
) (where 

j
 < 1 for stable queue). 

 If arrivals from outside the network form a Poisson process with rate a
j
 for each 

queue j, and if there are c
j
 identical servers delivering exponentially distributed 

service times with mean 1/
j
, then, in steady state, queue j behaves likes an 

M/M/c
j
 queue with arrival rate 

 

 Discount store example:  

 Suppose customers arrive at the rate 80 per hour and 40% choose self-service. Hence: 

 Arrival rate to service center 1 is 
1
 = 80(0.4) = 32 per hour 

 Arrival rate to service center 2 is 
2
 = 80(0.6) = 48 per hour. 

 c2 = 3 clerks and 
2
 = 20 customers per hour. 

 The long-run utilization of the clerks is: 

    
2
 = 48/(3*20) = 0.8 

 All customers must see the cashier at service center 3, the overall rate to service 

center 3 is 
3
 = 

1
 + 

2
 = 80 per hour. 

 If 
3
 = 90 per hour, then the utilization of the cashier is: 

   
3
 = 80/90 = 0.89 
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SYSTEM MODELLING AND SIMULATION 

Module 3 

 

 

 

 

RANDOM-NUMBER GENERATION 

Random numbers are a necessary basic ingredient in the simulation of almost all discrete 

systems. Most computer languages have a subroutine, object, or function that will generate a 

random number. Similarly simulation languages generate random numbers that are used to 

generate event times and other random variables. 

Properties of Random Numbers 

 Two important statistical properties: 

 Uniformity 

 Independence. 

 Random Number, Ri, must be independently drawn from a uniform distribution with pdf: 

 

 

 

 

 

 

 

 

Generation of Pseudo-Random Numbers 

 “Pseudo”, because generating numbers using a known method removes the potential for 

true randomness. 

 Goal: To produce a sequence of numbers in [0,1] that simulates, or imitates, the ideal 

properties of random numbers (RN). 

 Important considerations in RN routines: 

 Fast 

 Portable to different computers 

 Have sufficiently long cycle 

Random-Number Generation: Properties of random numbers, Generation of pseudo-

random numbers, Techniques for generating random numbers, Techniques for 

generating random numbers, Tests for Random Numbers, Random - Variate 

Generation, Inverse transform technique Acceptance-Rejection technique, Inverse 

transform technique Acceptance-Rejection technique. 
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Figure: pdf for random numbers 
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 Replicable 

 Closely approximate the ideal statistical properties of uniformity and 

independence. 

Techniques for Generating Random Numbers 

 Linear Congruential Method (LCM). 

 Combined Linear Congruential Generators (CLCG). 

 Random-Number Streams. 

 Linear Congruential Method 

 To produce a sequence of integers, X1, X2, … between 0 and m-1 by following a recursive 

relationship: 

 

 

 

 

 

 

 The selection of the values for a, c, m, and X0 drastically affects the statistical properties 

and the cycle length. 

 The random integers are being generated [0,m-1], and to convert the integers to random 

numbers: 

 

 

Example 

 Use X0 = 27, a = 17, c = 43, and m = 100. 

 The Xi and Ri values are: 

  X1 = (17*27+43) mod 100 = 502 mod 100 = 2, R1 = 0.02; 

  X2 = (17*2+32) mod 100 = 77,    R2 = 0.77; 

  X3 = (17*77+32) mod 100 = 52,    R3 = 0.52; 

  … 

Characteristics of a Good Generator 

 Maximum Density 

 Such that he values assumed by Ri, i = 1,2,…, leave no large gaps on [0,1] 

 Problem: Instead of continuous, each Ri is discrete 

 Solution: a very large integer for modulus m 

 Approximation appears to be of little consequence 

 Maximum Period 

 To achieve maximum density and avoid cycling. 

 Achieve by: proper choice of a, c, m, and X0. 

 Most digital computers use a binary representation of numbers 

 Speed and efficiency are aided by a modulus, m, to be (or close to) a power of 2. 

,...2,1,0    , mod )(1  imcaXX ii
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 Combined Linear Congruential Generators 

 Reason: Longer period generator is needed because of the increasing complexity of 

stimulated systems. 

 Approach: Combine two or more multiplicative congruential generators. 

 Let Xi,1, Xi,2, …, Xi,k, be the i
th

 output from k different multiplicative congruential 

generators. 

 The j
th

 generator: 

 Has prime modulus mj and multiplier aj  and period is mj-1 

 Produces integers Xi,j is approx ~ Uniform on integers in [1, m-1] 

 Wi,j = Xi,j -1 is approx ~ Uniform on integers in [1, m-2] 

o Suggested form: 

 

 

 

 

 

 

 

 The maximum possible period is: 

 

 

 

 Example: For 32-bit computers, L’Ecuyer [1988] suggests combining k = 2 generators 

with m1 = 2,147,483,563, a1 = 40,014, m2 = 2,147,483,399 and a2 = 20,692. The 

algorithm becomes: 

  Step 1: Select seeds 

 X1,0 in the range [1, 2,147,483,562] for the 1
st
 generator 

 X2,0 in the range [1, 2,147,483,398] for the 2
nd

 generator.    

Step 2:  For each individual generator, 

    X1,j+1 = 40,014 X1,j mod 2,147,483,563 

    X2,j+1 = 40,692 X1,j mod 2,147,483,399. 

  Step 3:  Xj+1 = (X1,j+1  - X2,j+1 ) mod 2,147,483,562. 

  Step 4:  Return 

 

 

 

 

 

  Step 5:  Set j = j+1, go back to step 2. 

 Combined generator has period: (m1 – 1)(m2 – 1)/2 ~ 2 x 10
18
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 Random-Numbers Streams 

 The seed for a linear congruential random-number generator: 

 Is the integer value X0 that initializes the random-number sequence. 

 Any value in the sequence can be used to “seed” the generator. 

 A random-number stream: 

 Refers to a starting seed taken from the sequence X0, X1, …, XP. 

 If the streams are b values apart, then stream i could defined by starting seed: 

 Older generators: b = 10
5
; Newer generators: b = 10

37
. 

 A single random-number generator with k streams can act like k distinct virtual random-

number generators 

 To compare two or more alternative systems. 

 Advantageous to dedicate portions of the pseudo-random number sequence to the 

same purpose in each of the simulated systems. 

Tests for Random Numbers 

 Two categories: 

 Testing for uniformity: 

   H0:   Ri ~ U[0,1]  

   H1:   Ri ~ U[0,1] 

 Failure to reject the null hypothesis, H0, means that evidence of non-

uniformity has not been detected. 

