SRI'VEN KATESHWARA XEROX
CENTER

V .

Contact: - | cu....... me
VENKATESHﬂJ' | o
149448926729 |

ENGINEERING NOTES FOR-ALL
SUBJECTS (ALL SEM AND ALL
BRANCHES) ARE AVAILABLE IN
THIS SHOP

. s

-

Y

No. 34/A, Near RNG.IT College.
Uttarshalli-Kengor! Main Roac,
Chansmesardra, Bengakiry = 580 D€~
i o0t 9841148853, 98865527

ASHOK KUMAR K

VIVEKANANDA INSTITUTE OF TECHNOLOGY
Mob: 9742024066
e-mail: celestialcluster@gmail.com

, .
N . BVIXERDY
MO, 34/A, Near RNS I¥ Collone,
Uttarahalli-Kenger! Main Roac,
Channasandra, Bengalun - 560 ¢ ~,
v 00: 9611148853, 98865527, ¢

Dealer:

SRIVENKATESHWARA XEROX
CENTER

Contact:
VENKATESH
Mob: 9448926729

ENGINEERING NOTES FOR ALL
SUBJECTS (ALL SEM AND ALL
BRANCHES) ARE AVAILABLE IN
THIS SHOP

SPECIAL THANKS

I would also like to thank some of the students for their valuable feedback on my

previous notes.

RAJESH RN, 71/, Ramanagaram
SHWETHA, ©®BIT, Bangalore
JANU KHANDARI, SKIT, Bangalore
BIPIN, 7SSATE, Bangalore
SHILPA, SRSIT, Bangalore m
LAKSHMI, SKIT, Bangafore
MANASA, 7SSATE, Bangalore
RAMYA, RNSIT, Bangalore
BRADLEY, Mangalore
SUMANTH, 7SSATE, Bangalore
APEKSHA, ®RNSIT, Bangalore
SRIKANTH, Tumkur
RUKMINI, #Hassan

- KARTHIK RAO, PESSE, Bangalore
NISHITHA, PESCE, Mandya
SHIVU, @NMIT, Bangalore
KARTHIKA, AMCEC, Bangalore
BHARATH, 7vIT, Ramanagaram
JAGANNATH, BMS Evening College, Bangalore
HEMANTH, Sfimoga
NACHAPPA, 7SSATE, Bangalore
PRADEEP, DSCE, Bangalore
DARSHINI, 77IT, Remanagaram
MRUDULA, GgAT, Bangalore
DEEPAK, ®RNSIT, Bangalore
SUHAS K.M, Bellary
JAYPRADEEP, Sapthagiri College of Engineering, Bangalore
ASHRITHA ALVA, NMIT, Bangalore
SANDEEP PAIl, #KBKCE, Bangalore
HARISH, Chikmaglur
GIRISH, 7717, Ramanagaram

ur'aaljysalou

Dedicated To:

DEEPIKA N
Sri Venkateshwara College of Engineering, Bangalore

| NAYANA M C
Sri Venkateshwara College of Engineering, Bangalore

DEEPIKA C .
Global Academy of Technology, Bangalore

MALA B C
BGSIT, Nagamangala, Mandya

|

ul'aaljySalou

gi‘

UNIT 1: BASICS OF SOFTWARE TESTING 1 -1 -

UNIT 1:
BASICS OF SOFTWARE TESTING - 1

EiUMANS, ERRORS, AND TESTING

® Errors are a part of our daily life. Humans make errors in their thoughts,
actions, and in the products that might result from their actions.

% Humans make errors in any fleld, for ex in observation, in speech, in medical
prescription, in surgery, in love, and similarly in software development.

Arga Error
) Henring Bpoken: He has a garage for repairing foreign cavs.
Heard: Ha hing a garsge for repairing falling oars.
Modieine Incorroot antibiotio presesibad.

Musis petformance | Incorrect noke played.

Nurneripal analysis | Ineorrect sigorithn for matyix inveesion.

| Observation Opeeator fails bo Tesognipe that o relief walve fs stnck open.
Boftwere Opeeator nsed: 54, eorrest opseabor: .

Tdeutifier nsed: mew_Jine, correet identifier: naxt_line.

Exprassion used: e A {d £), cormect expression: (&)V o

Data conversion from 64-bit fioating point to 18-bit integer nod

protected (zesulting in a soflware exception).

Bpeaah Bpohan: wepls melnud, infont: mapie welnud

Bpoken: We nesd o new refrigeralor, intant: Wae reed @ new wash-
Bporis Inoorrect call by the referes in 8 tennis maich,
Wriikng Written: What kind of pans did you 1se ?

Tebemt: What kind of panis did you use?

Table: Examples of errors in various fields of human
endeavor.
To determine whether there are any errors in our thought, actions, and the
process generated, we resort to the process of testing. The primary goal of
testing is to determine if the thoughts, actions, and products are as desired,

#

that is they conform to the requirements.
= Testing of thoughts is usually designed to determine if a concept or
method has been understood satisfactorily.

ASHOK KUMAR K .
mob: 89742024066 - www.vtuheaven. 50wekbs. com
Email: celestialclusterf@gmail.ccm

k.

X4

s

RS LI

UNIT 1: BASICS OF SOFTWARE TESTING 1 -2 -

= Testing of actions is designed to check if a skill that results in the
actions has been acquired satlsf actonly

= Testing of a product is deSIgned to check if the product behaves as
desired. e

Errors, Faults, and Failures

Programmer <
)

Wwrites

i3 Input {0 l

Test
data % Program

produces
Observable
behavior
!Ts to
Observed Desiced j
behavior behanior
are. thege
e the same? \
Yes. Program behaves as No.Program does not behave
desired. as desired. A faflure

has pocured.
Figure: Errors, Faults, and Failures in the process of
programming and testing.

Error: Programmer writes a program. An error occurs in the process of writing
a program.
Fault (or bug or defect): it is the manifestation of one or more errors.

ASHOK KUMAR K
mob: 9742024066 www. vtuheaven. 50webs. com
Email: celestialclusterBgmail.com

®

i d

B

. r“

e

"

®

S.V. XEROX
Mo, /A, Mear RNS IT Cn'lege,
Jttarahalli-Kengeri Mai» koad,
Channasandra, Bengalun, 560 J< 3,
#ioh: 9611148853, 988655.7¢7

UNIT 1: BASICS OF SOFTWARE TESTING 1 - 3 -

Failure: Failure occurs when a faulty piece of code is executed leading to an
incorrect state that propagates to the program’s output.

TesbAatomation o
Execution of many tests can be tiring as well as error-prone. Hence there is a
tremendous need for automating testing tasks.
Many Software development organizations automate test-related tasks such as
regression testing, graphical user interface testing, 1/0 device driver testing
Tools used:]

* GUI testing: Eggplant, Marathon, & pounder

* Performance or load testing: elLoadExpert, DBMonster,JMeter,

Dieseltest, WAPT, LoadRunner, Grinder

» Regression testing: Echelon, TestTube, WinRunner, XTest

AETG is an automated test generator that can be used in variety of

applications.

Developer and tester as two roles

A tester refers to the role someone assumes when testing a program. Such an
individual could be a developer testing a class he/she has coded, or a tester
who is testing a fully integrated set of components.)

A programmer refers to an individual who engages in software development
and often assumes the role of a tester, at least temporarily.

| SOFTWARE QUALITY -

Software quality is a multidimensional quantity and is measurable.

Quality Attributes

There exist several measures of software quality. These can be divided into
static and dynamic quality attributes.

Static quality attributes: Refers to actual code and related documentation. it
includes structured, maintainable, testable code as well as the availability of
correct and complete documentation.

ASHOK KUMAR K
mob: 9742024066 - . wwWw. vtuheaven. 50webs.com
Email: celestialcluster@gmail.com

\'d

®

#

UNIT 1: BASICS OF SOFTWARE TESTING 1 » - 4 -

Dynamic quality attributes: Relate to the behavior of the application while in
use. It includes software reliability, correctness, completeness, consistency,
usability, -and performance.
=/ Reliability: refers to the probability of failure-free operation.
» Correctness: refers to the correct operation of an application and is
always with reference to some artifact.
= Completeness: refers to the availability of all the features listed in
the requirements or in the user manuat.
» Consistency: refers 1o adherence to a common set of conventions and
assumptions.
» Usability {User-centric testing): refers to the ease with which an
épplication can be used.
=~ Performance: refers to the time the application takes to perform a
requested task. It is considered as a non-functional requirement. It is
specified in terms such as “This task must be performed at the rate of
X units of activity in one second on a machine running at speed Y,
having Z gigabytes of memory”.

Reliability L

There are several definitions of software reliabitity:

Definition 1 (ANSI/IEEE STD 729-1983): Software Reliability is the probability
of failure-free operation of software over a given time interval and under given

" conditions.

» Adv: Accurate estimate of the relia'bility can be found.
» Disadv: requires the knowledge of the profile of its users that might
be difficult or impossible to estimate accurately.
Definition 2: Software Reliability is the probability of failure free-operation of
software in its intended environment. _
» Adv: one needs only a single number to denote reliability of a
software application that is applicable to all its users.
= Disadv: Such estimates are difficult to arrive at.

ASHOK KUMAR K
mob: 9742024066 . www. vituheaven. SOwebs. com
Email: celestialclusterfgmail.com

&

s

o

g3

»

UNIT 1: BASICS OF SOFTWARE TESTING 1 -5 -

REQUIREMENTS, BEHAVIOR, AND CORRECTNESS

Products, software in particular, are designed in response to requirements.
Requirements/specify the functions that a product is expected to perform Of
course, during the development of the product, the requirements mlght have
changed from what was stated originally.

Example: Two requirements are given below, each of which leads to a different
program.

Requirement 1: It is required to write a program that inputs two integers and
outputs the maximum of these,

Requirement 2: It is required to write a program that inputs a sequence of
integers and outputs the sorted version of this sequence.

Here, Requirement 1 is lncomplete and Requ1rement 2 is ambiguous.

Proof:

Requ1rement 1: Incomplete

Suppose that program max is developed to satisfy Requirement 1. The expected
output of max when the input integers are 13 and 19 can be easily determined
to be 19. Suppose now that the tester wants to know if the two integers are to
be input to the program on one line followed by a car}iage return, or on two
separate lines with a carriage return typed in after each number. The
requirements are stated above fails to provide an answer to this question. This
example illustrates the incompleteness Requirement 1.

Requirement 2: ambiguous

It is not clear from this requirement whether the input sequence is to be sorted
in ascending or in descending order. The behavior of sort program, written to
satisfy this requirement, will depend on the decision taken by the programmer

“while writing sort.

Testers are often faced with incomplete and/or ambiguous requirements.

Input domain and program correctness

A program is considered correct if it behaves as desired on all possible test
nputs.

Testing a program on all possible inputs is known as exhaustive testing.

The set of all possible inputs to a program P is known as the input domain or
input space, of P. '

ASHOK KUMAR K
mob: 38742024066 www. vtuheaven. 50webs.com

Email: celestjalcluster@gmail.cbm

UNIT 1: BASICS OF SOFTWARE TESTING 1 - 6 -

¥ Example:

%

#

o

= Using Requirement 1 above we find the input domain of max to be
the set of all pairs of integers where each element in the pair integers
isin'the range 32,768 till 32,767.

= Using Requirement 2 it is not possible to find the input domain for
the sort program. Therefore, we will modify this requirement as
fotlows.

ae o i

-~ R S O Y PP
aitl uial HIpPWS o

Modified reguirement 2: it is reguired (o write a piogi
sequence of integers and outputs the integers in this sequence sorted in either
ascending or descending order. The order of the output sequence is determined
by an input request character which should be “A” when an ascending
sequence is desired, and “D” otherwise. While providing input to the program,
the request character is input first followed by the sequence of integers to be
sorted; the sequence is terminated with a period.

» Based on the above modified requirement, the input domain for sort
is a set of pairs. The first element of the pair is a character. The
second element of the pair is a sequence of zero or more integers
ending with a period.

<A-31512 55.>

<D 2377.>
Definition of Program correctness: A program is considered correct if it
behaves as expected on each element of its input domain.

Valid and Invalid Inputs

The modified requirement for sort mentions that the request characters can be
“A” and “D”, but fails to answer the question “What if the user types a
different character?”

When using sort it is certainly possible for the user to type a character other
than “A” and “D”. Any character other than “A” and “D” is considered as
invalid input to sort. The requirement for sort does not specify what action it
should take when an invalid input is encountered.

Testing a program against invalid inputs might reveal errors in the program.
Example: Suppose we are testing the sort program. We execute it against the
following input: <E 7 19.>. Suppose that upon execution on the above input,
the sort program enters into an infinite loop and neither asks the user for any

ASHOK KUMAR K

mob: 9742024066 www.Vvtuheaven. 50webs. com
Email: celestialcluster@gmail.com

B

824

&

UNIT 1: BASICS OF SOFTWARE TESTING 1 - 7 -

input nor responds to anything typed by the user. This observed behavior points
to a possible error in sort. -

Instead of typing an integer the user types in a character such as “?”, program
shpulddaformi the user that the input is invalid.

Input domain is partitioned into two sub domains: valid and invalid i’hi)uts;.

Example:
<D79F 19.> ----rmvnen ----- Invalid
<A719.> - Valid

CORRECTNESS VERSUS RELIABILITY

Correctness _

Though correctness of a program is desirable, it is almost never the objective
of testing. To establish correctness via testing would imply testing a program
on all elements in the input domain. In most cases that are encountered in
practice, this is impossible to accomplish in most cases that are encountered in
practice. Thus, correctness is established via mathematical proofs of
programs. .

While correctness attempts to establish that the program is error free, testing
attempts to find if there are any errors in it. Thus, completeness of testing
does not necessarily demonstrate that a program is error free.

Testing, debugging, and the error removal processes together increase our
confidence in the correct functioning of the program under test.

Example: This example illustrates why the probability of program failure might
not change upon error removal.

integer x, y

input x, y

if{(x < y) €--- This condition should be x<=y

{-print f(x, y) }

else

{ print g(x, y) }

ASHOK KUMAR K
mob: 9742024066 wwiv. vtuheaven. 50webs.com
Email: celestialcluster@gmail.com

2’4

/3

/g

4

UNIT 1: BASICS OF SOFTWARE TESTING 1 - 8 -

Reliability

Reliability of a program P is the probability of its successful execution on a
randomly .selected element from its input domain

White cerreetness is a binary metric, reliability is a continuous metric over a
scate from 0 to 1. A program can be either correct or incorrect; -its reliability
can be anywhere between 0 and 1.

Example: How to compute program reliability in a simplistic manner.
Consider a program P which takes a pair of iniegeis as inpui. The input domain
of this program is the set ofyall pairs of integers. Suppose now that in actual
use there are only three pairs that will be input to P. These are as follows:

f < (0,0) (-1,1) (1, -1) > }. If it is known that P fails on exactly one of the three
possible input pairs then the frequency with which P will function correctly is
2/3. This number is an estimate of the probability of the successful operation
of P and hence is the reliability of P.

Program use and the operational profile

An operationat profile is a numerical description of how a program is used.

In accordance with the above definition, a program might have several
operational profiles depending on its users. o

Consider a sort program which, on any given execution, allows any one of two
types of input sequences. Sample operational profiles for sort is specified as
fotlows:

Operational profile #1 Operational profile #2

Sequence Probability - Sequence Probability
Numbers only 0.9 Numbers only 0.1
Alphanumeric strings 0.1 Alphanumeric strings 0.9

Opera-tional profile 1 is used for sorting sequences of numbers
Operational profile 2 is used for sorting alphanumeric strings

TESTING AND DEBUGGING ’

Testing is the process of determining if a program behaves as expected. In the
process one may discover errors in the program under test. However, when

ASHOK KUMAR K
mob: 9742024066 www.vtuheaven. 50webs. com

Email: celestialcluster@fgmail.com

‘@

&

##

UNIT 1: BASICS OF SOFTWARE TESTING 1 -9 -

testing reveals an error, the process used to determine the cause of this error
and to remove it, is known as debugging.

As illustrated in below figure, testing and debugging are often used as two
related-acdtivities in a cyclic manner.