 Testing for independence: 

   H0:   Ri ~ independently 

   H1:   Ri ~ independently 

 Failure to reject the null hypothesis, H0, means that evidence of 

dependence has not been detected. 

 Level of significance a, the probability of rejecting H0 when it is true:     

 = P(reject H0|H0 is true) 

 When to use these tests: 

 If a well-known simulation languages or random-number generators is used, it is 

probably unnecessary to test 

 If the generator is not explicitly known or documented, e.g., spreadsheet 

programs, symbolic/numerical calculators, tests should be applied to many sample 

numbers. 

 Types of tests: 

 Theoretical tests: evaluate the choices of m, a, and c without actually generating 

any numbers 

 Empirical tests: applied to actual sequences of numbers produced.  Our emphasis. 

 

 

 

/ 

/ 
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Frequency Tests 

 Test of uniformity 

 Two different methods: 

 Kolmogorov-Smirnov test 

 Chi-square test 

 Kolmogorov-Smirnov Test 

 Compares the continuous cdf, F(x), of the uniform distribution with the empirical cdf, 

SN(x), of the N sample observations.   

 We know:    

 If the sample from the RN generator is R1, R2, …, RN, then the empirical cdf, SN(x) 

is:   

     

  

 Based on the statistic: D = max| F(x) - SN(x)| 

 Sampling distribution of D is known (a function of N, tabulated in Table) 

 A more powerful test, recommended. 

 Example: Suppose 5 generated numbers are 0.44, 0.81, 0.14, 0.05, 0.93. 

 
 

 Chi-square test 

 Chi-square test uses the sample statistic: 
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 Approximately the chi-square distribution with n-1 degrees of freedom (where the 

critical values are tabulated in Table A.6) 

 For the uniform distribution, Ei, the expected number in the each class is: 

 

 

 Valid only for large samples, e.g. N >= 50 

Tests for Autocorrelation 

 Testing the autocorrelation between every m numbers (m is a.k.a. the lag), starting with 

the i
th

 number 

 The autocorrelation 
im

 between numbers:  Ri, Ri+m, Ri+2m, Ri+(M+1)m 

 M is the largest integer such that 

 Hypothesis: 

 

 

 If the values are uncorrelated: 

 For large values of M, the distribution of the estimator of 
im

, denoted is 

approximately normal. 

 Test statistics is: 
 
 
 

 Z
0
 is distributed normally with mean = 0 and variance = 1, and: 

 
 
 
 
 
 

 If 
im

 > 0, the subsequence has positive autocorrelation 

 High random numbers tend to be followed by high ones, and vice versa. 

 If 
im

 < 0, the subsequence has negative autocorrelation 

 Low random numbers tend to be followed by high ones, and vice versa. 

Normal Hypothesis Test 
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Example 

 Test whether the 3rd, 8th, 13th, and so on, for the following output on P. 265. 

 Hence,  = 0.05, i = 3, m = 5, N = 30, and M = 4 

 

 

 

 

 

 

 

 

 

 

 

 From Table A.3, z
0.025

 = 1.96.  Hence, the hypothesis is not rejected. 

Random-Variate Generation 

 Illustrate some widely-used techniques for generating random variates. 

 Inverse-transform technique 

 Acceptance-rejection technique 

 Inverse-transform Technique 

 The concept: 

 For cdf function: r = F(x) 

 Generate r from uniform (0,1)  

 Find x: 

 

 

 Steps in inverse-transform technique 

Step 1.  Compute the cdf of the desired random variable X:  F(x) = 1 – e
-x

   

        x ≥ 0 

Step 2.  Set F(X) = R  on the range of X 

Step 3.  Solve the equation F(x) = R for X in terms of R. 

 

 

 

 

 

Step 4.  Generate (as needed) uniform random numbers R1, R2, R3, . . .  and compute the desired 

random variates 
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 Examples of other distributions for which inverse cdf works are: 

 Uniform distribution 

X = a + (b – a)R 

 Weibull distribution – time to failure – see steps on p278 

X =  [-ln (1 - R)]
 1/

        

 Triangular distribution 

 

 

 

 Acceptance-Rejection technique 

 Useful particularly when inverse cdf does not exist in closed form, a.k.a. thinning 

 Illustration: To generate random variates, X ~ U(1/4, 1) 

 

 

 

 

 

 

 

 R does not have the desired distribution, but R conditioned (R’) on the event {R ≥  ¼} 

does 

 Efficiency: Depends heavily on the ability to minimize the number of rejections. 

NSPP 

 Non-stationary Poisson Process (NSPP): a Possion arrival process with an arrival rate that 

varies with time 

 Idea behind thinning:  

 Generate a stationary Poisson arrival process at the fastest rate, * = max (t) 

 But “accept” only a portion of arrivals, thinning out just enough to get the desired 

time-varying rate 

 














1R1/2

1/2R0

,R)2(12

,2R
X

Generate R 

Condition 

Output R’ 

yes 

no Procedures: 

Step 1.   Generate R ~ U[0,1] 

Step 2a. If R >= ¼, accept X=R. 

Step 2b. If R < ¼, reject R, return       to Step 1 
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 Poisson Distribution 

 Step 1   set n = 0, P =1 

 Step 2   generate a random number Rn+1 

And replace P by P * Rn+1      

 Step 3   if P < e

- 

 , then accept, otherwise, reject the current n, increase n by 1 and 

return to step 2       

 Example: Generate a random variate for a NSPP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

yes 

t 

(min)

Mean Time 

Between 

Arrivals 

(min)

Arrival 

Rate  (t) 

(#/min)

0 15 1/15

60 12 1/12

120 7 1/7

180 5 1/5

240 8 1/8

300 10 1/10

360 15 1/15

420 20 1/20

480 20 1/20

Data: Arrival Rates 

Procedures: 

Step 1. * = max (t) = 1/5, t = 0 and i = 1. 

Step 2.  For random number R = 0.2130,  

 E = -5ln(0.213) = 13.13  

 t = 13.13 

Step 3. Generate R = 0.8830 

 (13.13)/*=(1/15)/(1/5)=1/3 

 Since R>1/3, do not generate the arrival 

Step 2. For random number R = 0.5530,  

 E = -5ln(0.553) = 2.96 

 t = 13.13 + 2.96 = 16.09 

Step 3. Generate R = 0.0240 

 (16.09)/*=(1/15)/(1/5)=1/3 

 Since R<1/3, T
1
 = t = 16.09,  

 and i = i + 1 = 2 
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SYSTEM MODELLING AND SIMULATION 

Module 4 

 

 

 

 

 

Input Modeling 

 Input models provide the driving force for a simulation model. 

 The quality of the output is no better than the quality of inputs. 

 In this chapter, we will discuss the 4 steps of input model development: 

 Collect data from the real system 

 Identify a probability distribution to represent the input process 

 Choose parameters for the distribution 

 Evaluate the chosen distribution and parameters for goodness of fit. 

Data Collection 

 One of the biggest tasks in solving a real problem.  GIGO – garbage-in-garbage-out 

 Suggestions that may enhance and facilitate data collection: 

 Plan ahead: begin by a practice or pre-observing session, watch for unusual 

circumstances 

 Analyze the data as it is being collected: check adequacy 

 Combine homogeneous data sets, e.g. successive time periods, during the same 

time period on successive days 

 Be aware of data censoring: the quantity is not observed in its entirety, danger of 

leaving out long process times 

 Check for relationship between variables, e.g. build scatter diagram 

 Check for autocorrelation 

 Collect input data, not performance data 

Input Data Examples 

 Queueing Systems 

 Interarrival time 

 Service time 

 Inventory Systems 

Input Modeling: Data Collection; Identifying the distribution with data, Parameter 

estimation. Goodness of Fit Tests. Goodness of Fit Tests. Fitting a non-stationary 

Poisson process, selecting input models without data. Fitting a non-stationary Poisson 

process, selecting input models without data. Multivariate and Time-Series input 

models. Estimation of Absolute Performance: Types of simulations with respect to 

output analysis. Stochastic nature of output data, Measures of performance and their 

estimation. 
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 Demand 

 Lead time 

 Reliability Systems 

 Time to failure 

Identifying the Distribution 

1. Histograms 

2. Selecting families of distribution 

3. Parameter estimation 

4. Goodness-of-fit tests 

 Histograms 

 A frequency distribution or histogram is useful in determining the shape of a distribution 

 The number of class intervals depends on: 

 The number of observations 

 The dispersion of the data 

 Suggested: the square root of the sample size 

 For continuous data:  

 Corresponds to the probability density function of a theoretical distribution 

 For discrete data:  

 Corresponds to the probability mass function  

 If few data points are available: combine adjacent cells to eliminate the ragged 

appearance of the histogram 

     

Same data with 
different interval 

sizes 
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 Selecting the Family of Distributions 

 A family of distributions is selected based on: 

 The context of the input variable 

 Shape of the histogram 

 Frequently encountered distributions: 

 Easier to analyze: exponential, normal and Poisson 

 Harder to analyze: beta, gamma and Weibull 

 Use the physical basis of the distribution as a guide, for example: 

 Binomial: # of successes in n trials 

 Poisson: # of independent events that occur in a fixed amount of time or space 

 Normal: distribution of a process that is the sum of a number of component 

processes 

 Exponential: time between independent events, or a process time that is 

memoryless 

 Weibull: time to failure for components 

 Discrete or continuous uniform: models complete uncertainty 

 Triangular: a process for which only the minimum, most likely, and maximum 

values are known 

 Empirical: resamples from the actual data collected 

 Remember the physical characteristics of the process 

 Is the process naturally discrete or continuous valued? 

 Is it bounded? 

 No “true” distribution for any stochastic input process 

 Goal: obtain a good approximation 

 Quantile-Quantile Plots 

 Q-Q plot is a useful tool for evaluating distribution fit 
o a subjective method 

 If X is a random variable with cdf F, then the q-quantile of X is the  such that 
 
 

 When F has an inverse,  = F
-1

(q) 
 Let {y

j
, j = 1,2, …, n} be the observations  in ascending order 

 The plot of yj versus F
-1

( (j-0.5)/n) is  

o Approximately a straight line if F is a member of an appropriate family of 

distributions 

o The line has slope 1 if F is a member of an appropriate family of distributions 

with appropriate parameter values 

 

 

 

,        for 0 1F( )  P(X  ) q    q       
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 Example: Check whether the door installation times follow a normal distribution. 

 The observations are now ordered from smallest to largest: 

 

 

 

 yj are plotted versus F
-1

( (j-0.5)/n) where F has a normal distribution with the 

sample mean (99.99 sec) and sample variance (0.2832
2
 sec

2
) 

 Example (continued): Check whether the door installation times follow a normal 

distribution.  

 

 Consider the following while evaluating the linearity of a q-q plot: 

 The observed values never fall exactly on a straight line 

 The ordered values are ranked and hence not independent, unlikely for the points 

to be scattered about the line 

 Variance of the extremes is higher than the middle.  Linearity of the points in the 

middle of the plot is more important. 

 Q-Q plot can also be used to check homogeneity  

 Check whether a single distribution can represent both sample sets 

 Plotting the order values of the two data samples against each other 

Parameter Estimation 

 Next step after selecting a family of distributions 

 If observations in a sample of size n are X1, X2, …, Xn (discrete or continuous), the sample 

mean and variance are: 

 

 

j Value j Value j Value

1 99.55 6 99.98 11 100.26

2 99.56 7 100.02 12 100.27

3 99.62 8 100.06 13 100.33

4 99.65 9 100.17 14 100.41

5 99.79 10 100.23 15 100.47

1
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 If the data are discrete and have been grouped in a frequency distribution: 

     

    

   where fj is the observed frequency of value Xj 

 When raw data are unavailable (data are grouped into class intervals), the approximate 

sample mean and variance are: 

 

 

    where fj is the observed frequency of in the jth class interval 

            mj is the midpoint of the jth interval, and c is the number of class intervals 

 A parameter is an unknown constant, but an estimator is a statistic. 

 Vehicle Arrival Example: Table 9.1 in book can be analyzed to obtain:  

 

 

 The sample mean and variance are 

 

 

 

 The histogram suggests X to have a Possion distribution 

 However, note that sample mean is not equal to sample variance. 

 Reason: each estimator is a random variable, is not perfect. 

Suggested Estimators 

 Poisson Distribution 

 Estimate mean  

 Exponential Distribution 

 Estimate rate 
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 Normal Distribution 

 Estimate mean and variance 

 

 

 Goodness-of-Fit Tests 

 Conduct hypothesis testing on input data distribution using: 

 Kolmogorov-Smirnov test  

 Chi-square test 

 No single correct distribution in a real application exists.   