- Input

Input
'Jr data
Consiruct Use i Operationsai
test mput - profile
Use
Test case
Y
Execute Test plan
program.
Behavior v ' .~ 9
s pepavier ™) vee T
I
1
i
- Qf E
) Testing to be xiffiﬁ%lmnéigﬁfggiv? :
terminated? 1
No Yes !
- 4

File test
session report

File pending
error report

Fix exrox

Figure: A test and Debug cycle.

Preparing a test plan
A test cycle is often guided by a test plan.
Example: Test plan for sort

The sort program is to be tested to meet the requirements given earlier.
Specifically, the following needs to be done:

| 1. Execute sort on at least two input sequences, one with “A” and the other

with “D” as request characters.
2. Execute the program on an empty input sequence

ASHOK KUMAR K
mob: 9742024066 www . vtuheaven. 50webs. com
Email: celestialcluster@gmail.com

374

¥

UNIT 1: BASICS OF SOFTWARE TESTING 1 - 10 -

3. Test the program for robustness against erroneous inputs such as “R” typed
in as the request character.
4. All failures of the test program should be recorded in a suitable file using

the*€ompany Failure Report Form.

Constructing test data (test case)

A test case is a pair consisting of test data to be input to the program and the
expected output. The test data is a set of values, one for each input variable.
A test set is a collection of zero or more test cases.

Example: The following test dases are generated for the sort program using the
test plan given above.

Test case 1:
Test data: <“A” 12 -29 32 > 1
Expected output: -29 12 32
Test case 2:
Test data: . <“D” 12 -29 32.>
Expected output: 32 12 -29
Test case 3: >
Test data: <AL > '

Expected output: No input to be sorted in ascending
order
Tést case 4:
Test data: <DL >
Expected output: No input to be sorted in descending:
order 1
Test case 5:
Test data: <“R” 3 17.>
Expected output: Invalid request character;
valid characters: “A” and “D”
Test case 6:
Test data: <A” ¢ 17.>
Expected output: Invalid number

ASHOK KUMAR K

mob: 9742024066 . www.vtuheaven. 50webs.com
Email: celestialcluster@gmail.com -

wo

B #

#

UNIT 1: BASICS OF SOFTWARE TESTING 1 - 11 -

Executing the program

Execution of a program under test is the next significant step in testing

Tester constructs test harness to aid in program execution. The harness
iphializes_any \global variables, inputs a test case, and executes the program.
The output generated by the program may be saved in a file for St}bsequent
examination by a tester.

Test harness

T I l
Get_input Pfint]sequence

Chetk_input Report_failure

Call, sort- : »Check_otitput
Requést_char Sorted sequence
Num_itern s
In_numbers Sort

Figure: A simple test harness to test the sort program.

Specifying program bebhavior

Can be specified in several ways: plain natural language, a state diagram,
formal mathematical specification, etc.

Program state can be used to define program behavior, and state transition
diagram (or state diagram) can be used to specify program behavior.

The state of a program is the set of current values of all its variables and an
indication of which statement in the program is to be executed next. One way
to encode the state is by collecting the current values of program variables into
a vector known as the state vector.

A state diagram specifies program states and how the program changes its
state on an input sequence.

Indication of where the control of execution is at any instant of time is given by
an identifier associated with the next program statement. In assembly
language program counter is used for this purpose

Example: Program p1.1
ASHOK KUMAR K

mob: 9742024066 www-. vtuheaven. S0webs.com
Email: celestialcluster@gmail.com

#

UNIT 1: BASICS OF SOFTWARE TESTING 1 - 12 -

The state vector for this program consists of four elements. The first element is
the statement identifier where control of execution is currently positioned.
The next threé elements are, respectively, the values of the three variables X,
Y/Z |

The letter u is an element of the state vector stands for an undefined value.
The notation s; ---> s; is an abbreviation for “The program moves from state s;

t+ aloamont nf ctata c.
LS S LRIl VI ovdiLs Pje

W 0 1 G b W=

Integer X, y, z; W
Input (x, y);
T IE {(x<y)
{z=y;}
Else
{z=x;}
endif
output (z);
end

The possible sequence of states that the max program may go through is given

below:)
[uuul-->[3315u}-->{431515}-->[531515}-->
[831515])-->[93 15 15]

For max program final state is sufficient for determining the maximum of two

numbers & also for the tester.

Consider a menu-driven-application named myapp. Figure shows the menu bar

for this application.

When started, the application enters the initial state.

ASHOK KUMAR K
mob: 9742024066 www. vtuheaven. 50webs. com
Email: celestialcluster@gmail.com

'&*

14

g

UNIT 1: BASICS OF SOFTWARE TESTING 1 - 13 -

Ner Bar e File Eais Tools VWindows [
" Wewy
Opren
Close
Palled down] -
xreny
-
-
-
e |

Figure: Menu Bar disptaying four menu items when application myapp is started

Diser cdicks rnouse
o VFike™ Pualf-dowswn oveeva

- > dispiayed
A NGE
User selects t,
WO rera®”

Start
appitcation

Expecting
Bser inprtt
E-N.

o

N - "
@g{hted
" =2

Dser relecasaes the t,
roUse

File marnes in the
<uirrervt directory
forrisihite Ensz;

T~ task initiored by tive uwser
s: application srate

wwiinchoww

Figure: A state sequence for myapp showing how the application is expected to
behave when the user selects the open option under the £ile menu

Assessing the correctness of program behavior
An important step in testing a program is the one wherein the tester
determines if the observed behavior of the program under test is correct or not
This step 1s divided into two smatler steps
1. In the first step one observes the behavior.
2. In the second step one analyzes the observed behavior to check if it is
correct or not. Both these steps could be quite complex for large
commercial programs.
The entity that performs-the task of checking the—correctness of the observed
behavior is known as an oracle

ASHOK KUMAR K
mob: 8742024066 www. vtuheaven: 50webs.com

Email: celestialclusterfgmail.com

A4

B

#

%

UNIT 1: BASICS OF SOFTWARE TESTING 1 - 14 -

Inpuat

Propgram under
eSSt

Observed
ehavior

Droes the obearved Belrs-ior
pre v Yy ﬂbecquacﬂni behravior

Yes or Mo with an
explanatior:.

Figure: Relatlonshlp between the program under test and the oracle.
A tester often assumes the role of an oracle and thus serves as a human
oracle. Example: To verify if the output of a matrix multiplication program is
correct or not, a tester might input two 2X2 matrices and check if the output
produced by the program matches the result of hand calculation.
Even though a human oracle is often the best available oracle, it has several
disadvantages:

» Error prone

AN

= Slower

= Result in checking of only trivial 1/0 behaviors.
Oracles can also be programs designed to check the behavior of other
programs. Example: one might use a matrix multiplication program to check if
a matrix inverse program has produced the correct output
Advantages of using programs as oracles are:

» Speed

= Accuracy

= Ease with which complex computations can be checked

Construction of oracles

Construction of automated oracles, such as the one to check a matrix
multiplication program or a sort program, requires the determination of input-
output relationship.

In general, the construction of automated oracles is a complex undertaking.
Example for oracle construction:

ASHOK KUMAR K

mob: 9742024066 ' ‘ swwiw. vtuheaven. 50webs . com
Email: celestialclusterBgmail.com '

#

B

UNIT 1: BASICS OF SOFTWARE TESTING 1 - 15 -

— - HVideo

PV Sn ¥ ' ¥
input Generator ‘ Database ,

HVideo Orecle

Figure: Relationship between an input generator, ivideo, and its oracle
)

[TEST METRICS

The term metric refers to. a standard of measurement. In software testing,
there exists a variety of metrics.

Test metrics Organization
r , . l I Establishes test processes
Organizational project process product \[
- {—f—] Used in projects
static dynaniic To test products

Figure: Types of metrics used in software testing and their relationships
Regardless of level at which metrics are defined and collected, there exist four
general core areas that assist in the design of metrics. These are:

1. Schedule: related metrics measure actual completion times of various

activities and compare with estimated time to completion

2. Quality: related metrics measure quality of a product or process

-3. Resource: related metrics measure items such as cost in dollars,

manpower and tests executed

4. Size: related metrics measure size of various objects such as the

~ source code and number of tests in a test suite.

Organizational metrics

At organizational level metrics are usefutl in overall project plan & management
Average over a set of products developed and marketed by an organization is
the product quality

ASHOK KUMARK
mob: 9742024066 : www.vtuheaven. 50webs.com

Email: celestialclusterfgmail.com

£

%

+

Fe

28

#

273

g

34

4

UNIT 1: BASICS OF SOFTWARE TESTING 1 - 16 -

Computing product quality at regular intervals and overall products released
over a given duration shows the quality trend across the organization
Organizational-level metrics allow senior management in setting new goals and
plan_forresources needed to realize the goals

Project metrics

Project metrics relate to a specific project, for ex: the 1/O device testing
project or a compiler project.

The ratio of actual-to-planngd system test effort (tester-man-months) is one
project metric.

Another project metric is the ratio of number of successful tests to the total
number of tests in the system test phase.

Process metrics ,

Every project uses some test process.

The Big-bang approach is one process used in relatively small' single-person
projects

Goal of process metric is to assess the goodness of the process

lLater a defect-is found the costlier it is to fix. Hence, a-metric that classifies
defects according'to the phase in which they are found assists in evaluating the

process itself.

Product metrics: Generic
Product metrics relate to a specific product such as a compiler for a
programming language. These are useful in making decisions related to the
product. For ex: “should this product be released for use by the customer?”
Product complexity-related metrics are of two types
1. Cyclomatic complexity
2. Halstead Metrics
Cyclomatic complexity
* Proposed by Thomas McCabe in 1976 is based on the control flow of a
program.
= Given control flow graph G of a program P containing N nodes, E edges, and
p connected procedures, the cyclomatic complexity V(G) is computed as
follows:
V(G)=E-N+2p
ASHOK KUMAR K

mob: 9742024066 - www.vtuheaven. 50webs. com
Email: celestialclusterfgmail.com

UNIT 1: BASICS OF SOFTWARE TESTING 1 - 17 -

S

Halstead metrics

= It was published by Prof Maurice Halstead in a book titled Elements of
software Science.

¥ 7 Using program size (S) and effort (E) , the proposed number of errors (B)
found during a software development effort: -

B=7.6E0.66750.333

= Advantage of using an estimator such as B is that it allows the management

to plan for testing resources.

)

| Measure ~ [Notation [Definition
. @ Operator count N1 Number of opefators ina
i program
Operand count N2 Number bf operands in a
' ' program
Unique operators nt Number of unique operators in a
R program
Unique operands - n2 Number of unique operands in a
7 program
Program vocabulary n nt +n2
Program size N N 1+ N2
Program volume \ N*log2n
B Difficulty D 2/n1* 2n/N
Effort E D*V

- Table: Halstead measures of program complexity and effort

Product metrics: OO software

Metric Meaning

Reliability Probability of failure of a s/w wrt a given

operational profile in a given environment

ASHOK KUMAR K

mob: 9742024066 _ www. vtuheaven. 50webs.com
Email: celestialcluster@gmail.com

¥

g

&

UNIT 1: BASICS OF SOFTWARE TESTING 1 - 18 -

Defect density Number of defects per KLOC

Defect severity [Distribution of defects by their level of

severity
Test coverage [Fraction of testable items e.g. basic blocks
Cyclomatic Measures complexity of a program based on its
complexity ICFG
Weighted bnn=1 C

methods per class '

Class coupling Measures the number of classes to which a
given class is coupled

Response set Set of all methods that can be invoked,
directly or indirectly , when a message is sent]
to object o

INumber offNumber of immediate descendants of a class

children in the class hierarchy

Table: A sample of product metrics

Static and Dynamic Metrics

Static metrics are those computed without having to execute the product Ex:
Number of testers working on a project.

Dynamic metrics require code execution Ex: Number of defects remaining to
be fixed.

Testability

Testability is the degree to which a system or components facilitates the
establishment of test criteria & the performance of tests to determine whether
those criteria have been met.

Testability of a product can be categorized into static and dynamic testability

metrics:
= Static testability metrics: Ex: Software complexity - more
complex an application , lower the testability that is , higher the
effort required to test it
ASHOK KUMAR K ,
mob: 9742024066 www.vtuheaven.50webs. com

Email: celestialcluster@fgmail. com

UNIT 1: BASICS OF SOFTWARE TESTING 1 - 19 -

= Dynamic metrics: Ex: code-based coverage criteria- program
- which is difficult to generate tests
¥ Testability is concern in both hardware and software: _
s { In hardware testability detects fault with respect to a fault model
in finished product. o
» |n software it focuses on verification of design & imptementation.

;""é ;@ | . - .)

Contact:
VENKATESH
'Mob: 9448926729 :

© ENGINEERING NOTES FOR ALL
® SUBJECTS (ALL SEM AND ALL

' BRANCHES) ARE AVAILABLE IN
~ THIS SHOP

|
|

ASHOK KUMAR K ‘
mob: 9742024066 wwi. vtuheaven. 50webs. com
Email: celestialcluster@gmail.com

ul'aaljySalou

&)

.....

%

¥

%

%

124

5

UNIT 2: BASICS OF SOFTWARE TESTING 2 -1 -

UNIT 2:
BASICS OF SOFTWARE TESTING - 2

SOFTWARE AND HARDWARE TESTING

There are several similarities and differences between techniques used for
testing software and hardware.
It is obvious that a software application does not degrade over time (any
fault present in the application will remain and no new faults will creep in
unless the applications changed), whereas hardware degrades over time (ex:
VLSI chip may fail over time).
This difference leads to BIST (Built in self test) techniques applied to hardware
and software designs.
Fault models: Hardware testers generate tests based on fault models. For ex:
using a stuck-at fault model one can use a set of input test patterns to test
whether a logic gate is functioning as expected.
Software testers generate tests to test for correct functionality. Sometimes
such tests do not correspond to any general fault model. For ex: to test
whether there is a memory leak in an application, one performs a combination
of stress testing and code inspection.
Hardware testers use a variety of fault models at different levels of
abstraction. For ex: at the lower level there are transistor level faults. At
higher levels there are gate level, circuit level,' and function-level fault
models. Software testers might or might not use fault models during test
generation even though the models exist.
Test domain: A major difference between tests for hardware and software is in
the domain of tests.

= For hardware domain of the test input involves bit patterns.

= For software domain of the test input involves tuples consisting of one or

more basic data types.
Test covérage:
= Tough in hardware
* Easy in software

ASHOK KUMAR K

mob: 9742024066 wwiw . vtuheaven. 50webs. com

Email: celestialcluster@gmail.com

r

#

£4

g

UNIT 2: BASICS OF SOFTWARE TESTING 2 -2 -

Software Testing Hardware Testing

software application does not hardware degrades over time |
dégrade;over time

Hardware testers generate tests based | Software testers generate tests to test
on fault models for correct functionality. Sometimes
such tests do not correspond to any

general fault model.

Hardware testers use a variety of fault | Software testers might or might not

models at different levels of use fault models during test
abstraction generation even though the models
exist.
For hardware, domain of the test For software, domain of the test
input involves bit patterns input involves tuples consisting of one
' or more basic data types
Test coverage is tough in hardware Test coverage is easy in software

TESTING AND VERIFICATION

Program verification aims at proving the correctness of programs by showing
that it contains no errors. i.e, it aims at showing that a given program works
for all possible inputs that satisfy a set of conditions.

Testing aims at uncovering errors in a program. i.e, it aims to show that the
given program is reliable in that no errors of any significance were found
Program verification and testing are best considered as complementary
techniques. In practice, one can shed program verification, but not testing.
Testing is not a perfect process in that a program might contain errors despite
the success of a set of tests.

Verification might appear to be perfect technique as it promises to verify that
a program is free from errors. However, the person who verified a program
might have made mistake in the verification process; there might be an
incorrect assumption on the input conditions; incorrect assumptions might be
made regarding the components that interface with the program, and so on.

ASHOK KUNMAR K

mob: 9742024066 www . vtuheaven. 50webs.com

Email: celestialcluster@gmail.com

%

%

UNIT 2: BASICS OF SOFTWARE TESTING 2 - 3 -

Thus, Neither verification nor testing is a perfect technique for proving the

correctness of programs.