 If very little data are available, it is unlikely to reject any candidate distributions 

 If a lot of data are available, it is likely to reject all candidate distributions 

Chi-Square test 

 Intuition: comparing the histogram of the data to the shape of the candidate density or 

mass function 

 Valid for large sample sizes when parameters are estimated by maximum likelihood 

 By arranging the n observations into a set of k class intervals or cells, the test statistics is: 

 

 

 

 

which approximately follows the chi-square distribution with k-s-1 degrees of freedom, 

where s = # of parameters of the hypothesized distribution estimated by the sample 

statistics. 

 The hypothesis of a chi-square test is: 

  H0: The random variable, X, conforms to the distributional   assumption 

with the parameter(s) given by the estimate(s). 

  H1: The random variable X does not conform. 

 If the distribution tested is discrete and combining adjacent cell is not required (so that  

Ei > minimum requirement): 

 Each value of the random variable should be a class interval, unless combining is 

necessary, and 
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 If the distribution tested is continuous: 

 

where ai-1 and ai are the endpoints of the i
th

 class interval 

and f(x) is the assumed pdf, F(x) is the assumed cdf.  

 Recommended number of class intervals (k): 

 

 

 

 

 Caution: Different grouping of data (i.e., k) can affect the hypothesis testing 

result. 

 Vehicle Arrival Example (continued):  

  H0:  the random variable is Poisson distributed. 

  H1:  the random variable is not Poisson distributed. 

 

 Degree of freedom is k-s-1 = 7-1-1 = 5, hence, the hypothesis is rejected at the 

0.05 level of significance. 

 

Kolmogorov-Smirnov Test 

 Intuition: formalize the idea behind examining a q-q plot 

 The test compares the continuous cdf, F(x), of the hypothesized distribution with the 

discrete empirical cdf, SN(x), of the N sample observations.   

 Based on the maximum difference statistics (Tabulated in A.8): 

   D = max| F(x) - SN(x)| 

 A more powerful test, particularly useful when: 

)()(  )( 1
1

 


ii

a

a
i aFaFdxxf  p

i

i

Sample Size, n Number of Class Intervals, k

20 Do not use the chi-square test

50 5 to 10

100 10 to 20

> 100 n
1/2

 to n/5

1.1168.27 2

5,05.0

2
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 Sample sizes are small, 

 No parameters have been estimated from the data. 

 No need to group the data 

 No information is lost 

 Eliminates the problem of interval specification 

The Kolmogorov-Smirnov Test for Uniformity 

 Intuition: formalize the idea behind examining a q-q plot 

 The test compares the continuous cdf, F(x), of the hypothesized distribution with the 

discrete empirical cdf, SN(x), of the N sample observations.   

 Based on the maximum difference statistics (Tabulated in A.8): 

   D = max| F(x) - SN(x)| 

 A more powerful test, particularly useful when: 

 Sample sizes are small, 

 No parameters have been estimated from the data. 

 No need to group the data 

 No information is lost 

 Eliminates the problem of interval specification 

 STEP 1: Rank the data from smallest to largest. (R(i) denotes the i th smallest observation 

=> R(1)  <= R(2) <= … <= R(N)  

 STEP 2: Compute D
+
 = max {i/N - R(i) } (over i)              

D
-
 = max {R(i) – (i-1)/N } (over i)   

 STEP 3: Compute D = max (D
+
 , D

-
 ) 

 STEP 4: Determine the critical value, D, from Table A.8 for the specified significance 

level, , and the given sample size N 

 STEP 5: If the sample statistic D is greater than the  critical value, D, the null hypothesis 

that the data are sampled from uniform distribution is rejected. Otherwise, we cannot 

reject H0  

Example 

 5 numbers generated:  

 0.44, 0.81, 0.14, 0.05, 0.93 

 We want to test uniformity using 

 the K-S test with  = 0.05 (D = 0.565) 
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 D= max (0.26, 0.21) = 0.26 => The uniformity of the underlying distribution for our 

samples is not rejected 

Selecting input models without data 

 If data is not available, some possible sources to obtain information about the process are: 

 Engineering data: often product or process has performance ratings provided by 

the manufacturer or company rules specify time or production standards. 

 Expert option: people who are experienced with the process or similar processes, 

often, they can provide optimistic, pessimistic and most-likely times, and they 

may know the variability as well. 

 Physical or conventional limitations: physical limits on performance, limits or 

bounds that narrow the range of the input process. 

 The nature of the process. 

 The uniform, triangular distributions are often used as input models. 

 Sensitivity to input data must be tested. 

 Example: Production planning simulation. 

 Input of sales volume of various products is required, salesperson of product XYZ 

says that: 

 No fewer than 1,000 units and no more than 5,000 units will be sold.   

 Given her experience, she believes there is a 90% chance of selling more 

than 2,000 units, a 25% chance of selling more than 2,500 units, and only 

a 1% chance of selling more than 4,500 units. 

 Translating these information into a cumulative probability of being less than or 

equal to those goals for simulation input:  

 

 

 

 

 

i Interval (Sales) Cumulative Frequency, ci

1 1000  x 2000 0.10

2 2000 < x 3000 0.75

3 3000 < x 4000 0.99

4 4000 < x 5000 1.00
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Multivariate and Time-Series Input Models 

 Multivariate:  

 For example, lead time and annual demand for an inventory model, increase in 

demand results in lead time increase, hence variables are dependent. 

 Time-series:  

 For example, time between arrivals of orders to buy and sell stocks, buy and sell 

orders tend to arrive in bursts, hence, times between arrivals are dependent. 

 Consider the model that describes relationship between X
1
 and X

2
: 

 
 
 
 
 
 

  = 0, X
1
 and X

2
 are statistically independent 

  > 0, X
1
 and X

2
 tend to be above or below their means together 

  < 0, X
1
 and X

2
 tend to be on opposite sides of their means 

 Covariance between X
1
 and X

2
 : 

 

        = 0,            = 0 
 where      cov(X

1
, X

2
)  < 0,  then         < 0 

         > 0,            > 0  

 

 Correlation between X1 and X2 (values between -1 and 1):  

 

 

 

               = 0,      = 0 
 where      corr(X1, X2)          < 0,  then       < 0 

              > 0,      > 0 

 
 The closer  is to -1 or 1, the stronger the linear relationship is between X1 and X2. 