DEFECT MANAGEMENT

Defect management is an integral part of a development and test process in
many software development organizations. It is a subprocess of development
process.

Defect management entaits the following: defect prevention, discovery,
recording and reporting, classification, resolution, and prediction.

= Defect prevention is achieved through a variety of processes and tools Ex:
Good coding techniques, unit test plans, code inspections.

» Defect discovery is the identification of defects in response to failures
observed during dynamic 'testing or found during static testing. Discovering

" a defect often involves debugging the code under test.

» Defects found are classified and recorded in a database. Classification
becomes important in deating with the defects. For ex: defects classified as
high severity are likely to be attended to first by the developers than those
classified as low severity.

= Fach defect, when recorded, is marked as open indicating that it needs to
be resolved. One or more developers are assigned to resolve the defect.
Resolution requires careful scrutiny of the defect, identifying a fix if
needed, implementing the fix, testing the fix, and finally closing the defect

- indicating that it has been resolved.

= Organizations often do source code analysis to predict how many defects an
application might contain before it enters the testing phase

= Several tools exist for recording defects, and computing and reporting
defect related statistics. Ex: BugZilla (open source), and FogBugz
(commercially availabte).

EXECUTION HISTORY

ASHOK KUMAR K
mob: 9742024066 www. vtuheaven.50webs. com

Email: celestialcluster@gmail.com

UNIT 2: BASICS OF SOFTWARE TESTING 2 - 4 -

B

Execution history (execution trace) of a program is an organized collection of
information about various elements of a program during a given execution.

An Execution slice is an executable subsequence of execution history.

| Jhere ane)several ways to represent an execution history:

» Sequence in which functions in a program are executed. against a

L4

given test input.

= Sequence in which program blocks are executed.

» For a program written in object-oriented language such as java,
execution history is represented as a sequence of objects and the
corresponding methods accessed.

¥ Example: Consider the program P1.2

1 beogin

2 int x, y, power;
3 float =z;

4 input (x, ¥);

5 i¥ {y<<O)

1S3 power=—-Y;

7 else

8 pPowver=y;

9 z="1;

10 while (power! =0){
11 z==z"x; A
i2 power=power —71;
13 }

14 if (y<<0)

15 z=1/z;

16 owput(z);

17 end

A list of all basic blocks in program P1.2 is given below:

ASHOK KUMARK
mob: 9742024066 www. vtuheaven. 50webs.com

Email: celestialclusterfgmail.com

UNIT 2: BASICS OF SOFTWARE TESTING 2 -5 -

Block | Lines Entry point | Exit point
1 2,3,4,5|1 5

2 6 ‘ 6 B

3 8 8 8

4 9 9 9

5 10 10 10

6 11,12 11 12

7 14 14 14

8 15 15 15

9 16 16 186

Control Flow Graph (CFG) for P1.2 is given below:

|
Int x, y,power: 1
Aoatz
Ingsiar-02, Y <
if fy<D)

, 5
3 Ix
Fwhite (pwerl:O)J‘E"e
r

l Prus
Ltﬂﬁm
poser=poswver-1:]

Fly<o) | 7
JSalse I treee

We are interested in finding the sequence in which the basic blocks are
executed when the program P1.2 is executed with the test input

tl: < x=2, y=3 >. A straight forward examination of its CFG reveals the
following sequence: 1, 3, 4, 5, 6, 5, 6, 5, 6, 7, 9. This sequence
of blocks represents an execution history of program P1.2 against test t1.

ASHOK KUMAR K

mob: 9742024066 wiww. vtuheaven. 50webs.com

Email: celestialclusterfgmail.com

2

¥

+#

g

%

%4

H

UNIT 2: BASICS OF SOFTWARE TESTING 2 - 6 -

Another test t2: < x=1, y=0 > generates the following execution history
expressed in terms of blocks: 1, 3, 4, 5, 9.

The More the information in the execution history, the larger the space
required to save it. o

For debugging a function, one might want to know the sequence-of blocks
executed as well as values of one or more variables used in the function.

For selecting a subset of tests to run during regression testing, and for
performance analysis, one might be satisfied with only a sequence of function
calls or blocks executed.

A complete execution history recorded from the start of a program’s execution
until its termination represents a single execution path through the program.
Partial execution history of program can also be recorded.

TEST-GENERATION STRATEGIES

N

One of the key tasks in any software test activity is the generation of test
cases. The program under test is executed against the test cases to determine
whether it conforms to the requirements.
Any form of test generation uses a source document. In the most informal of
test methods, the source document resides in the mind of the tester who
generates tests based on knowledge of the requirements.
In most commercial environments, the process is a bit more formal. The tests
are generated using a mix of formal and informal methods often directly from
the requirements document serving as the source. In more advanced test
processes, requirements serve as a source for the development of formal
models. |
Test strategies:
» Model-based test generation: require that a subset of the
requirements be modeled using a formal notation (usually graphical).
Models: Finite State Machines, Timed automata, Petri net, etc.

ASHOK KUMAR K

mob: 9742024066 www. vtuheaven. 50webs.com

Email: celestialcluster@gmail.com

UNIT 2: BASICS OF SOFTWARE TESTING 2 - 7 -

Specification based: require that a subset of the requirements be
modeled using a formal mathematical notation. Examples: B, Z, and

Larch.
=_Code;based test generation: generate tests directly from the code.

% Figure'summarizes several strategies for test generation: .

! Reguirerments l Test generatioss
} algorithm
Test generathon
————'*‘l Findoe st.ate;nach]rm_l—»l algorithm
T P | | Testgeneration |
=) atgorithm i

N Tesr generation
~>—[Tirned VO Avbomata J———b——! oF 13y

Test generathosn
algorithrn

specificatbtons

| Test generaton
[Ep—— CTode ————— > algorithm

P

Figure: Requirements, models, and test generation algorithms.

STATIC TESTING

¥ Static testing is carried out without executing the application under test. This
is in contrast to dynamic testing that requires one or more executions of the
applications under test.

¥ Static testing is useful in that it may lead to discovery of faults in the

@% -application, as well as ambiguities and errors in requirements and other
application-related documents, at a relatively low cost. '
¥ Static testing is best carried out by an individual who did not write the code,

or by a team of individuats.

* Test team has access to requirements document, application, and all
associated documents such as design document and user manuals. They also
have access to one or more static testing tools, which takes the application
code as input and generates a variety of data useful in the test process.

* A sample process of static testing is itlustrated in below fig:

ASHOK KUMAR K
mob: 9742024066 wwiw. vtuheaven. 50webs. com

Email: celestialcluster@gmail.com

UNIT 2: BASICS OF SOFTWARE TESTING 2) - 8 -

Application code] Static analysis tool
& documentation

Reqguirerments

l

Conirol flow,
Data flow &
Other data

Test team

>
List of errors
Recommendations

Figure: Elements of Static testing

¥ Walkthroughs and Inspections are an integral part of static testing. %

Walkthroughs
¥ |t is an informal process to review any application-related document.
For ex: '
= Requirements are reviewed using a process termed requirements
~ walkthrough o
= Code is reviewed using code walkthrough {peer code review)
It begins with a review plan agreed upon by all members of the team. Each
item of the document (ex: source code module) is reviewed with clearly stated
objectives in view. A detailed report is generated that lists item of concern

24

regarding the document reviewed.
¥ In requirements walkthrough, the test team must review the Requirement
document to ensure that the requirements match the user needs, and are free
“ from ambiguities and inconsistencies. Both functional and non-functional

requirements are reviewed.

Inspections

It is a more formally defined process usually associated with code.

Code inspection increases productivity and software quality. :
Code inspection is carried out by a team and works accof:ding to the

B B

inspection plan consisting of

1. Statement of purpose

2. Work product to be inspected
ASHOK KUMAR K

mob: 9742024066 ' www. vtuheaven. 50webs. com
- Email: celestialcluster@gmail.com

74

+

&

#

UNIT 2: BASICS OF SOFTWARE TESTING 2 - 9 -

3. Team information, roles, and tasks to be performed
4. Rate at which inspection task is to be completed
5. Data collection forms where the team will record its findings such
as-defects discovered, coding standard violations, and time spent
in-each task .
Members of inspection team are assigned the roles of moderator, reader,
recorder, and author.
= Moderator is in charge of the process and leads the review.
= Actual code is read in by the reader, perhaps with the help of code
browser and with large monitors for all in the team to view the code.
= The recorder records any errors discovered or issues to be looked into.
» The author is the actual developer whose primary task is to help
others understand code.

Use of static code analysis tools in static testing

Static code analysis tool can provide control-flow and data-flow information.
Control flow information, presented in the form of CFG, helps the inspection
team to determine flow of control under different conditions.

CFG can be annotated with data-flow information to make a data flow graph
{(for ex: append each node of a CFG with a list of variables). This information is
valuable to the inspection team in understanding the code as well as pointing
out possible defects.

Commercially available static analysis tools for C and java programs: Purify
from IBM rational, Ktockwork from Klockwork, Inc.

Open source tool for the analysis of java programs: Lightweight analysis for
program security in Eclipse (LAPSE)

MODEL-BASED TESTING AND MODEL CHECKING

Model-based testing refers to the acts of modeling and the generation of tests
from a formal model of application behavior.

Model checking refers to a class of techniques that allow the validation of one
or more properties from a given model of an application.

Figure below illustrates the process of model-checking.
ASHOK KUMAR K)

mob: 9742024066 www. vtuheaven. 50webs. com

Email: celestialcluster@gmail.com

&

%

L a

g

UNIT 2: BASICS OF SOFTWARE TESTING 2 - 10 -

Source,; ———— Model
Requirernents, ____4 Model checker l

expenence,
program ——*>property

Property
Satisfied 7 2

)

Yes No
Update modeg!
Of source

Figure: Elements of Model checking
A model, usual.ly finite-state, is extracted from some source. The source could
be requirements, and in some cases, the application code itself. Each state of
the finite-state model is prefixed with one or more properties that must hold
when the application is in that state. For es: a property could be as simple as
x < 0, indicating that variable x must hold a negative value in this state.

One or more desired properties are then coded in a formal specification

language. N
For each property, the checker could come up with one of the three possible
answers:

= Property is satisfied

* Property is not satisfied

= Unable to determine
In the second case, the model checker provides a counterexample showing why
the property is not satisfied. The third case might arise when the model
checker is unable to terminate after an upper limit on the number of iterations
has reached.

CONTROL-FLOW GRAPH (CFG) or Flow Graph or Program Graph

A CFG captures the flow of control within a program. It assists testers in the
analysis of a program to understand its behavior in terms of the flow of control.

ASHOK KUMAR K

mob: 9742024066 www.vtuheaven. 50webs. com

Email: celestialcluster@gmail.com

e

UNIT 2: BASICS OF SOFTWARE TESTING 2 - 11 -

Basic Block
A basic block, or simply a block, in program P is a sequence of consecutive
statements with a single entry and a single exit point. Thus a block has unique
entry apd exit points.
Thése pomts are the first and the last statements within a basic block. Control
always enters a basic block at its entry point and exits from its exit points.
Example: This program takes two integers x and y, and outputs x¥. There
are a total of 17 lines in this program including the begin and end. The
execution of this program begins at line 1 and moves through lines 2, 3, and 4
‘to line 5 containing an if statement. Considering that there is decision at line
5, control could go to one of two possible destinations at lines 6 and 8. Thus,
e the sequence of statements starting at lire 1 and ending at line 5 constitutes a
basic block. Its only entry point is at line 1 and the only exit point is at line 5.
Program P1.2

¥

R's

1 begin

2 int x, ¥, powar;
3 Float =]

4 input (x, ¥);

5 if (y<O)

5 power==>y;.

7 olse h
8 power=—y;

9 z="1;

10 while {power! =0}{
11 z—=z"x;

12 power—=power—1;
13 }

14 if (y<0)

15 z=1]=z;

16 output(z);

17 end

A list of all basic btocks in program P1.2 is given below

ASHOK KUMAR K
mob: 9742024066 www. vtuheaven. 50webs. com

Email: celestialcluster@gmail.com

H

¥

¥

UNIT 2: BASICS OF SOFTWARE TESTING 2 - 12 -

Block | Lines Entry point | Exit point
1 2,3,4,5 |1 5

2 6 : 6 6

3 8 8 8

4 9 9 9

5 10 10 10

6 11,12 11 12

7 14 14 14

8 15 15 15

9 16 16 16

CFG: Definition and pictorial representation

Definition: A control flow graph (or flow graph) G is defined as a finite set N
of nodes and a finite set E of directed edges. An edge (i, j) in E, with an arrow
directed from i to j, connects nodes n; and n; in N. We often write G= (N, E}) to
denote a flow graph G with nodes in N and edges in E.)

Start and End are two special nodes in N and are known as distinguished
nodes. Every other node in G is reachable from Start. Also, every node in N
has a path terminating at End. The node Start has no incoming edge, and
End has no outgoing edge.

Pictorial Representation:

» In a flow graph of a program, each basic block becomes a node and edges
are used to indicate the flow of control between blocks.

» Blocks and nodes are labeled such that block b; corresponds to node n;. An
edge (i, j} connecting basic blocks b; and b; implies that control can go from
block b; to block b;.

= Fach node is represented by an oval or a rectangular box. These boxes are
labeled by their corresponding block numbers. The boxes are connected by
lines representing edges. Arrows are used to indicate the direction of flow.
A block that ends in a decision has two edges going out of it. These edges
are labeled true and false.

Example:
N={Start,1,2,3,4,5,6,7,8,9, End }
ASHOK KUMAR K

mob: 9742024066 www . Vtuheaven. 50webs. com

Email: celestialcluster@gmail.com

UNIT 2: BASICS OF SOFTWARE TESTING 2 - 13 -

E={(Start, 1), (1, 2}, (1, 3), (2, 4), 3, 4}, (4, 3}, (5, 6), (6, 5), (5, 7), (7, 8),
(7,9), (9, End) }

I}
vt y, power; 41
floar z;
inpire b yd:
if Gy<D)

power=y; power=y;

o §z=~ 4

[while toower—0) 257

vrer!
itue g

power=power-1;

— e J
| vy | 7
jﬁl] s
/7] 8

o

Figure: CFG for prograrﬁ P1.2
(a): Statements in each block are shown
(b): Statement within a block are omitted

Path

2 Consider a flow graph G=(N, E). A sequence of k edges, k>0, (e, ez, ... €),
denotes a path of length k through the flow graph if the following sequence
condition holds: .
Given that np, ng, Ny, and ns are nodes betonging to N, and 0<i<k, if e=(n,, ng)
and e;+1=(n,, ng) then ng=n,

2 Note:

» Complete path: A path is said to be complete if the first node along the
path is ‘Start’ and the terminating node is ‘End’

ASHOK KUMAR K
mob: 9742024066 www. vtuheaven. 50webs.com
Email: celestialcluster@gmail.com

P

£

UNIT 2: BASICS OF SOFTWARE TESTING 2

— 14 —

» Feasible path: A path p through a program is said to be feasible, if there
exists at least one test case which when input to P causes p to be traversed.