 

 A time series is a sequence of random variables X1, X2, X3, … , are identically distributed 

(same mean and variance) but dependent. 

 cov(Xt, Xt+h) is the lag-h autocovariance 

 corr(Xt, Xt+h) is the lag-h autocorrelation 

 If the autocovariance value depends only on h and not on t, the time series is 

covariance stationary 

 

  )()( 2211 XX  is a random 

variable with mean 
0 and is 

independent of X
2
 

21

21
21

),cov(
),(corr




XX
XX 
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Multivariate Input Models 

 If X1 and X2 are normally distributed, dependence between them can be modeled by the 

bivariate normal distribution with 
1
, 

2
, 

1

2

, 
2

2

 and correlation  

 To Estimate 
1
, 

2
, 

1

2

, 
2

2

, see “Parameter Estimation”  

 To Estimate r, suppose we have n independent and identically distributed pairs    

(X
11

, X
21

), (X
12

, X
22

), … (X
1n

, X
2n

), then: 

 

 

 

 

 

 

Time-Series Input Models 

 If X1, X2, X3,… is a sequence of identically distributed, but dependent and covariance-

stationary random variables, then we can represent the process as follows: 

 Autoregressive order-1 model, AR(1) 

 Exponential autoregressive order-1 model, EAR(1) 

 Both have the characteristics that: 

 

 

 Lag-h autocorrelation decreases geometrically as the lag increases, hence, 

observations far apart in time are nearly independent 

AR (1) Time-Series Input Models 

 Consider the time-series model: 

 

 

 

 

 If X1 is chosen appropriately, then  

 X
1
, X

2
, … are normally distributed with mean = , and variance = 



/(1-


) 

 Autocorrelation 
h  

= 
h

 

 To estimate , 


2

: 
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j
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EAR (1) Time-Series Input Models 

 Consider the time-series model: 

 

 

 

 

 

 

 If X1 is chosen appropriately, then  

 X
1
, X

2
, … are exponentially distributed with mean = 1/ 

 Autocorrelation 
h  

= 
h 

, and only positive correlation is allowed. 

 To estimate : 
 

 

 

Type of Simulations 

 Terminating verses non-terminating simulations 

 Terminating simulation: 

 Runs for some duration of time TE, where E is a specified event that stops the 

simulation. 

 Starts at time 0 under well-specified initial conditions. 

 Ends at the stopping time TE. 

 Bank example: Opens at 8:30 am (time 0) with no customers present and 8 of the 

11 teller working (initial conditions), and closes at 4:30 pm (Time TE = 480 

minutes). 

 The simulation analyst chooses to consider it a terminating system because the 

object of interest is one day’s operation. 

 Non-terminating simulation: 

 Runs continuously or at least over a very long period of time. 

 Examples: assembly lines that shut down infrequently, telephone systems, 

hospital emergency rooms. 

 Initial conditions defined by the analyst. 

, ˆ X , )ˆ1(ˆˆ 222   
2

1

ˆ

),v(ôcˆ


  tt XX

anceautocovari 1  theis ),v(ôc  where 1 lag-XX tt 
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 Runs for some analyst-specified period of time TE. 

 Study the steady-state (long-run) properties of the system, properties that are not 

influenced by the initial conditions of the model. 

 Whether a simulation is considered to be terminating or non-terminating depends on both 

 The objectives of the simulation study and 

 The nature of the system. 

Stochastic Nature of Output Data 

 Model output consist of one or more random variables (r. v.) because the model is an 

input-output transformation and the input variables are r.v.’s. 

 M/G/1 queueing example:  

 Poisson arrival rate = 0.1 per minute;  

service time ~ N(= 9.5, =1.75). 

 System performance: long-run mean queue length, L
Q
(t). 

 Suppose we run a single simulation for a total of 5,000 minutes 

 Divide the time interval [0, 5000) into 5 equal subintervals of 1000 

minutes. 

 Average number of customers in queue from time (j-1)1000 to j(1000) is Y
j 
 

 M/G/1 queueing example (cont.):  

 Batched average queue length for 3 independent replications: 

 

 

 

 

 

 

 

 Inherent variability in stochastic simulation both within a single replication and 

across different replications. 

 The average across 3 replications,          can be regarded as independent 

observations, but averages within a replication, Y11, …, Y15, are not. 

Measures of performance 

 Consider the estimation of a performance parameter,  (or ), of a simulated system. 

 Discrete time “tally” data: [Y
1
, Y

2
, …, Y

n
], with ordinary mean:  

 Average System Time 

 Average Waiting Time 

 Continuous-time “time-persistent” data: {Y(t), 0  t  T
E
} with time-weighted 

mean:  

,,, .3.2.1 YYY

1, Y1j 2, Y2j 3, Y3j

[0, 1000) 1 3.61 2.91 7.67

[1000, 2000) 2 3.21 9.00 19.53

[2000, 3000) 3 2.18 16.15 20.36

[3000, 4000) 4 6.92 24.53 8.11

[4000, 5000) 5 2.82 25.19 12.62

[0, 5000) 3.75 15.56 13.66

ReplicationBatching Interval 

(minutes) Batch, j
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 Average Queue Length 

 Average Utilization 

Point Estimator 

 Point estimation for discrete-time data. 

 The point estimator 

 

 

 

 Is unbiased if  

 Point estimation for continuous-time data. 

 The point estimator: 

 

 

 

 Is biased if 

 An unbiased or low-bias estimator is desired. 

Confidence-Interval Estimation 

 Suppose the model is the normal distribution with mean , variance 
2

 (both unknown). 

 Let Y
i
 be the average cycle time for parts produced on the i

th

 replication of the 

simulation (its mathematical expectation is ). 

 Average cycle time will vary from day to day, but over the long-run the average 

of the averages will be close to . 

 Sample variance across R replications: 

 

 

 Confidence Interval (CI): 

 A measure of error. 

 Where Y
i.
 are normally distributed. 

 

 

 

 We cannot know for certain how far     is from   but CI attempts to bound that 

error. 

 A CI, such as 95%, tells us how much we can trust the interval to actually bound 

the error between    and  . 

 The more replications we make, the less error there is in      (converging to 0 as R 

goes to infinity). 
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SYSTEM MODELLING AND SIMULATION 

Module 5 

 

 

 

Output Analysis for Terminating Simulations 

 A terminating simulation: runs over a simulated time interval [0, TE]. 

 A common goal is to estimate: 

 

 

 

 In general, independent replications are used, each run using a different random number 

stream and independently chosen initial conditions. 

Statistical Background 

 Important to distinguish within-replication data from across-replication data. 

 For example, simulation of a manufacturing system 

 Two performance measures of that system: cycle time for parts and work in 

process (WIP). 

 Let Y
ij
 be the cycle time for the j

th

 part produced in the i
th

 replication. 

 Across-replication data are formed by summarizing within-replication data. 

 Across Replication: 

 For example: the daily cycle time averages (discrete time data) 

 The average: 

 

 

 The sample variance: 

 

 

 The confidence-interval half-width: 

 

 

Output analysis for terminating simulations, Output analysis for steady-state 

simulations Verification, Calibration and Validation: Optimization, Model building, 

verification and validation, Verification of simulation models, Calibration and 

validation of models, Optimization via Simulation. 
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 Within replication: 

 For example: the WIP (a continuous time data) 

 The average: 

 

 

 The sample variance: 

 

 Overall sample average,    , and the interval replication sample averages,    ,  are always 

unbiased estimators of the expected daily average cycle time or daily average WIP. 

 Across-replication data are independent (different random numbers) and identically 

distributed (same model), but within-replication data do not have these properties. 

C.I. with Specified Precision 

 The half-length H of a 100(1 – )% confidence interval for a mean , based on the t 

distribution, is given by: 

 

 

 

 

 

 Suppose that an error criterion e is specified with probability 1 - , a sufficiently large 

sample size should satisfy: 

 

 

 Assume that an initial sample of size R
0
 (independent) replications have been observed. 

 Obtain an initial estimate S
0

2

 of the population variance 
2

. 

 Then, choose sample size R such that R  R
0
: 

 Since t
/2, R-1

 z
/2

, an initial estimate of R: 

 

 

 

 R is the smallest integer satisfying R  R
0 

 and 

 Collect R - R
0
 additional observations. 

 The 100(1-)% C.I. for : 
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 Call Center Example: estimate the agent’s utilization  over the first 2 hours of the 

workday. 

 Initial sample of size R
0
 = 4 is taken and an initial estimate of the population 

variance is S
0

2 

= (0.072)
2

 = 0.00518. 

 The error criterion is = 0.04 and confidence coefficient is 1- = 0.95, hence, 

the final sample size must be at least: 

 

 

 

 For the final sample size: 

 

 

 

 R = 15 is the smallest integer satisfying the error criterion, so R - R0 = 11 

additional replications are needed. 

 After obtaining additional outputs, half-width should be checked. 

Output Analysis for Steady-State Simulation 

 Consider a single run of a simulation model to estimate a steady-state or long-run 

characteristics of the system. 

 The single run produces observations Y1, Y2, ... (generally the samples of an 

autocorrelated time series). 

 Performance measure: 

 

 

 

 

 

 Independent of the initial conditions. 

 The sample size is a design choice, with several considerations in mind: 

 Any bias in the point estimator that is due to artificial or arbitrary initial 

conditions (bias can be severe if run length is too short). 

 Desired precision of the point estimator. 

 Budget constraints on computer resources. 

 Notation: the estimation of q from a discrete-time output process. 

 One replication (or run), the output data: Y1, Y2, Y3, … 

 With several replications, the output data for replication r: Yr1, Yr2, Yr3, … 
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Initialization Bias 

 Methods to reduce the point-estimator bias caused by using artificial and unrealistic 

initial conditions: 

 Intelligent initialization. 

 Divide simulation into an initialization phase and data-collection phase. 

 Intelligent initialization 

 Initialize the simulation in a state that is more representative of long-run 

conditions. 

 If the system exists, collect data on it and use these data to specify more nearly 

typical initial conditions. 

 If the system can be simplified enough to make it mathematically solvable, e.g. 

queueing models, solve the simplified model to find long-run expected or most 

likely conditions, use that to initialize the simulation. 

 Divide each simulation into two phases: 

 An initialization phase, from time 0 to time T0. 

 A data-collection phase, from T0 to the stopping time T0+TE. 

 The choice of T0 is important: 

 After T0, system should be more nearly representative of steady-state 

behavior. 

 System has reached steady state: the probability distribution of the system state is 

close to the steady-state probability distribution (bias of response variable is 

negligible). 

 M/G/1 queueing example: A total of 10 independent replications were made. 

 Each replication beginning in the empty and idle state. 

 Simulation run length on each replication was T0+TE = 15,000 minutes. 

 Response variable: queue length, LQ(t,r) (at time t of the rth replication). 

 Batching intervals of 1,000 minutes, batch means 

 Ensemble averages:  

 To identify trend in the data due to initialization bias 

 The average corresponding batch means across replications: 

 

 

 

 The preferred method to determine deletion point. 
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 A plot of the ensemble averages,              , versus 1000j, for j = 1,2, …,15.  

 

 Illustrates the downward bias of the initial observations. 

 Cumulative average sample mean (after deleting d observations): 

 

 

 

 Not recommended to determine the initialization phase. 

 

 It is apparent that downward bias is present and this bias can be reduced by 

deletion of one or more observations. 

 No widely accepted, objective and proven technique to guide how much data to delete to 

reduce initialization bias to a negligible level. 

 Plots can, at times, be misleading but they are still recommended.  

 Ensemble averages reveal a smoother and more precise trend as the # of 

replications, R, increases. 

 Ensemble averages can be smoothed further by plotting a moving average. 

 Cumulative average becomes less variable as more data are averaged. 

 The more correlation present, the longer it takes for      to approach steady state. 

 Different performance measures could approach steady state at different rates. 
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Replication Method  

 Use to estimate point-estimator variability and to construct a confidence interval. 

 Approach: make R replications, initializing and deleting from each one the same way. 

 Important to do a thorough job of investigating the initial-condition bias: 

 Bias is not affected by the number of replications, instead, it is affected only by 

deleting more data (i.e., increasing T0) or extending the length of each run (i.e. 

increasing TE). 

 Basic raw output data {Yrj, r = 1, ..., R; j = 1, …, n} is derived by: 

 Individual observation from within replication r. 

 Batch mean from within replication r of some number of discrete-time 

observations. 

 Batch mean of a continuous-time process over time interval j. 

 Each replication is regarded as a single sample for estimating For replication   r:
 

 

 

 The overall point estimator  :
 

 

 

 If d and n are chosen sufficiently large  :

 
n,d

 ~  

 is an approximately unbiased estimator                 of   .
 To estimate standard error of the sample variance and standard error:      , 

 

 

 

 Length of each replication (n) beyond deletion point (d):  

(n - d) > 10d 

 Number of replications (R) should be as many as time permits, up to about 25 

replications. 