* If no test cases exists, then p is considered infeasible
Example: '

Feasible and complete paths:

p1 = (Start, 1,2,4,5, 6,5, 7, 8,9, End)
p2 = (Start, 1, 3,4, 5, 6,5, 7,9, End)
Incomplete paths:

p3=(5,7,8,9)

p4=(6,5,7,9, End)

Complete but infeasible paths:

p5 = (Start, 1, 3,4, 5, 6,5,7,8, 9, End)
p6 = (Start, 1, 2, 4, 5, 7,9, End)

Invalid paths: because they do not satisfy the sequence condition stated

earlier:
P7 = (Start, 1, 2, 4, 8, 9, End)
P8 = (Start, 1, 2, 4, 7, 9, End)

TYPES OF TESTING

Here we present a framework consisting of a set of five classifiers that serve to
classify testing techniques that fall under the dynamic testing category. Each

ASHOK KUMAR K

mob: 8742024066
Email: celestialclusterf@gmail.com

www. vtuheaven. 50webs.com

N g

#

UNIT 2: BASICS OF SOFTWARE TESTING 2 - 15 -

of the five classifiers is a mapping from a set of features to a set of testing
techniques. Here are the five classifiers:

1. C1: Source of test generation.

2. C2: Lifecycle phase in which testing takes place

37 £3+/Goal of a specific testing activity

4. C4: Characteristics of the artifact under test

5. C5: Test process models

L AL O P S Ry U . Jp,

Ciassitier Ci; >Source o7 test generation

- e
Artifact Technique Example
Requirements (informal) Black-box Ad-hoc testing

Boundary value analysis
Category partition
Classification trees
Cause-effect graphs
Equivalence partitioning
Partition testing
Predicate testing
Random testing

Code White-box Adegunacy assessment
Coverage testing
Data-flow testing
Domain testing
Mutation.testing
Path testing
Structural testing
Test minimization using coverage

Requirements and code Black-box and
‘White-box
Formal model: Model-based Statechart testing
Graphical or mathematical Specification FSM testing
specification Pairwise testing
Syntax testing
Component interface Interface testing Interface mutation

Pairwise testing

Biack-box testing: Tests can be generated from formally or informally
specified requirements and without the aid of the code under test. Such form
of testing is referred to as black-box testing.

Model-based or specification-based testing: When the requirements are
formally specified, then model-based or specification based testing is done.
This is also a form of black-box testing.

White-box Testing: White-box testing refers to the test activity wherein code
is used in the generation of or the assessment of test cases.

ASHOK KUMAR K
mob: 9742024066 wwiw . vtuheaven. 50webs. com
Email: celestiaglclusterfgmail.com

2 4

Y

4

B

2’

UNIT 2: BASICS OF SOFTWARE TESTING 2 - 16 -

Code could be used directly or indirectly for test generation. In the direct
case, a tool, or a human tester, examines the code and focuses on a given path
to be covered. A test is generated to cover this path. In the indirect case, tests
generated (using some btack-box techniques are assessed against some code-
based coverage criterion.

Interface testing: Here, the tests are often generated using a component’s
interface. Certainly, the interface itself forms a part of the component’s
requirements and hence this form of testing is black-box testing.

Classifier C2: Life cycle phase

Phase Technique
Coding -~ Unit testing
Integration Integration testing
System integration System testing
Maintenance Regression testing
Post system, pre-release Beta-testing

Testing activities take place throughout the software life cycle. Here, Testing-
is often categorized based on the phase in which the activity occurs.

Unit testing: Programmers write code during the earty coding phase. They test
their code before it is integrated with other system components. This type of
testing is referred to as unit testing.

Integration testing: When units are integrated and a large component or a
subsystem formed, programmers do integration testing of the subsystem.
System Testing: When the entire system has been built, its testing is referred
to as system testing.

Beta-testing: Often a carefully selected set of customers is asked to test a
system before commercialization. This form of testing is referred to as beta
testing

Regression testing: Errors reported by users of an application often lead to
additional testing and debugging. In such situation, one performs a regression
test. The goal of regression testing is to ensure that the modified system
functions as per its specification.

ASHOK KUNMAR K

mob: 9742024066 www. vtuheaven. 50webs.com

Email: celestialcluster@gmail.com

UNIT 2: BASICS OF SOFTWARE TESTING 2 i - 17 -

Classifier C3: Goal-directed testing

Goal Technigue Example
Advertised features Functional testing

Security Security testing

InFahdiputs Robustness testing

Viritierabilities Vulnerability testing

Errors in GUI GUT testing Capture/plaback

Event sequence graphs
Complete Interaction Sequence

Operational correctness Operational testing Transactional-How
Reliability assessment Reliability testing

Resistance to penetration Penetration testing

System performance Performance testing Stress testing

Customer acceptability Acceptance testing
Business compatibility Compatibility testing Interface testing
Installation testing

Peripherals compatibility Configuration testing

Finding any hidden errors is the prime goal of testing, goal-oriented testing
looks for-specific types of failures.

Vulnerabili'ty testing: It detects if there is any way by which the system under
test can be penetrated by unauthorized users

¥ Penetration testing: It aims at evaluating how good the policies & measures

N

¥

are.
¥ Robustness testing: It is the task of testing an application for robustness

against unintended inputs (invalid inputs)

¥ Stress testing: checks the behavior of an application under stress. i.e. It
checks an application for conformance to its functional requirements as well as
to its performance requirements when under stress.

¥ Performance testing: Here application is tested specifically with performance
requirements in view.

® lLoad testing: It is a phase of testing in which an application is loaded with

respect to one or more operations. Load testing is also stress testing,
performance testing, robustness testing.

Classifier C4: Artifact under test

ASHOK KUMAR K

mob: 8742024066 www. vtuheaven.50webs.com
Email: celestialclusterfgmail.com

o

UNIT 2: BASICS OF SOFTWARE TESTING 2 - 18 -

Characteristics

Technique

Avpplication component

Chient and server
Cémpiler

Design

Code

. Database system

OO0 software
Operating system
Real-time software
Requirements
Software

‘Web service

Component testing
Client-server testing
Compiler testing
Design testing

Code testing
Transaction-flow testing
OO testing

Operating system testing
Real-time testing
Requirement testing
Software testing

‘Web service testing

Testers often say “we do X-testing” where X corresponds to an artifact under

test.

Classifier C5: Test process models
Software testing can be integrated into the software development life cycle in
a variety of ways. This leads to various models for the test process listed in

below table.

N

Process

-attributes

Testing in
waterfall model

Testing in V-
model

Spiral testing
Agile testing

Test-driven
development(
TDD)

 Usually done towards the end of the

' Explicitly specifies activities in each phase of

 Applied to software increments

development cycle

the development cycle

Used in agile development methodologies such
as eXtreme programming
Recquirements specified as tests

= S o S

7Y

THE SATURATION EFFECT

The saturation effect is an abstraction of a phenomenon observed during the
testing of complex software systems.
To understand this effect refer to the below figure.

ASHOK KUMAR K
mob: 9742024066

www. vtuheaven. 50webs. com

Email: celestialcluster@gmail.com

e

UNIT 2: BASICS OF SOFTWARE TESTING 2

re P2 'H%@’zf f}ﬁb.(«} poo k

The-herizontal axis in the figure refers to the test effort that increases over
vime. The test'effort can be measured as, for ex, the number of test cases
executed or total person days spent during the test and debug phase.

The verticat axis refers to the true reliabitity (solid lines) and the confidence in
the correct behavior (dotted lines) of the application under test.

. Contact:'
VENKATESH
Mob: 9448926729

|

| ;

’ ENGINEERING NOTES FOR ALL
@ SUBJECTS (ALL SEM AND ALL

- BRANCHES) ARE AVAILABLE IN
THIS SHOP

ASHOK KUMAR K
mob: 9742024066
Email: celestialcluster@gmail.com

www.vtuheaven. 50webs. com

ur'aaljysalou

VuN(TB“ TEST 6ENTLATION FRoM

-

..__KFQUIPE/WE/\}TJ' -

Jy/[abu's

~Loitracictian

¥ Be tect Selection frab/em
Y F(FU/‘*\/Q/QVICQ /bmrf*r/‘/c,h/ry

x \é’ounomr/ value Hr‘m/;pg/g

< COl'fOﬁoY&v /00‘3/%/2‘/0)') etbhod

' — £ Hours

-

AN TRODUCTION

+ feclu/m»nemj Seorve AS A .j’v’fc__fzrytmg point oo

h e ?pmerqf/on 05 rects

=

A Wegu;nm@% J’/;é(-/}?/cor-ﬁm can be m}/mmm/)'

M?omug, jorma/ , 0r & rmx 0) Fhere T Hhoee

Q,)/’)TO Aetts .
/ 7 e
€ /ol (2 ~ '

/5 v jo mal b J’/)ecfj/caf/on/ e /77%”’/1#“

charce 0/ ALUTOMBt/ing The T90F ﬁzhen;;/,,,) /prbcgy_g

S

+ F{ium hoeus mne/y % 'f&r’f-'gebé’fdf/on ‘f‘é(/;b/zl,(&(‘ -

LRequirements l

»{ informal/Rigorous
™ Equ1.v§le?ce "1 Predicate-based
' partitioning
»| Boundary-value _ >l Combinatorial
analyses
™1 Cause.— effect > Statistical
graphing _
| Decision tables
' T Modelbased
nnnnn -t H
___________ : , + techniques B
[v T

THE TEST - SELECTion PROBLE DT

4 let D denote Fhe nput dormarr o} prograr a

i Fo gelec) @

Job/\om

Hckdd 7 TO)4) reods SUch That fxXecution of p

a?a(}')j% coct elernen/ ay 7

He fest Selecrion
D N

vot)] reveal alf

e ryors /%) /D
there docs not” eXiSt amy a/joy/ﬂ)m
pest . However there Qe
meltodd that Can be
witl! revepl <e5tGiro

< N 88nera/)
_do comstrucy Such A
and mode) kased

hovriSticr
operate Tecirs That

trsed o

we g

g The cha//e/ye 1§ fo Construct A Tes) b 7 <D

| tHat Wil e ma[ag mas ‘&_2/%074 ;7 / as /DMJ’/A/Q
¥ /i’;g-f— Selection) Wﬁ{caufe

0/ . ke Stze 09')0/ COTY?/)/(){}? / +h e

-»3'-5-/),)/(,{’“ domarm 2/ f

. Exaucpive 18ting:
' we meary '7"(’&%/)7 the

—> Ey exhauctlve TeSting
| (/éh’)ed_?f /N 7 Ay

/aU/fj,

v
ﬁl!/er) /))’Oﬁrﬂ;m aﬁa/njf C’I/ear;

?O/Uf Ao mal) .
- f%é Comjblwu-f malies 1t hardes o Celect

yrdividua l 7€ S

- The jo /Iommﬁ» F10 ~€’J(£7m/[>/{’f 10 & F9g fo L F o

d‘e/g/ponf/b/e_ /09/ //)?76 a ol (’cmo/a/px /97/DMJ'* o’amg/%“

oexrs: large (DPUt dorn g im
v Congeder n /Dh?imm L That e TRYUITed po goyr g

J4g Uzn'en U/ /n*ffﬁ{'b” ! 7o C?X("Q)?df”}q OFder .
f)zzfumm; 7h o1 - P W e txe oy o o

PO Which 1) <gerg W’/nyge [jnm T3 748 £
15 @ Input Aomoarn & P Congsiy ”f 4/ /Df/f/[a/e

S egLiences 7 /nh’/c’m /7 the fm/ae [~32me 227677

> [j +he J/(ga D}’ 75 e /f’)/DL/;L J'@%l(f’é‘)('é’ /< /;h,,;go/ 5 D

/307 N, >1I . Ther the S19e i)/ INPUT oftrog e O/é’/ﬂt”n(/y
247 the value D}/ v

Jge ? m/sqv%j

et x

V= oo POEEIEe values €ach alensery

d/ 74 e /_/’7/DL;7L
,r‘eczuenu m?f aAflme 10 (5520

exz-; C’a‘m/)/e)c (npyt domaisn

N (aﬁ_c,derr_ A /)J’D(Iéﬂ/c(re /) 172 g /07%// ~/)n@g,',7 5 ;,éf
0t Faltesr g emf/ye{_/f e co g £¢ /rz/)qu;
erz/ﬁuh.r weekly Salaw’

» f”ﬂ/p/aﬁeeff YeCosd Congict(g,

(6. 1t oo /
Nare, S$Hring - - *’V)P ey .

2

Y Fe 1y at
for s prfred It

qu) I N MU&"_’ -
— 7 o e Crtuntrong o
EQUIVALENCE PARTITIONITS

y lect Selection wsin equtvolence paitifoning allows

A tester 1o Aubdivide the 1npuf Aomarn o

calairte 1ol number of S b domaing /gaﬁ

N T rejer Ji (a) ., wheab a'.?a cArtjorns |

Fach Cubscet /38 A oW aL an eqm.wr/'ezr?ca clasd

L)

09 E‘?/u o lwce < laggeg (b) f m\/ml‘em(e, classeg o
constid ke a Pav,tfmm no#wngﬁ%u# o /)ammr_;
o s ;Lmj A re dw]om»} o} '17‘“’{7* Ore hot OI/S\-/olm—

feff}g celected from each Q?/q(vﬂl/e?’)Ce clags

clawec créates bt fwe Testers

Nelgl

4/ Wher) the W:m/ence
are rdenticol fe&fe ﬁémfm;‘@ﬂ/ aie ol/jemr}f

+ e endfrre Sef O}L r‘n/buff cap bo drvided ‘tnfo
@f/e ast 2000 Subcets
—>5 Dne COJ)M/W/)’)&: all ex;becfed CE) pr /a&m/ m/pwtc,

—> Other Com‘ammﬁ all unexpelted (1) o Pllegal 17 uty

2 BV | ' YR SR B

e T

— pCongider an a/ﬁfb,v \
denofed 17 ‘Bge’ ak '/n/puf, /e@m/ values o 'aﬂe

are 0 tre TANge [1, @, .., 120
?5(’;"0; (D/Du-f— valueg & now drvided ;ute & and U@
E:[Ui’,—n-lloj L = the Y&t

P Furthey more 19 Rubdivided ¢afo
o2 ... 6t and [€2 .. . 1207
(s aecovrddin L 74(’(‘03’(//;}7 Fo

to veguwemens R requrrentens Rz

4 Invalid rnputs below 1 and akwve 120 are g, pe

toeafed »Merenf? | AGM/WV@ fo A uUbodrvigson % w
Mfo Fwo Ccalegorieg .

5 lect Celected Uom e,?/w\m/enca /Dah‘/hanm 7’echm?ug
arvs aF Afor e-f/ﬂ,fz i/aufff tn H Tt /n/éufcg '

anﬁ ?}ﬁ)e j/our hﬂ/lam'_

- ' —
Rala-ham @nq’ éﬁ/uwﬂ?/(’ﬂ(f’ £010V7‘/%/0n/,7ﬂ?)

v 're/a-?l[(/?/) IS a set ol - ary - fu//&f‘_

L e E .

gx' a0 method addlig+ that returns ~he <Curp 7 (/p/mom
(N a (18F // /nfe/em Adefmel a ,«é/ndr/ re/atron
Fack /Aarr (N Fe relation Congistc i‘f/ | o gt gnyl an .

mfe(jzr that denotes e Lum % all elementy
cn the [°A7.

i (1), 00 and (E0rmi), 1)

~+ the refatfton c@mfwfea’ b&: addL(<f+ /4 o/p/med
af)lo/)azxxff:

[addlist i L wz‘]
L —> Set 7 atl lrets 0/ /n’fej ¢ re
= —DLef ? lnféﬁ(»rg’,

fL//f)ADI& Woor oddlsr hos an €770y Cemp/‘ //Z%) Fhen
fac(d/u% s g Lo — 7 {J fe?r;mrj |

—t> Relattone oot help a Te&fer farﬁfum the mpul
,,,,, ﬂ o doma})’) Ul aph???’hm are (,/E’L{@”j' Di 74 € ,L,'/f)d R

2

|k E =T
jb:;l?bl‘f &Zﬁ/maﬁn)

¥ Redow ex Lhows A /eu) A«J&y’x fo d(j/r)e e%/l/m/énw
clad ¢ec baged O Fhe ﬁmowledﬂé ?p/ 're}of/rgmen,tf
§ € fh)?%!m +eo 4 - :

Example © he oardcot ot IMEthoo Lo lsee 2 00 of wy"

ond a /r/enanne f ar InpulE ang Fetipn. the oo

0j OCCUIY (M oy p}/ W I fhe Fex CONFA 1920,

/ tle N oanag)/

@/ o8, jr/e Wit nagise Jl exirts an é’xayhm (e darced

10 b

- beﬁr n
3 Sfr/n,g"" o, { >
2. [nful* CW [
4o - C/ exrste (g)) Tratee (’;(c?f/m S vetvanlo)
- [/ @nf’% (W)==0) [return (0D}
¢ yFeturp Cﬁfﬁcw'ﬁ CW//)) -
7. ond

Ukt dhe parfifionimg el od e optom the Jottovrng.

g - clagse ¢ :

E1r CongIcls o//pwzu (v,);) where . v 14 Q: f7z,,7
a nd 7 Adernolee 4 e thot- ex et

ﬁ £y : Conctdfte o parr< CW,XJ whese (U £ a K#””;

| and ;’ Ae¢ npter A jr/e Ahar Aoet gl Crrets

Fl—‘% cla ss f e . y".]
£ - non-nel) ¢xXIels , nok C’m/oﬁﬁ
€9 Nnorn-nuj) Adoe ¢ r)07L ex It
B3 ngnrhulj ex 157y, empf]
= n:uf./'_ e Xistr, non QM/JT
IR nul) : de¢s ?70% CX 1

B ' N 7 -
> 00 we NoTe ot Hhe o ? Q? . (’/Q_ffff w/?‘%c’)'q ya

4»7 knou)/en{je of Pmﬂ code 15 2, where gy A0 1
it th Phe /fnow/edie 05 far:‘/m/ Coole 1o €

> Fq clatcec baged ar Prgdam outpy s
b L} B SE— V4

,"':f‘z’f quest 1.1 polce the /szpiémm ever ﬁ@hf&’“g?f? a o2
- quest @ whar are fhe X § Min PoSsible Values

(i the oulput ?
e

These Two QuettIong leads Fo }/D//D wuy ¢g, - claseer

E: Ourffd# value v 1< O

£a v butput Valde VR the max. pots)ble

. o,
’ min g

£ —
Eoq @ ALl ofher Ou%/)qf W/‘v/ueff,

= cesvalence ¢ lassec ioy varia bles
| : /

@

Table 2.1 Guidelines for generating equivalence classes for variables:

range and strings

Range One class with
values inside
the range and
two with values
outside the
range

String At least one
containing all
legal strings and
one containing all
illegal strings.
Legality is
determined based
on constraints on
the length and
other semantic
features of the
string

Table 2.2 Guidelines for generating equivalence classes for variables:

speede [60...90]

area: float;

age: int;

Fname: string;

vname: string;

area> 0

0 ﬁ‘age <120
leeterchar:

Enumeration and arrays

£(50}L, (75)1.

{9211}

({-1.0}},€15.5211}

{f-13)Ll.(56}1,

{132}}}

({J}1, (334}
{{e}l, {Sue}t,

{Sue2}], {Too
Long a name}]}

N

{{e}l. {shape}t,

{addressl}t}.
{Long

variable}l.

Enumeration Each value in a
separate class

Array One class
containing all
legal arrays, one
containing only
the pmpty array,
and one
containing
arrays larger
than the
expected size

auto_colore
{red, blue,

green}

up: boolean

Java array:
int]
alName = new
int(3}];

{{red}t,
{blue}t,
{green}t}
{{truelt,
{falsel} T}
{{I1}4.
{[—10, 201} 7.
{{—9,0, 12,
1513}

— /0 -

.
2

A

(j:)jd/*rid’)_(’/O)’)ﬂ/ versuc It dimensciona)

DAt ont ,
/ﬁp /710 297

v Unrdimensional pordrfioming (Commonfy qu’)

7
==\ ONP Wmﬁ A0 /Da?f’ff‘ﬁbn the m/buvL domarrn 15 to

coensider 0@ /npu-f— vartable af o Frroe .
s each (nput Varlable leads fo a /)0!;3’//}/0;0

A/n)’Vi/urM
LAV T LT s

% M e i/'7/ﬁ:’4‘7L
' .
we weltr To this -’g'fﬁ'/ﬁ’ @/ -f[)/w‘/%m’b/-n o

D ynitdimensiona) equivalence /)aa%}f/ﬁﬂnf

_ Y%
—s A vther W‘W '8 Fp consider

as the Sef /mwlucf 7 Fhe IDpurt Vo xionb/es 5@

C)é“é/u’)e a relatien aq}'j/’; . Thrs /a‘appduh Creafeq

pne partrlion consisting of severa) %U/Vﬂ/€}7(g
classes. e)’c?j(’a“ to this TI8Thod ax

& m_i/f/chmens‘/mz;/ a_,%u/"va/én(‘& Pqn‘/;’ﬁbmf

I

¥ Multi Drrvens/onal paciiFioning
e /'7/1?7/* domarn ‘L.

v Ex: Concider The a/)/Jf/CqH(m Hhat requires +uo

-_—
[Integers mpuf X mrm’j . Eaeh a/ these /m/)qf,f

)€ ex/>€C7‘~€d to lre 1n the /0 /OW/':7 W hges
S S L)
=3 3759 .
> For uned tvendiona) /D
quudelree fo X and i
Stx eq . clasSes
X <3 ’

axtrtronmg , W 0/0/)9 The pa ¥f11 70019
pndrvidually . 1HLs fead s 44

'54: F<<

—p For mc/(f/d/mehf/ang/ e

) /)Qd’?’/?'/b)’?/izfj e CONS (Ao 5
ﬁf’/n/ﬁu Aomarn Ao be L povdyesr X x
Thes leadls +0 9 €2« clasves . 4

Et: X <3, 7<§

A |21)z.(;lg‘s\?gg

£E>s X< 5’,.&,) 7

Fp o 3=XS7 g

e 2 S STT, S8gc g

Ee s 2 Sx <7, 449

EQ)c>7/g_37'<(}
€F.. X>F, 59

S_ggfamml/_g Efooac/q'me jf@"’ ﬁjiMlVﬂ»/Qm Ce

pa>fidfrontng
;.i: 4
~V

ok Gven me program TEgtimements, 1«

S——Y

§
if

| o llo wimg S’v‘efs‘ 4 oe he/pjul tn Nré:Mm; The
“ Qc}urvﬂleﬂ(‘e c"/qj’{e/f'

1. Ldenhpy the tinput adeywain
~ ngr : -

Ko.od the TOGLU 78 entS Camz}u[/ﬁ ancl /den%/ﬁﬂ all
tnput-and @Uf/)uf Vartatles, Thelr 7‘7/9%, and
Cmﬁf condrtionse assocrateq ~ith PRelr Gse

Envvitronment Vastables aleo wrve qg (nput vaviables.
Eevmn Moo Colb ol Values each vartable car AL Gyane a9

' — 3.
§. FQ Uy VOI/@?M@ C/Mfmg N

A
/bah‘/-bon the Set o

values o} Cach varal,
into dtsforny SUbsets Fach Subger le am

e@wm/emm class., @ﬂf/‘k{r) The QU oalen,,
clascec” based v rn agnr (OpuU 14 ?“/aﬁ/p___faw,ﬁ/oh
fhe 171 put domary

Ipof’o#/%;onmg The //7/p(/{7L Ao arrn USIng VD//L/(J o/

bne variaple & dohe based on p, expected
bohavior Oj The frcy;mm,

valtes]/ar eo b rch ~fpe fmimm s e,{fecfe(/ 1o
¢l

behuve v the Same poay A WU/@/ 7%74,%”'
'(\/07’1 That e (i?ame coae” needs Ho e :

dé’/mu{ bﬂ e tesey

3. gom_bme {giu/Vﬂ/fh(e classes :
this Step /s flxu'a//y O mitted, O rd e Qzulva/f’nm
c(@!f(’; de}1red 5’0?’ Cach Vvartable gre ddrroctys
used tp Stlect et Casep. flowever, 57 704 Cﬂmé,,,,?
L the e?uzw/mce classes, Ore Iwisses [he O/pﬁo?f%c/r)”}, |
g fo 7@/7‘109%#,9 Lsef u/ 7SS
| rq . classec ave combrrad & 8//& MUl d trmongpn 4 | 0/0/2'2?0057 _
4. jdé/)f-/éfé/ [geassble Egcyvalence classes -
1y mﬁfea.f/ﬁ/e EQuivalernce clags 15 ome that contemns a

combination of [nput- data 7hat Con pot be
eneroted a’urmf tegf Steh g Qquivalence clacs Mﬂi
Rrarbe Adue o <elhora) 2Ralons

=l -

Exgmg(c ; @Dx/er ¢ ontro/ Sé/s%em (BCJ)

F WN CC{) ’< TQ—ZUNPQ’ }o a)/ﬁpr
R

Seyer ol o/ﬁfmm’ _

ONR 7 T £ c}p%/mu - C (f—p@k ZOh%a/a/)//Q{_ Yyred é?
' - 7Hree
a buman 0/@*47’-ar Fo ﬂ/ve e g/)ﬁmtw Cormmpandc

(emd)

N~
N

@,’70!‘*(7.@ the boiler fémhemﬁlm(v‘remn)

— Shuy down) Th<' boilew CS’AuzL)

—b CANce] the Tegliesf CC"”@ P
¥ Cormmond dmp cduses cs fo ash the. O/D€37)(/DV

fo ender the ATnQunT bi p3hfeh TEh e ‘ﬁmffé“ﬂrﬁymg

IR to be ¢kqn/<4 (%M/)CA)

Valeros aj fempch are tn e mn..e\- —/0 s)0

ko Cren 0yt o/ 5 o/eﬁn’c’_q Fa{mﬁee’h C@ £ e o ﬁ//ow([
Ly Selection option O Jarces rhe BCL o txanisne
va vidble Vo« ! n Ik ALk o G UT, e
0/)em7‘v:r Jo aslied fo enf<r one 8 the Prree <o
va §ul . flowever «f V /s fat ro file, BS
DbAm NS the Comrrand FV o carnpmagnd 7he
. ¢ e Comman d :é,’[ip} /V]A&e Contacn 4% Dr)ei 1) &
thvee Coryvirna nds fogether v tt~the Ialue ;é ﬁf{
*feM/’érﬂ%ur@ Do be charged ' the command 19
tervp - The Jrename s potaed Jorm Fhe

va ytabl .

5

\ F C
cmd — = | Control software
tédpch —t 2 | (€S

inputs for the boiler-controf software. V and £ are environment vanables.
Values of ond (command) and tempch (temperature change) are input via
the GU! or a data file dependin}j on V. F speciies the data file.

R Iden%r,g}f the MPWL doro o fra
3 Frrsy we | examyre the MQU/Temenff m’eav%%iz

in Ut vartdbles %he/r ﬁifgg € walues .
mece aqre lsted Peloes .

varabie | Kind — f Type j Vo) ds)
\Va £En Y/‘WO‘DMCI’)}— Forur Y & uTl . JHe }
- o Envirvn nen 'y | < ;Lr‘/r}ﬁ A }’7 le #1o e
cmd M/’W’f M suT 27 ile | Enury ‘Z"?‘emp, Cancel, &hu/ 4
#m/('h._ (npt via 6 uT o?//,/(_ tnum | [0, ~5 504 |

//f domarn = < < VXF:)(¢Me(}{-fem/ch
\P e Cguz ;7‘@77} -5)

K. QU va/’ea’/(‘e cl asS$/9g | - Jerp- ca re
YAarrable | pccrttop | |
v YYyéurye vl t '{w'ndq’/ha/}}
F 7- mfué’ T tnvale
Comof 1 Utempl ACancyy, 15hurf , vc _snvald b §

S Combime QC/L//"H/‘@?@ C/C/!d’ e

===

+ note Fhat f!nVa/(‘(/ ‘ILVQ//G’/ /(‘th/(cﬂ 4 }/Vﬂ//c/
Nenote refc Qj’ valtres ”‘/’Wf}/na/ 7o enples d77€ Va/w

4. Dscary [nleasible 21 valen co (:_,/qff(
ST / s

F note’ that e § ul 9’2%{6’5%? f-ofr The Omoynt £

tShteh the 50/_/67‘ 'f?iv;/ A(yf o be chor 6(/ anl
WAW-N o ‘7LF7€ Ob&hﬂh}/ !nln/lo ~— / 7

s ed C{ELTS 7‘?:"1‘//‘7 '0: C/")’)Q{

.

Thus all tq. clasred FRra £ pagpteh The /D//omz/n
'fefm/)/afe A (rpeqkrble - ﬁ

| @
f Cv, F, Jcanad, chut, cmm/x{}/ %va/f4Uf/an//4)}

Test- Selection *ased on Egm*fa/ehce clasres

Table 2.3 "Test data for the control software of a boiler control_system

SRerarpteEg.
Ty g . = ‘

ey , T
((GUI f valid, temp. t validy} | (GUIL a_ file, temp, —10)
{(GUI, f valid, temp, t_validy} | (GUI, a_ file, temp, —5)
{(GUI, f_valid, temp, t_validy} | (GUI, a_ file, temp, 5)
{(GUL [valid, temp, t_valid)} | (GUI, a-_ file, temp,10)
{(GUI, f_invalid temp, t_valid)} | (GUI, no__ file, temp, —10)
{(GUL, f_invalid temp, 1_valid)} | (GUI, no__file, temp; ~10)
{(GUI, f_invalid temp, t_valid)} | (GUI, no__ file, temp, —10)
{(GULI, f_invalid temp, t_valid)} | (GUIL no_ file, temp, —10)
{(GUI,_, cancel, NA)} (GUI, a_ file, cancel, —-5)
{(GUI,_, cancel, NA)} (GUI, no_ file, cancel, —5)
{(file, f_valid, temp, t_valid)} (file, a_ file, temp, —10)
{{file, f_valid, temp, ¢_valid)} (file, a_ file, temp, —5)
{(file, f_valid, temp, t_valid)} (file, a_ file, temp, 5)
{{file, f valid, temp, t_valid)} (file, a__file, temp, 10)
{(file, f_valid, temp, ¢_invalid)} | (file, a_ file, temp, —25)
A(file, f_valid, temp, NAYy - | (file, a_ file, shut, 10)
{(file, f_invalid, NA, NA)} (file, no_ file, shut, 10)
{(undefined, _, NA, NA)} (undefined, no__file, shut, 10)

Input domain Input domain Input domain

Incorrect

Correct
values

values

Fig. 2.6
i

GUEA | GUI-B
Application Core application Core application
(a) : by (0

Restriction of the input domain through careful design of the GUL. Partitioning
of the input domain into equivalence classes must account for.the presence
of GUI! as showrk in (b) and {c). GUI-A protects all variables against incor-
rect input while GUI-B does allow the possibility of incorrect input for sar

_Somevariables.

ul'aaljySalou

[& -

BOUNDARY VALUE ANALYS)S 'CBVH_)

S ——

~)<’£§/Iy:@; s a teat selectron technig e Fot
..-'[pyrjef—'g ~éau/f§ I'n “af/)//C@nyans A+ e bUurdaries
% '@Lm,m leirédd clorss e s -

;ewlozle cquivalence pasitttiorsy }f’f’/@C-ﬁ Teetrs /Smm

pot it n Q,q/,u!va/ehce C[a&’!er) RLoundary ~Value

24]

' .
Méﬁq‘/)s /oCugeQ or tests at and hear Hoe

@ boundariés Ly' e-fLU’V“}"”@é classs .

‘* (g[%ai/l/ée) f@j‘/‘f Aé’r/lffo(: L(&'-/nyq 21 e s ? 7'\}76

R ARYs Fechriegues maﬁ ovea//af

vy Once bhe /npuf domotrn hog poes) ((‘/03')7&,/,{4)}
te8 F je/ec-f—/on uglni ﬁ\éundakygz ralue onaz{?yé’/g

PT—DC{)QC{S’ aq ~ Jeollo :

0. pastiteon the (opat Yomarrn HAEITG 09C —
| | | y

B s onciona) partrtionivg

Bys leade to A48 Mdng partitonk a8 fhere Qure
?I/?F[/{“f" yaslakbles. ﬁffwhafi}ﬁ») a &(‘Mﬁfe /mﬁ/f,o,?
06 on /H/U‘F- §Jornatn Can be coreated us’/n(ﬁ

multrdeimendional /Dafv‘/f/on/nf _

boundaries Jor each arfirtion

) Jddents the ‘
- Boundaries mo g also fe zden%%ze(/ 8197

XP@C(@/ relationchips amanﬁ the i pufs .