 For a fixed total sample size (n), as fewer data are deleted (  d): 

 C.I. shifts: greater bias. 

 Standard error of               decreases: decrease variance. 
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 M/G/1 queueing example: 

 Suppose R = 10, each of length TE = 15,000 minutes, starting at time 0 in the 

empty and idle state, initialized for T0 = 2,000 minutes before data collection 

begins. 

 Each batch means is the average number of customers in queue for a 1,000-

minute interval. 

 The 1
st
 two batch means are deleted (d = 2). 

 The point estimator and standard error are: 

 

 

 The 95% C.I. for long-run mean queue length is: 

 

 

 

 A high degree of confidence that the long-run mean queue length is between 4.84 

and 12.02 (if d and n are “large” enough). 

Sample Size 

 To estimate a long-run performance measure, , within    with confidence 100(1- )%.  

 M/G/1 queueing example (cont.): 

 We know: R0 = 10, d = 2 and S0
2
 = 25.30. 

 To estimate the long-run mean queue length, LQ, within  = 2 customers with 

90% confidence (  = 10%). 

 Initial estimate: 

 

 

 

 Hence, at least 18 replications are needed, next try R = 18,19, … using                              

.  We found that: 

 

 

 Additional replications needed is R – R0 = 19-10 = 9. 

 An alternative to increasing R is to increase total run length T0+TE within each 

replication. 

 Approach: 

 Increase run length from (T0+TE) to (R/R0)(T0+TE), and 

 Delete additional amount of data, from time 0 to time (R/R0)T0. 

 Advantage: any residual bias in the point estimator should be further reduced. 

 However, it is necessary to have saved the state of the model at time T0+TE and to 

be able to restart the model. 
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Batch Means for Interval Estimation 

 Using a single, long replication: 

 Problem: data are dependent so the usual estimator is biased. 

 Solution: batch means. 

 Batch means: divide the output data from 1 replication (after appropriate deletion) into a 

few large batches and then treat the means of these batches as if they were independent. 

 A continuous-time process, {Y(t), T0 ≤ t ≤ T0+TE}: 

 k batches of size m = TE/k, batch means: 

 

 

 A discrete-time process, {Yi, i = d+1,d+2, …, n}: 

k batches of size m = (n – d)/k, batch means: 

 

 

 

 
 Starting either with continuous-time or discrete-time data, the variance of the sample 

mean is estimated by: 

 

 

 

 If the batch size is sufficiently large, successive batch means will be approximately 

independent, and the variance estimator will be approximately unbiased. 

 No widely accepted and relatively simple method for choosing an acceptable batch size m 

(see text for a suggested approach). Some simulation software does it automatically. 
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Verification, Calibration and Validation 

 The goal of the validation process is: 

 To produce a model that represents true behavior closely enough for decision-

making purposes 

 To increase the model’s credibility to an acceptable level 

 Validation is an integral part of model development 

 Verification – building the model correctly (correctly implemented with good 

input and structure) 

 Validation – building the correct model (an accurate representation of the real 

system) 

 Most methods are informal subjective comparisons while  a few are formal statistical 

procedures 

 

Modeling-Building, Verification & Validation 

 

 
 

Verification 

 Purpose: ensure the conceptual model is reflected accurately in the computerized 

representation. 

 Many common-sense suggestions, for example: 

 Have someone else check the model. 

 Make a flow diagram that includes each logically possible action a system can 

take when an event occurs. 
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 Closely examine the model output for reasonableness under a variety of input 

parameter settings. (Often overlooked!) 

 Print the input parameters at the end of the simulation make sure they have not 

been changed inadvertently. 

Examination of Model Output for Reasonableness 

 Example: A model of a complex network of queues consisting many service centers.   

 Response time is the primary interest, however, it is important to collect and print 

out many statistics in addition to response time. 

 Two statistics that give a quick indication of model reasonableness are 

current contents and total counts, for example: 

o If the current content grows in a more or less linear fashion as the 

simulation run time increases, it is likely that a queue is unstable 

o If the total count for some subsystem is zero, indicates no items 

entered that subsystem, a highly suspect occurrence 

o If the total and current count are equal to one, can indicate that an 

entity has captured a resource but never freed that resource. 

 Compute certain long-run measures of performance, e.g. compute the 

long-run server utilization and compare to simulation results 

 Other Important Tools 

 Documentation 

 A means of clarifying the logic of a model and verifying its completeness 

 Use of a trace 

 A detailed printout of the state of the simulation model over time. 

Calibration and Validation 

 Validation: the overall process of comparing the model and its behavior to the real 

system. 

 Calibration: the iterative process of comparing the model to the real system and making 

adjustments. 
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 No model is ever a perfect representation of the system 

 The modeler must weigh the possible, but not guaranteed, increase in model 

accuracy versus the cost of increased validation effort. 

 Three-step approach: 

 Build a model that has high face validity. 

 Validate model assumptions. 

 Compare the model input-output transformations with the real system’s data. 

High Face Validity 

 Ensure a high degree of realism: Potential users should be involved in model construction 

(from its conceptualization to its implementation). 

 Sensitivity analysis can also be used to check a model’s face validity. 

 Example: In most queueing systems, if the arrival rate of customers were to 

increase, it would be expected that server utilization, queue length and delays 

would tend to increase 

Validate Model Assumptions 

 General classes of model assumptions: 

 Structural assumptions: how the system operates. 

 Data assumptions: reliability of data and its statistical analysis. 

 Bank example: customer queueing and service facility in a bank. 

 Structural assumptions, e.g., customer waiting in one line versus many lines, 

served FCFS versus priority. 

 Data assumptions, e.g., interarrival time of customers, service times for 

commercial accounts. 

 Verify data reliability with bank managers. 

 Test correlation and goodness of fit for data (see Chapter 9 for more 

details). 

Validate Input-Output Transformation 

 Goal: Validate the model’s ability to predict future behavior 

 The only objective test of the model. 

 The structure of the model should be accurate enough to make good predictions 

for the range of input data sets of interest. 

 One possible approach: use historical data that have been reserved for validation purposes 

only. 

 Criteria: use the main responses of interest. 

Bank Example 

 Example: One drive-in window serviced by one teller, only one or two transactions are 

allowed. 

 Data collection: 90 customers during 11 am to 1 pm. 
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 Observed service times {Si, i = 1,2, …, 90}. 

 Observed interarrival times {Ai, i = 1,2, …, 90}. 