— 2 _

S. .‘§7€1€C7L et Adata ARuch that Cqoh é’OL/r;dpy

\[a/qg occu Y N al- lea & F one fek i __})f)ﬁuf_

N

BYA. . Examp/e .
4 Cohi(der a retsod ’/P (}md/owcej b o
fajkes 710 /npu to - tocle and 24/»’

Ry e
L5 [nf?gr Vu//'t{/qve‘;ﬁ.

¥

} . Creafe €q) ua/énpp classes
s Bosuming Thal An tlerm code imesgt pe 1 e
lrﬂhézﬁ 99 1o 999@ _@’?(/ ?7 1 The

d/anﬁﬁ | to 00)

Fouivalence clastes for'code .
£ Volues [ess than 99
£ Ualues 1y e 700ge
£3: VYdler ﬁmafvr thorn 999

.EC)/L(IV@/PV)@ Cl‘ﬂﬂe; jor:. f?,fﬁf
Eél ! UO(/U?S /€__$‘j —ﬂ,an /
Eg¢: values 11 +the mnﬂe
E6. lmlues ﬁféa)‘f)’ than 999

. Fderntify boundaves
%B?/ow [ﬁ LhHow FCLWU‘-&/W?_QZ clasees and

pourdpries for @) code @74 (b) 1,7_
values 4t apd near the bounda ry are Jrsred atrd

TR~

1% 00 q9% (00D
B VNS N\ X
AN T
99 £ 999
< £ > Eo —>
Ce

8 9 n £,
- “— 95 {Tj
LRV X N\ ¥
/\\m/_‘/ AN
{ oo
@ < Ey- (=2 Eg —>

e

3. Congtruct Fe8F Sed

"> (e st gelection baced on
fechpgie mﬁ}urmx thot FesT& Ut nelude

Xlor cqet, voartable,

Lo unda?r Vo /ue a rmbg/g

values at ard amwund the

) boundasy.

Xy

T 5 toncider the joliowtsg tec cet

w
T:Z? by s (code =A% /c;fi?o),

to: (Code=199 ‘Lfﬁ:’)) 7//707/ values
7 fa(cmdo-:/oz.‘)) C}‘?‘y =2, Dj code’ a rxj
tq: (codes 298, ¥y = 77, Hly’ re

— (0 ¢f
fer(tode= 999, Yy = 100)}/‘:7 e g

te : (Code= 1000, %7’?’0’_)}»

<=

— Conltder the éu//owmdf éﬂU/fﬁ code <kelotnsy H2-

rt

/50 yoomethod f/p

! puﬁ/rc Vold //9 (mr‘ code | 97]
> 1
2 <C(’Odf <q49) £& (code >cyqq))
4. fd[g‘/{a&z €fmr<’/mmlld Code”) ; ?”f’/'[/;m;/(}
s // va/,(/,}# (‘héc/ﬁ;{ar q/fy /¢ m/ﬂfmi,cf
€ // Mim /orocezs/n/ c()O(e and 9/3,

1 Z

| j : e

—>) Qnd +, 1€STS IndtCale Fat- Vﬁ/u& / (odg
19 tncovyect . Bub Fhege Two tecfu /O"/‘g Fo
check M at-the valtd; check ory 5}7
n’){f‘f/f')ﬁ ﬁh/m the /ﬂm Fury.

— fpne o7 the olhesr sty c/u///bé Able +to revoa) Fhe

misSing —code Eogor. @7 J'é/bam%-/n Fhe Coprect

and rtocosrect valyec "}l difperent /’%WLWHMD/?

e Incdeqse 7he P()ﬂr/b/h? 0/ a’éfébfm; The

mu,fn? —cCode erior.

(QTE@()R}/ - PHRT

tTIroN METHOD

method 5

& (Catfegory pasirtion
===

A?y KTervats o

a/o/)mmh fo the ﬁenerahm of tecrs /mm

] =2 LIS ERTS).

0)'/ a mex 0)/ movloua/

v [he mMmetthaod Cons/sks
arnd qetomated CHP!.
. R

—y Lelow j/&’

@ oot < uerng the Cm‘é&m?‘ “pATIan memod

ahows The J‘r‘e/os‘ ' ~the gean%mn %

Tasks tn Solid Ao)cm' are /690”}'0“'960/ manua//ﬁ and

gener(x //é»

1 Analyze

functional
specification

specification

* Functional units

Identify -
categories

‘ Categories

3 Partition
categories

q'//zjfcu/vL O automate .
Dacked ADL{U' IndtCate FtaERE that cor pe

B s

»| (Re)write test

‘ Choices

4 Identify
‘constraints

l Constraints

Steps in the generation of tests using the category-partition method. Tasks
- in solid boxes are performed manually and generally difficult to automate.

5 specification
l Test specification
XS
: Process E
6 ': specification ¢
Test frames
Revise TS: 1
Yes | Evaluate
7 | generator output
Revise TS: No
Test frames
g! Generatetest
P_serpts L
LTestscn‘pts

Dashed boxes mdccate tasks that can be automated.

autor xted

'_a?z/‘_

Stepl . 'ﬁrx)/';/ze specrls cation
; 7 , /

¥ Here The TJéStes ((}’(ﬁ#/émj each Z‘unﬂ%/{)na/

Untt fhat+ Can be Teted \s‘ppaaﬁahﬂli,

Step 23V It ey, - Categories
7 aa v

- [For each testable Untt , Tthe __lc/wren é/é(‘l-/aa)&,ogn

18 anralgzed ond Tye 1npUtl amee (R alate

+ Next we detfedmene chamlﬂwfér/s%/m (O‘f a C’(H’(VD;,J
Df en ch pataimeter and CNAVIIDNIe nyy) D%/PC;L

Sep3: pa¥titton Categpries

¢ For eack &ﬂﬁ%gﬁ: Qon’eﬁor The fegter devtormmire
| o/téjerénf Casre an/hﬁ twhtets The jl/h('f/ahad

uhik royst ke desred
¥ Fach Case [also Mjem@’ fo Q¢ a <horce
L F DPe oy rrore Cases ake expected foo each C‘(t;‘eﬁoa

. Cﬁ;ﬂ n properfies £ seleclor ¢)?’J’!/l))
j‘f*(ﬁl; Cd@f)‘f’j{ﬂ CohStyrainte . ‘fO!rar(mﬁ' Cthf&(’_) X/D ;

r{' '79 conctratni- [g‘ IAPC}}(GC/ L/_g(lflﬁ o /io er f [tg 1 ﬁnd_
i a s tlectoy e /r/);réS’J’/o)j '_
[M”Dfe)’y’bp NSt hae The /0/‘/04:4)/)(7/ }om —_

/[Pro/pn‘;; Pl,P2...])
ke&aword Ls naneg of /ndrwé{aa/ /Jff()f//%/u,

> D <eloctor Expoession falses 0 ne f /e /0//&«2/? /037771 —_
Lepop -

ror P oand P2 and . .7l

Jje‘p 5. (QQL\M(%@ Te st —gfec’kmaﬂom
s])

S festeyr nowd Walter o (()mlblefer;%?ﬁea/j/ Cadsen

fhe _S‘[AéC/‘/g/Qa?‘/On (S OXItfen 1n a Aeor pf@o%,cgﬁdn
/Cffﬁtl(lﬂe <T\CL) (Of'/D/m/}’?ﬁ Yool /)cTéC/gf J’é/)/)jﬂ/fé]

SHep 6 1 procecd IpCGpeation

7f-‘ 7L f-/@cb// catroy wotftrer [nstep £ /£ prpcecsec]
Jbi an agytorallc viest ~/}ame ﬁé’nfrm‘ar

Py

L4
A he Fest Jrocme ¢ age gna?,zcd by e fester

jor 2 o v rdan <'/ .

o ﬁ)Lﬁ e Stil s /nanumbgty c)f Ae0 A jfﬂhoef,

= F v 7 '

y Hede teSter examires 7he tect Jfaprs ;or a;;;
| Fedundarcy or m(ff/nﬂ casec .
Thtg m/?ﬁ,f /-eo_«.q/ fo a mod%/caf/ab R
| &p e(‘/jlwhﬁ?) (gﬁ’ff) anrd a refvio %of#/ﬂcf.

T ey F 1 Gererate Tert <CripFe .

|

X [ect Cases f«emara‘f@d]'Z'WY» 7L<’4’/‘ /'ﬂ’/x"”n-efg odo
C ombined Pto 1ESH f’“}”"’%-
popeck COpl 57 ﬁ‘m"’f’”ﬂ é/ FEIF Carcer,

+* §ener4f/V-J et (ases thol do rof- yeqg Lt/ re 07
charnges 1) Xfﬁ/”ﬁ% ?{ he envrIonrse nf- D?Zecff
aie o) u/Deol fvﬁefhe . "

CThte eraktes & Fesr dinver fp é//(c,mﬁi’

P AN

T 24—~

u
ul'834}{7Sa10

NTE STRUCTwLRL TTS 'Tl)\}%
e —————— - .

;;yHaAus

+ OvervViend

A ~Srtorlenrenniy '*fagvtﬂ'\ﬁ
¥ Bronch levhng
¥+ Conditon Mﬁw?
x Pattn Testing

luW\

+ pvadure cal) —téedt
%Wawtrﬁ Lty et *Rxﬂwy Cutderta

% e u%mubrhf? .P%D%IU\/\ .
— & ‘ﬂr@u'rs',

® ASHOK KUMAR K

VIVEKANANDA INSTITUTE OF TECHNOLOGY
Mob: 9742024066

e-mail: celestialcluster@gmail.com

BV NERQX
T, 34IA, Near-RNS [T C'lege,
Uttarahalli-Kengeri Ma’™ o
{:hannasandra, Bengaluru - 51 v-".
Kiph: 0611148853, 988655¢ . v

OYEENIEIN

%je%gmrﬁ o
—F :Tud-ﬁrm(f the Tect surte kao‘zm&?/pk necx
baced swathe, , STPUCHure @ﬁ the ‘PB’D %Y)/“so OO
risely’ 12 Called g2 chural "f€C“Pin,c] /Csm{m;; oo m%kﬁ
e [te. <Structure é’ﬁ‘ﬁﬂa g@ﬁ‘Hﬂ)Q‘&g ,%5@}*/,\ TC a

valuaple souTCe Df_ tmfa\o’maﬂm 7’-mr @[egﬁhﬁ
Hect Caces and detpyrminimg ehehher o set- &f—

test Ca<es hag& b@Q‘Y) S’C/LF-FICUP Y)?‘)a, %DW .
—P <y cteval Texﬁha X ol o Rrown alk %
white Pox /&lass pox [code-based 'T@mmgc, ‘

s Wh% Shvu ctuval (armdwng [$low) +es++_g
1 Shvactsal T@H‘”g € ©re voas B andiein
e C!U€S‘HC’“" Twbhat s mfggihg n ouy teck cdite?’
part- ef th f> sam 1z wOb ex e certed
oy tes+ Case 1n “the Sttte fatulbts jx
F+hot FC@Q} Can » gl be QXPCKQJ)

)O:zr% magy be | o

— Kﬁ%m&mk(ﬂt)daz) o Rranches nga@
JEN Fracmerﬂs g compiratieas - Condrttens }>0{‘7%r£’

(f

, %&Hmﬁ :5%7 [‘nOIUdJH‘? dage_c “Hrer)— maﬁ O - [9& gwﬁﬁd

"f‘(ﬂj‘f}‘] J}Deubmaﬁm/m alene

\o“Fa |
TF Cxecutrn all cortyol Q{_EOW e[wg_rmﬁ/z foes no

ﬁtggzrcu«\#% jﬂ[«ctar\ﬁ ol \{76111 Ne becaule execuhMor
of o fecuthy S *f-ﬁ*fﬁrfw@«*f m?e f\O‘f\@Lbang 2T (

- Db vr At N

) Col
¥ Structural %Q“f—f'\? QWWP/er‘L{/\-}tf c‘l:—\ﬁ/(yjcva{a&jal
72*@‘[““/&? N jug%fb;quHm
v
— Contzr | 'F[DL/O "h‘?-g‘f*lftﬁ UD)’V\/D{QM&M%ﬁ *&—LLMQ"_IMﬂi

testerg by i chacte Catel Ut Mmay ot ho
Tt ed c-ﬁ«m gpe.crﬁrmﬁamx a(eﬁne R '
A Fupital case i trplesune potatt on a - <tngle tlen,
D‘b e gPecthQHon b?g muHrPLe Pam#s 05

The PrOpTEry ,

exrffﬂor'sth‘mb/a C@f/'f-é!m(mvriix‘pfg ¥S 'ia"")‘%(/‘a;i—f;((‘aa \S])‘”Qmj
> Onhe other hand, tegt —2utte? /ga#gtﬁ’“\?

_ c ontwol %—foly() -éELE? G@Q@gua(‘gf cwidewita cvuld fa', "
seveal tn ulde Thtat can ke CQU?!W# O 1Dy
aruwe#fomalg cxiderta |
@D(f—er‘S‘XHk? Pdm ‘b’ﬂMHB .

t +$@f@cww} '(E,&Hh?r T pracHce

| ,%C-mq-h&f.b'i&w *fvegf—wtl? Coitewion ave oeed o
2 valua te Tthe 'Fhoumk?rﬂ\mefﬁ of Fest-suttes
Adewived $M JuereHonal *ﬁ”esH»\? ¢ wlterta bﬁ;
lQLQ_pwHﬁ/LM e lements Oéf‘ﬁ‘ke Phs?aamg J—

B edequontely axercined
L LLmexed_u«%&;}f elornents may be due to natesal
clojgerer ces petreoen .g]oeuyc_@vhﬁm and carplenantal
Dﬁ* e SC%'H/\DQW or 148

o the M«w(-f ryoveal ﬁra P K

devdg}arv\u\# P?UCegg;
f>w\adgivtaooec% rt) e &féc%mthmx ‘Heot-do not
imclu de cogter present 10 ~the m\falwﬁgw)

—= Codang pracice thea 1 B’adtmll?o dJVQ\K?/g
7%,;%4 the < pe ciyiCatzon
- zo\adgu?/v\odz —functeonal test <artes .
> Conol jlow odsguacy - wan e Qaﬁf"lat: peas.u rec)

—— -
- 0 ® N0 &EWN -

12
13
14

17

19

* 21
* 22
23
* 24
* 25
26

32
33

* 35
36
* 37

2388

42

#inctude "hex values.h”
/o

“~@title cgi_decade

" @desc

»

-

»
-

7/

Translate a stiing from the CGI encoding to plain ascii text
'+’ becomes space, %xx becomes byte with hex value xx,
other alphanumeric characters map to themselves

returns O for success, positive for erroneous input
1 = bad hexadecimal digit

)
int -cgi_.decode(char *encoded, char *decoded) {

char “eptr = encoded;

“char *dptr = decoded;

}

int ok=0; :
while (“eptr) {
char c;
c = "eptr;
/* Case 1: '+ maps to blank */
if{c=="+"){
dptr="";
}elseif (c=="%"){
/* Case 2: "%xx’is hex for character xx */
int digit_high = Hex_Values{*(++eptr)i;
int digitlow = Hex_Values[*(++epi0)};
/* Hex_Values maps illegal digits to -1 */
if (digit_high == -1 || digit.low ==-1) {
/* dptr="?"; */
ok=1; /* Bad return code */
} etse {
“dptr = 16* digil_high + digit_low;
}
/* Case 3: All other characters map to themselves */
} else { C
~ ‘dptr = “eptr;
}
++dptr;
++eptr;
}
“dptr= "\D’; /* Null terminator for string ¥/
return ok;

Figure 12.1: The C function cgi_decode, which translates a cgi-encoded string to a
~plain ASCII string (reversing the encoding applied by the common gateway interface
of most Web servers).

—! int cgi_decode(char *encoded, char *decoded)]r
¥

{char 'eétr = encoded; Q%
char *dptr = decoded;

LLint ok =0;

! .
(while (*eptr) { @‘v
False X Tove

/ charc;

c = "eptr;

if (c=="+){
Fals

| . D
[e!self(== %) { Cﬁ

(—-False—*——Tmeﬁ

else F) {int digit_high = Hex_Values[*(++eptr)];
dptr = “eptr; int digit_tow = Hex_Values[(++eptr)];
} ' if (digit_high == -17] digit_low == -1) {

else {

*dptr = 16 * digit_high +
digit_low;

}

e

*dptr ="\0%

return ok;

}

Figure 12.2: Control flow graph of ﬁmctibn- cgi-decode from Figure 12.1

= “est”, “test+case%1Dadequacy” }

L = |

i = {“adequate+test¥%0Dexecution%7U" }
T, = {“%3D",“%A", “a+b", “test” }

o= {7 a%0D+%4d")

Iy = { “firstetest%9Ktestoeko™ }

Table 12.1: Sample test suites for C function cgi_decode from Figure 12.1

- — &
STATEMENT TESTING

Stolenents ave NnOthing but Hhe nodes %
the contol ftow ?%’ﬂf’w. -

-¥ S’ff‘C)\‘fPJ’V\QJ\‘f“’ ﬂdQc[Wa Cy c s te TIom !

g/ ST+ b a “TGS;b Ul fe "fok a Fmﬁmm F
T 5QH9P€S The =tgdement O’dﬁq}ia cy CTife /o
Cfor £ ff . for eack Statement S of P
Thewe exlzte atleagt wie Te’kt coge v T 4had
causes fhe. execulion of S . .
@ @ e (s cequtvalent <o gﬁﬁaﬁ et emz?f nede
T in te cenhol \b(@éﬂ) amfff) . mede! F Thee Fm;?mm P
M VIS T Fed ,b%f S0rne exec Ut on ;bm% exe ¥ JRed ;:,&L
A fegt Cace m T .

¥ Hatevrrent Cove‘eraie i ,
'[—Fé 'S“fﬁ*#e-meydv\ COV@"’JZﬂ@f C@M*}\emnk 5[{ T '7%'5’?
TR the YLFC(GHO.Y) O7E £ tade pu e pis oF- ;)gn[?a—am P
exe cuted béb at teag+ Ome Terd ¢ oo 5o T
Mumbey O exccoytef Sterterrent s

Cf*faq‘err\emf- = - .
> L nbe o O Sfepterearts

7 Saﬁ.?f;e-,g Hhe <Fatermend Oude?uac&a Cortesrron /i
_ (:S'ﬁfffnem- =1 | _

¥ Bascic bloek covernge ; Neodec 1w o contip/). ,’--4000 ‘;"*ﬁ/d‘
eﬁfen T@/ﬁrefenf pocic_ blocke Yather fhan ndividual

clatervents , and co Come. otandards Jefaf o
pasic PIOCK AOVemjc or ode wwraﬁe)

- i “\'g-“
v Eampler : Io prrpram s b comint (2 vape,

- cope /
& B tect swite Joo = U0 Meer " "aerty case st /D el gl 4 /
' == /—?— (=Y
(g'z‘o’tfeﬁ%hla 7§— = C/Zf A

er node goveyage = (0 . s
aoveye Ty 2 L2
50 it deec not _fﬂ'f(S‘fi e <toatenaen 4~ cxdlac?,uorp&n & >R

-~ A tecrcuwite T,=7 ”ade?/ua/é t—test < 0ODexecaHen Vel ”J&

Cora. =l8 1 orros’
A ferven - Ty F q/J

Ko <§’C'fffﬁf,f€£ the < Yortrmiesnd u“xd'_a?uacy ot fayi D

I ' t o t,oon ’ "ot '
—> A FeSt Sutte E:i %gp') v.AT Tats”, ff’g‘é'}

(S'?‘zfrfemen+ ‘:-@: { e /o@%
(& @
P
note [COVQ,B’ZL?& doec not cip_}oemq? o) Hsrr bev %
—_— 7 - .
fect- casex

Laraed -

e? ;o /, >(‘cuferoye /o

eg g ! /éL :COV&*Z?Q //

note o2 an/m;Z/n(? oot Crte ScZe i S‘e/aﬂovw he Goal

T pecqrtise : \

—& Small e Caces cnade zgef/ure mq?masfg aagre y

—# jﬁb‘jml‘mocp Tesd- Cace 19y Ty ?n«e:’ roere
?Oiﬁmaﬁ'@m four foli- (ocalizatren Than o
ﬁg—mlm?g tegf~ Cace &3 7, . .

7Wwwm»mm$%EW“*mmﬁ

nte =2 Comp/ef‘g ﬁvtfmenf C@V??ﬂlﬁﬁ ma&a f\c?t /M/)/}p

axe_(‘-c,(*ffmég all PW [D‘fah(’/’v@
o ib?}iﬁwm | . -7 i~ 11 {9@
G on= " *70”*”%/Lf;7@bdif

v 1651 ‘“J
(—;'fﬂ*f*emen} = (OO/"

s 7

- int cgi_decode{char *encoded, char *decoded) } j — 7 .
|

{char *eptr = encoded; A
char *dptr = decoded; I
int ok = 0;
(while (eptr) {_(B)e— -
/ False LTI’U&-\
~(elseific== %) { (D) ' “Gptr =" ;
True
int digit_high = Hex_Values[*(++eptr)]; (G
int digit_low = Hex_Values[*{++eptr)};
Lif (digit_high == -1 |} digit_low == -1} {
Fals&———lT
I e
(else { M) fok=1; m
ST *dptr = 16 * digit_high+ | 1} y 1
: digit_fow;
3
) - L _/
vrdptr;
+repir; S— :

}

. Figure 12.3: The control flow graph of C function cgi_decode’ which is obtained from
the program of Figure 12.1 after removing node F.

b L O GT Yy sadrsfres
critesion fov The -
exe rC rSe T ﬁ-ﬂ/ge boraeck

17 Wre <Oy ﬂgw W/‘pfa rnrode |

o P Fect swnte Tz =1 "

the KStatermepnt @\dﬁgwoﬁ
Drog >z | but doec not

Forr r oole P

@m’v’hg)

~BRANCH TESTING

(_’zrfkkféh’) 9”@-?/’7/110_(’ coxcty PEogrob

¢ Byanch odegtac . .
Ozg the fﬁv?a«am o pe executed /by aqt leas

pne Teot CAaAe
Joi- T pe @ Test sdite 74:»— a

T s orticfre ¢ The branch ad,z?/_/(qg ¢ wrfevrr O far /’D,
1§, for each bramceh B of p there ex 1 Sts
iy T Thats Cau el e

_ af- [émf’iL one Test Cqce

Y .

This (S é?/u,vagn¢ Az -S*fﬂ'f/'ﬂﬁ Ricx=hon €V€a7’ edﬁe 7
the conTrol i{Om‘ ﬁa‘aph rovode / Qf /pmiwm F
égjwmﬁx f2 Korvie. €x & ettt 6n /Dav‘% exevc)ged bﬂ

a fecs cose /¥ 7

WaQlgmaslD Wk overas e Coana, F 7 o7 7 s The

‘—fa'aC’f'sz’?_ D/L oz o chee fof— Pregoars]P Q:rec_uf\gd
757 at lteast On€ Focit Ccase o [. -
v NUmMmbe ¥ 05 oxec orted ﬁa'vrhoifm_q

e

—

Cfrﬁnck - r)t.(;r),bebf- ? Lo 4
V2084 g/é

a x—mhsﬁxeg Fhe brarrih d&dé?/lmz‘ﬁ o ey o ©
;ZL' CBrancb =7/

¥ Exampls !
e PR LA

,006’/0 Staterne s (’Mafrye N\I;’—\ P
2 $5 . oy o aow?r?< oo™ &
s

700/ Ofartesrenyt O VETAGE

/00 5 rom th (/@fvok?{ Cﬁ’aﬂww‘? 8/? -/

i mz)‘f—@ /} ﬁayea_cf/ng D/[/ édigg DX di&gfh o uUles 0}//
= noolec fo ho VISIted "
- oo Teshsurtes thot Smﬁgj B ran ah adeMle/

coletert& fori A fmﬁmry) P alSO J”C?/wﬁ

f—hegf.{_ﬁ;g,ymgmf M,Q%!/\ﬂoi» C¥liextong j—:ff
e <arve T4y

The Comwysre s 7071” Foriz. e

NHete 2 #QQDA/@Y) rrth Aoz oty Tecira
;{7‘—""
Hoctime We. hawe 'ﬁm—;yaHem/ tiRe. jj}g(,'t 0 pe yotor P

s the comdritonal Staterment ak lroe 27 Dﬁ /ym/m,m y
cregu/‘fr.n? 1n The X@Lu(? QXfW!/Dr;

[d{;}z‘;h/?,&, o= ,"l’ cﬂzﬁ}%,\ﬁow = =)

Thepm U borirch acey crretesrion daxn be \mﬁ?}/éd
(aﬁd bo/f,/ bronctiec '016%(‘/{(24) N/fﬁ_ 1ect Swrfex 1)

pobr il the fIrSF cornparision erolialey alwops 17 jalse

and enl e SelonM s Varied . ’ g
‘mfc(ch teef Ao ot Séf‘f%emaﬁda/{f exercice The J1sF
.@mfmw/cm. omd. wflt not reveal the gault)

thof emparisiory . :

folutien 7 = Condis tron 7}4"/1,»7 _

CONDITION TESTING
+ Londrtivn ddequacy cxrtevia eWercorve thik]DTUb/(m
o v T
zby _.re@ut'ﬂf)ﬁ dljjere,q‘f bagre ¢ onditrons C}/ Fho
decrgivng +o be J’e/)aémhe/ﬁ ex o rossed
v base tonditen adeq uacy cotlerion: yegurrec HEHF
cach basic tondrfion o be Covered
w: il foct suUtie Tfor A}Miwmo P cevyy

] - y2 ’
aly basie r_f J'aﬁs'//m o Fr9/c

fOAd/+[o 7 adegc{an(y
L tn Pohas 4 frue Otfcome
case 77 7= and & jalse OFCo e 10

s m T

conayttons of P te
cylterton ')2?]' each basic

condito o at [as)

Ca tlealt ©he€ 1es

Bacis dr et Coverage | /
v Basic condition “ényﬁ((gaﬂacmmﬁm) O/ Lo fer p

Lt He /mcwon o/ P e total o 7 FIUPE vl s

asitmes ,57 The bacre condrtioye a/ /Df'D;J—QmP
CJ’U’”"‘; hoe €XAYTIon 0/ all Fescs Cages 1 T

Totatl no. of frath values agured
_ \bp all bagte conditipme

C@aglé_candlﬁon a o - -
_ ol X o, Oj E08 e CordrFiong
)

- Bacic condrhions versus brarohes

;fpgag/c_ Cendriton a.dezuac- criteston cor b, @
Catisyd ted Wrthouf <SS g BPIAN ok covosss
jet Sy e
for ex;

e teorSule 7y =] froct e test L g pect o597 f
fO(‘fIS‘jMS' “bCYS‘/c Condriion adeczuar LCHrRe N | byt P0f

f-he p¥aNcH a#%a#? cond oy ad@gtta? Coriferion

(= the Outcome of " dectsren ar lime nq 18 ajways folse

s [hel 8 I’?WIN_‘A and Easre Condition nc/ezua(critesion
tre not derectly cormparab/e Cneffﬁer fm/g//-er 7HC OIBE Yam)

-
!

J{ (‘gy@y(n# branches agnd cendrers:

: .p_gram‘gv and Cendritor ad’eguao s B teot SPurte
JL}"HSX[&(‘ the byanckh and Contdtror aage?uacﬁ
ey ¢ ferion ?p/ = -faﬁ.cf-(ej both e Sbranch ad@ib(aci,
cdtderton and The Conditton adezlemnﬁ Cortesion
> C@hpownd condrtron Adeguacy
e Coveys all possible syaleear ong %/ @m/bgunq/ Cordritins
o Covey all byornches 01;2 a decreror Free .

-1~
For ex: Ibe (om/m)ur)d Condrtron at e 27

tould dequire ('over/nf h ¢ three /)ﬂ%/oa’ 7y the

f@//OW/ﬂﬁ F50 e
O’/grt_lm‘i —= -~/

</ N
T rcte /-d/y(;
2 T
O’C‘??f,low = Fat< e
!
1y e lgmlft
TRUE FALS &

A The o Dj Seof Coged &eczu)re@/ /oa’ cﬂm/ﬁour)@/

condtl Opr a‘dezuaz &}mw é)c/bomf)’)ﬁall Lol 7

o) bogic Condittone /N a\.,demjlor),wb(c/q

the /0.
o uld mage
,m/amc?wcm Jor Pﬁﬁ
bq ¢ oy the expuesiLr .

ThHe COMfDU"M/ condrtror Coverage
Yosrme With veri(60m/b/ex cordItrone .

a g4k 44 c F£4 Ff e

The C alm/wund conditton Coverage TRQUITES —
r-feff coade x| s e
(1) 7 T T
) T T a
(4 T T r
(%) T §= ~
£€) F |- _

-/ 9 -
Meod)tedf chhdML/ﬂr)/ bdecicron Coverage (/‘OC//)‘()
4 v

oF /?7061'/’}/{60/ condite s CtdQ?Uac}(/ Criteriom
: 4

+ /V?(/DC reQutres fetraet
oy seach BASIC Candetren €, T tecr Caser

o Values o) al) evaluatey condetrona équf C

are the e

., Compottnd condrtron A

she Frue for opeyand false for the ofbcr

¥ me Jpbc can be !ah_y/ed with Nt test cages
raking 1t o attyaCti ve ComPiirnile b, @&

Ao . & fe@u/rzo/ dew’ Caset £ %omuihmm @f 7Fe 7%’%_“

ex: foy The exprest/on '((ﬂ//b)5§)§c)//w{> X4 e
- o comfound cond 11 o5 a@%m[é,,

a Wwhole ovaluates

Test Case a b | ¢ d e
(1) | True — True .- True
: _ (2) | False | True | True —~ | True
| _ (3) | True - False | True | True
i (4) | False | True | False | True | True
*‘ (5) | False | False - True | True
“ o 6) | True - True - False
(7) | False | True { True | — | False
(8) 1 True - False | True | False
(9) | False | True | False | True | False
(10) | False | False | — | True } False

(11) | True — False | False -

(12) | False | True | False | False -

(13) | False | False - False -

_ ~/z -
— For mc/bc

T a b c d e Decision
(1) | True ~ | Te - Tue True
(2) | False | True | True - True True
(3) | True - False | True | True True
6) |) True - “True — False False
(I} True - False | False - False
(13) | False | False - False - False

_ . 7] . I R 1 s ' .. . _ ..
Undevitned Jaaluel !?Orej)(mqer).ﬂy G?}/é(lf e
JUTCOme. 0/ the decexioy
ote ! MQZDC 4 |
— Bagtc comndrren Co V/rdf@ Cc)

- Branch @VéMﬂe @Z@ ch)

- pluc ane agirtronal condiprarr (M)

PATH TESTING
¥ path Hdyuacy viterron: o |

77‘) Ject Sutte Vr jor & /)9’07%.?m/ faﬁf//@ The .
Brars adeguac&; catterion 144, for é’ach prs P o4 .
e;{;}f}j al- lendtd Ohe feof— cale 72 7T thalt Cauyges

thea?
- executtor Of P o+ o, v 7 CF&
o ?:rs te é?czimfeéf 70 Xﬁﬁnﬁ that 01{67/)07% / ;—It’e 7
7 ocle! D! fn?? VAL pxercesed /97 o TR Case 17D -

e |

1 CovedrQ e — “ 4@ s ltson o) parbo

(hHe /)C?ﬁ;) C-C)Vdraj M . af/@g,gff b0 TeLl lafe /;’)
_ a*//(pWWW foexetn
. G execyted /M/”‘
C/)D’ﬂ" " Mo . 7 ./Dafhj

4 practical pm% (oveaaqe Car/%eefm

— he no. i Pafhs’ N a P”ﬁ”m WL Joops
1A ~Wdf So the P?réwous)y dej/mzd Criderson
Carnhvlk be Jah.s‘glwo} jor Fhege /57@;”’/7?5,

For ﬁm? wilth foops, the d“ﬂqomrna'%nf I N the
Com/)MfavL/or) 05 /Jorf% (’O'Vérﬂje /€ /3’)//}9//_(/ Lt g
Hhe ’pa{fb o V@rﬂjg(ze becoryy ¢ jefQ,,,_'

—t o Dbfarn a procileal criterion, I4+-1s Necesea
o partition the injinite Set of paths rnto a
fertte vumber % classes g nd reguivre on)
+that Wpﬂﬁénfahvu /N"Y) each c¢lasye be é/r/)/grfd,

— tﬁﬂpﬂ” Criferta. can be obtqines b
¢]omzhni Fd< npe. aj /aH’u o be rovered re

Czwo-c:}t Frover<als e;/ toops-)

o [tmtting Fhe /eniy% 05 e }aﬁax fo be Fravessed

7

o //m/fmﬁ he 0@/96170/6’)76,'(?1 ﬂ/ﬂﬂﬂf selected fﬂ)‘;‘;g

/xr fw yniferior Cotterion . ﬁmupg 7‘0767%(9»

fo(%hg Thot— df//(r ﬂ”?/";z 1 The Aub/fm% ﬁ?(ﬁ
711/9,,\) L0 hen ?“e/ﬂéa‘f'lnf Hhe ﬁodﬂ 0/ a /@@

:»F Eie below shows q’erllfmﬁ a tree 7’wm CFe& Fo
dertve f&tbpﬂﬁu XD’” dound q [tniteryror Fectrng
(a) (¢ e CFG ¢ Corme & functan -
() 18 a tree derived [rorm (4] Ly /0//000//7_ cach parh
m the CF 8 w /o o 'ﬁ)é’/{f&% b‘é/’fa?‘(d rOdg |
Fhe et © /Ba*fhx /rpm Jhe TopT a/ She Free 4o

oach /‘eaxl /R /#7{ M)—Zwmo/ SLef / gu_b/)a;%;

—- / é—— .