 Data analysis let to the conclusion that: 

 Interarrival times: exponentially distributed with rate  = 45 

 Service times: N(1.1, 0.2
2
) 

The Black Box [Bank Example: Validate I-O Transformation]  

 A model was developed in close consultation with bank management and employees 

 Model assumptions were validated 

 Resulting model is now viewed as a “black box”: 

 

Comparison with Real System Data [Bank Example: Validate I-O Transformation] 

 Real system data are necessary for validation. 

 System responses should have been collected during the same time period (from 

11am to 1pm on the same Friday.) 

 Compare the average delay from the model Y2 with the actual delay Z2: 

 Average delay observed, Z2 = 4.3 minutes, consider this to be the true mean value 

m0 = 4.3. 

 When the model is run with generated random variates X1n and X2n, Y2 should be 

close to Z2. 

 Six statistically independent replications of the model, each of 2-hour duration, 

are run. 

Hypothesis Testing [Bank Example: Validate I-O Transformation] 

 Compare the average delay from the model Y2 with the actual delay Z2  (continued): 

 Null hypothesis testing: evaluate whether the simulation and the real system are 

the same (w.r.t. output measures): 

 

 

 

 If H0 is not rejected, then, there is no reason to consider the model invalid 

 If H0 is rejected, the current version of the model is rejected, and the 

modeler needs to improve the model 

minutes 3.4

minutes 34
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 Conduct the t test: 

 Chose level of significance (a = 0.5) and sample size (n = 6), see result in 

Table 10.2. 

 Compute the same mean and sample standard deviation over the n 

replications: 

 

 

 

 Compute test statistics: 

 

 

 

 Hence, reject H0.  Conclude that the model is inadequate. 

 Check: the assumptions justifying a t test, that the observations (Y2i) are 

normally and independently distributed. 

 Similarly, compare the model output with the observed output for other measures:  

Y4  Z4, Y5  Z5, and Y6  Z6 

Type II Error [Validate I-O Transformation] 

 For validation, the power of the test is: 

 Probability[ detecting an invalid model ] = 1 –  

   = P(Type II error) = P(failing to reject H
0
|H

1
 is true) 

 Consider failure to reject H
0
 as a strong conclusion, the modeler would want  to 

be small.   

 Value of  depends on: 

 Sample size, n 

 The true difference, , between E(Y) and :  

 In general, the best approach to control b error is: 

 Specify the critical difference,  

 Choose a sample size, n, by making use of the operating characteristics curve (OC 

curve). 

Type I and II Error [Validate I-O Transformation] 

 Type I error (): 

 Error of rejecting a valid model. 

 Controlled by specifying a small level of significance . 

 Type II error (): 

 Error of accepting a model as valid when it is invalid. 

 Controlled by specifying critical difference and find the n. 

 For a fixed sample size n, increasing  will decrease . 
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Confidence Interval Testing [Validate I-O Transformation] 

 Confidence interval testing: evaluate whether the simulation and the real system are close 

enough. 

 If Y is the simulation output, and  = E(Y), the confidence interval (C.I.) for  is: 

 Validating the model: 

 Suppose the C.I. does not contain 

 

 If the best-case error is > , model needs to be refined. 

 If the worst-case error is  , accept the model. 

 If best-case error is  , additional replications are necessary. 

 Suppose the C.I. contains 

 

 If either the best-case or worst-case error is > , additional replications are 

necessary. 

 If the worst-case error is  , accept the model. 

 Bank example: 

 and “close enough” is,   minute of expected customer delay.    = 1 

 A 95% confidence interval, based on the 6 replications is  

[1.65, 3.37] because: 

 

 

 

 Falls outside the confidence interval, the best case |3.37 – 4.3| = 0.93 < 1, but the 

worst case |1.65 – 4.3| = 2.65 > 1, additional replications are needed to reach a 

decision. 

Using Historical Output Data 

 An alternative to generating input data: 

 Use the actual historical record. 

 Drive the simulation model with the historical record and then compare model 

output to system data. 

 In the bank example, use the recorded interarrival and service times for the 

customers {An, Sn, n = 1,2,…}. 

 Procedure and validation process: similar to the approach used for system generated input 

data. 

Using a Turing Test 

 Use in addition to statistical test, or when no statistical test is readily applicable. 

 Utilize persons’ knowledge about the system. 

 For example:  

 Present 10 system performance reports to a manager of the system.  Five of them 

are from the real system and the rest are “fake” reports based on simulation output 

data. 

nStY n /1,2/  

)6/82.0(51.23.4

/5,025.0



 nStY
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 If the person identifies a substantial number of the fake reports, interview the 

person to get information for model improvement. 

 If the person cannot distinguish between fake and real reports with consistency, 

conclude that the test gives no evidence of model inadequacy. 

Optimization via Simulation 

 Optimization usually deals with problems with certainty, but in stochastic discrete-event 

simulation, the result of any simulation run is a random variable. 

 Let x1,x2,…,xm be the m controllable design variables & Y(x1,x2,…,xm) be the observed 

simulation output performance on one run: 

 To optimize Y(x1,x2,…,xm) with respect to x1,x2,…,xm is to maximize or minimize 

the mathematical expectation (long-run average) of performance, 

E[Y(x1,x2,…,xm)]. 

 Example: select the material handling system that has the best chance of costing less than 

$D to purchase and operate. 

 Objective: maximize Pr(Y(x1,x2,…,xm)≤ D). 

 Define a new performance measure: 

 

 

 Maximize E(Y’(x1,x2,…,xm)) instead. 

Robust Heuristics [Optimization via Simulation] 

 The most common algorithms found in commercial optimization via simulation software. 

 Effective on difficult, practical problems. 

 However, do not guarantee finding the optimal solution. 

 Example: genetic algorithms and tabu search. 

 It is important to control the sampling variability. 

Control sampling variability [Optimization via Simulation] 

 To determine how much sampling (replications or run length) to undertaken at each 

potential solution. 

 Ideally, sampling should increase as heuristic closes in on the better solutions. 

 If specific and fixed number of replications per solution is required, analyst 

should: 

 Conduct preliminary experiment. 

 Simulate several designs (some at extremes of the solution space and some 

nearer the center). 

 Compare the apparent best and apparent worst of these designs. 

 Find the minimum for the number of replications required to declare these 

designs to be statistically significantly different. 

 After completion of optimization run, perform a 2
nd

 set of experiments on 

the top 5 to 10 designs identified by the heuristic, rigorously evaluate 

which are the best or near-best of these designs. 
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