¥ ltrmetattons Of &aum{ar# tnterror adequaaﬁ
f(f (a)4 — be S‘uIaP atb<c Fhrough THIS
St - contipl Z//ow can /ncftm'e Or
ff excletle each Olf ﬁ,e /fvlmi‘émeqﬁg
2&) 7 JG) go Fhot 1y fotal) N Pranches
" 2 ¥esSytt rn o?N/‘O(H?! thart roy gt
(& CC){ be Foravessed
-/ — ChOO&/r)ﬁ [h/)an Fota o éorce
50”_. execution of one particular pats.
?é— Qc){ may be Verﬂ d///{culfj ar even
Sn ln_fzﬁoﬁ/b/zz r/ the conditFtone o re

4 10/ zmde/oemo(m*t .

v:?—/{’_ -

¥ loop bPoundary fldeguacy crikerion Ptk s oa
i / ==

Vartant 0/)(boundciyy | tndcdivr CEiteédten thar
toeats loop boundaries /K/r)qf/g)//y but 15 lexi
hreneat, bt ot diferms ammy pas
bejintiton:

p tect Sutke T jor o pIvgoam a /ia-/fy//e,j S o

laoh boundory adeguacy Crtileriop oy
/ L Sy

[or eacn /OOf LA P,

s dn ot least ope execution , loptrwl depches Jhe
/00/’ J and then The /00/0 contop] rord, Mo ®
evaluates fo Foalie At e //Mf Al me 1E— %

' /)
eveluated .
—U I ar leask one exéecutron | Contie] reoches fiy,

lo u/), and Hher the bod o/ tThe (oop !5 oxecudfed
, exm@#ﬁ whce A?/D)je con +Lxp/ /éa ve ¢ Fhe /Oo/gy .
o I apleagt 0P exerutror , the boc/y a/ he /oo/@

(< J"Z/DQOHL@o/ more Thar prce

¥ _Linear code cequence awd Tump CL <spT)

cigfecztéa‘# ,

—> L CCPHF /5 dfflnel’/ 29 bodi 0} code f%az:uy%
which the Z/'[ow CZ contael l’)’)aﬁ /broceeq" \CQZU@'WL(’@”&/
Jo rrminared by a Jump i the Contep) //vw,

TER, = &taterent Comraﬁa
TER, = Branch co Venlﬁe |
THEp._ . = veyage ot h COhSequetrve L SH Te.

(‘/17#

& _Cyclomatre teShng

—> Cypclomatic nurmber 18 the Dumbey of
V-

/nx/@fmdemt Pozﬁue In the LCF6.
A Ptk L3 re/)TéfFJ)'fcj/b[e ag a bt veclor,

LObEYE “Zdch Component of The vector ,I?Zzﬂﬂn%f

an e.é/je
. ”)-{,_D-ﬂé‘léfnce” 18 zjkoflnaré/ //nemr dé’/péf)cfénee

b e Cbzf) vecots Mg

- 41[€ = numper c% edffrj
N - Dukhbes /} Hoolée
< = 10 - 0} Cahné(‘yteg’ Com//?QO”M?’)H c);l O 7MP/7}

the _
C?,Cfomaﬁéj =4 € -+ f‘ar anég' - @Iblfm Yﬂ ﬁfa/)é

nuMmbey

e —n4s . /ar “« CF4

'::;_ - Z‘@p(‘/() matee 'f?_(‘f/mi C)’O(’«K not f@.-iuwfe ;@0’2; ZDQ'd’ylfa/r/ﬁ? r
8 _ B ,
Bbos s Kl 18 covered . Roatver FF Coumte e |
1 N A ber o tnde pendens)Daﬂb; thert have atsen

| actually poeen cCovired |, and e cCo Ved”dﬂg cF)ters o

1o Laticdied when This count Feackes the
70[577)6?7% wnfk’lﬁi % The. Code under Tee/

1y

-

SPROCEDURE CHLL TECTING

4 Fhe coiferta considered 1o tHars pom% e tixe
é,wmzszﬁe Ozé- contirol X/ow bl Th I rrd v idus)
pro e 00 d o s ffﬂy are

s gy e _‘:_u"z’?(s Lo VQ .

aphvopiiate o Choose g4

o menkudate ©ITh the

notr %OUF// eurted fo

[r)fg? yo +H en
' 1L hopre

9ranu/an7 coem

Ly uauany
er@ra?Le
. %

g procedure entry and extk Jedbing -
hawe multiple @-m’?' e ente

£ procedire ma
(@3 FOR TRAN) and I ple e_x/:f pornlL

Ay

Y, coverage \
:“'/bwnﬁ mnﬂ be cm//écf Jrom

[Fe Sameé €h‘h*&-
mant;// /)@/ny‘z:,

COMPARING 5TRUCFQR79L TESTIN G C_/?ITFR/{.%
¥ /)owﬁf § Cﬁgfﬁj Structura) Fecr &PK/QQJQ%
Jeccoiped Carliey Can be /DrmJ\//ﬁ comp i red cu/n/
fhe Aublumeds relaka, .
JBe Frelottone W?’)Emﬁ fhece c¢oltedtq A¥e

Fn belows Zc?urc .
4 [heq ave dtvidecd talo Teo broad Ca?téﬁoﬁff

CT//LKHQ
lustoated

> pracd ICal Cdifesg

P

THE INFEASIBILITY [ROBLEM

&+ Sometitmec ¢dlrerta Mmo not be \(’a%/s’l{/oré/e

pecauce the <iterrorn requlies Fhe oxeCUt)up,

Uﬁ & /)niram €/€m6nf Fhoat carm herer

be txecute .

e;: — Exetudron 531 tatements Hretr Congy pb bo
exetuted ag a' veSuly lff
;Dfﬁ‘{nﬁ/w Pmﬂfammm
» codé Retesce .
— exelcUytion ol Cohndrkons thot Cabppt be
J’aﬁsze.d l’vé a rvesulr C% /ﬁf?&”a{,@/peno/én}—
condrhong

_ /)a/-hg o t— Cﬁn.mo'/— be €Xecuted al 4
rectad f oi /”ﬁfdef@ﬁ?dmﬁ dectglione

¥ /arﬁa amoth - vﬁ R}oﬁﬂ/” code rhai tndreq fe

w.g_(ér/ﬁl/f fna/n-/;afr)&?}»t/tly fﬁé/emgj bu - KFornse
UNn¥eathable COAde 18 Commprn CVer» r»n el d@!l/qneaj
evel] maiantamed Xﬁ&'f“’ff—'w(()

"3 fblut;ong o +he znféaf/bz/f?z /D.YDA/gm —

_s miake allowagne,q (oo T 57 /Sé’f-ﬁn/ a c//t/(/'(ra/e
qonal less than fo07].

g 90 /s wwmye a/ bacle Plotse | po). allowarce for
[npeacible blocks -
5 yequive fuctspicatin of each element o)t Urcoverey

ul'aaljySalou

TR0~

UNTT 7

(m
—~

CASE SELECTION AND ADE guancy

EST EXECUTIDN

&(fl}abug

C"’)QFYL@X 1P : Test coge selectron and ﬂdequacv |
@ Dverview |

+ (esr S)ecri)rca"ffomg and (’.axa,g

" quczuacv cwiterta

~+ Co m/mnnﬂ cxitertia

t‘ha/ﬁer 18" rﬂXf Execution

£ OvVeYVi{ew

y From Test Cade Apecifications o test Cages
+ \/@Cabgo\,(d-rﬂqz

F Genaic verLus /élbeuj;c /gmﬂ‘)”mﬂ.

¥ JeLF o¥yocles

¥ K@{}L_Lhechg ac ‘Dm{(‘(eg

Ty Caﬁfure o nd Tf/D/OﬁY

= g Haury_

rBhes umtt Introdaucee bpastc a/b/;waclmg +o
fegt cadge Alecrion pp4 comvmfondmf

ao(eczb(a (_-y Cytfeyion

TOVERVIELY

(deally we Fhould [rke an "adeg uate” fest surte

4o bo ‘one that ohsuret CoOTTettnecs "f rhe
lbrooluc-ﬁ_:._ Unfuhlumz*fe/‘ﬁj the ?09/ i ot
aftatnoble .)
5 [he o;w/cu/_fﬁ_ 0}_ war)ﬂ Thot A0rpe Set 0}/ +& &4
Cates 15 adequate " thts wenge J¢ Q?vaa/pr).yt
to tho d//}/fU/‘ff [); /Arowiy f%fjf e
/)’mﬁmrw (S correct ‘
[Oﬁmr wordse, we could Fave ”acﬁeguqﬁ /s
VLP.«@f‘Hy T Hhis Kemge Dmfﬁ 1'[we <cOulyg establisy,
CO)”?’QC{)’)(JI_(W FHn out anﬁ, 'ﬁcgf;? -af ol
" ro,“m:.[bmcﬂa we'JefHe jor Corteria that
(o(emt//ﬁ motdezt(_a credit 1 TesSE Surfes

s
2ok,

R

10 test
clude
‘use a
gation
cases
as not
ite. If
know
some

T8
2y

X§

sand
| the
hich

For
it be
ung

test
the
ion
we

-.ta" >
est
d the
_“J on

Test Specifications and Cases

153

i Tesnng Terms

‘ ‘,H%

_RMERUACY CRITERH
¥ Pdeguacy Crtterta 4re The Sef Dj vidta (5/9/(7017‘/0;7§;

e wmvu@e Hoe der rp T€+ Obligertror faa
0(0/’82(/(00;

tegt X/Ject‘/(cgﬂanx (m/bo.(ed lpy
colkexia , 1o q’/sr//r)?umh thern frorn 1est

X/Mcrj(ca-f/ar)f thot are ac#uoz//j, cseqd Lo
dexrive FeX+ (ades .

4 where do test pbhgatione Come Forn ?
— Func-fzan@/(éla'ck boy , &pecigication baced) : .

Jrom &’Déqur@ 'r/MC/j/Caf/opg ,

— K’%mcm'rq/@uh/fe o glass pox) s 7‘6}77% tode
— Mmoole) pased : 727 rode/ of ’5’74+€m
3 Fautr boased: ﬁm_'f’ Ay)a-ﬁ)em(q D/au/;tj

'CC"O/‘?—.){;»M éuyé) |

£ Y telt+ urte J’a%/S‘Z‘;M q;w gd@qbua%yzcr/%ewan A
| = Al e tects succ«d}Cbarf)

g -3 eveyy fest Obl(iahon 10 The Crtfeston 1y
;(’mttgj(ed /5&@ at legqet O»¢ 9/ fhe 7Tes+ Casey
(1) the ftedF LUite .

fﬂfex: By Statemeny Cowa’afe ﬂdeiuaﬁ arltegron /&

&4’/‘7&5164 ,5(7 a /Dmrh(u/qa* 7‘(73'# LU e for a /DTDﬂJC'/’b

{/ eath €xe Cutoble Atate .t 't e Wﬁnym 14

~ ke

RY. ,fa%[ﬁré tapil zz E

> Some Frmegs o fel 4 Kurte Can /fav%’/&, a <riterim,
for a ?an /JQ’P?J’MM |
ex’ fj th € PTD?Y'AM contorne Ktatemenrs Fhias can
hevey pe Lxecuted |, then nro test Kurte cav
4017‘/#25? the Xlalernent CO0 Véé’aﬂe Crrtesron

¥ Coplng With cnsottiegtabi/ity

«—)Qppn)wch L Fxclude ani .__gnf“&%ﬂ[‘gc/ip}g 0E/ ¢ o Fror
jrom the C¥ltevron

B — Fx mod/}y Aterterpesrt CC’V@”Qﬂe Fo re@ulaﬂe

. LIEeCU o n 4777 Oﬂ/ ctatements rtheat cap be eXeculsd |

“Balb Wwe canmt trpw éor A U¥Fe b’l{/'?teh'qre'
exe cutapble .

~> Approack ?—;Eﬁ")m&um the extent- Lp whireh A Fegi
XUi*/:c a/)/‘?n)ac;,ﬂ,g an: Ac/eczuaré, \'ca’./%?no"n)
~ bt 2p oo Tecr Cuite sarisres 9/5“0//00
obligations, we have reached €5 CC“’W‘Gﬁe (

- H Coverage meacusre [£ foe fmo;tmn Oj
faylrflg/eqo ab/liay’#ong, '

— Coverﬂyc Can be a w‘f’}w/ ' ndreo for
0 DZS /)wﬂrgfj ﬁwa}da ‘Hmmuﬁh Telt £uite

— Cm/é)mﬁe car oleo 56 a a’a)?\ﬂrm/,c Seductsgy,

» CO WM(?(re or)/f f‘m}(f Sor ff;orpui/—megg

oy adéczuaeé
v e emﬁ to Jmpivye Coverage withoyy

/m/)mwnﬁ a rext Aurte
, The Oy)/a, meak wre Fhat- 2’@0!//&(MIcthers sk

@X%) /5[@ ctrveregs

COMPHRING CRITERIp

[S

~ Car we O//fy‘mﬁu/«fh zf(?‘&onﬂez 7’ram' weakes
aa’zqua(‘&p C«W?’(fb’/ﬂ?

~=2 Ernplst ca ! 0P DOHh

¥+ ﬂn@/ﬁhm/ m/pproac/,

+ Em&d[tal appfroaoh would be bayea' Dn 0)‘7‘?”111/4

Rfudtes of the effectiveress % djjf’r@m'- oPPYociches
o fe&tng 10 10de8irig) practice, rrr0lud sy
controlled Atudres Fo determine Whether Ihe
relot)ve eppectivent (4 of a’%«renf fv’fsf‘f”ﬁ A hodg
depanolf on The [vond o/ LoJfnore bami 7‘61‘%64 |

Fe Kind oj aa”ﬁé?r)tmf/or) th twWhich the &/fow?rg'

&S C‘/G’Vé’/of(m/ & +H,i'f<df ard a mykcad’ /
ﬂh/@L/na//nﬂ }a@%or\(’

OFher fofen«#/ a)

¥ ﬁna/;fh'@/ ewswesr 1o ([/uU%/an; j relotrve
é}éeCHVf’ﬁeff Loutd deccs/be C&Mo//%/om: brder

w bich 0ne adeczuaa Crtitrimh 18 ta santeed +o
be Mmore ejéé’m‘we 200 sty Arvthe r o
Aeccxlbt 1y BtaHSH Cat Terrnd fherr velalive

aéiecﬂvenerj .

g The Substmace geloation
D fest acleguacy criferron 3 SULSumes fert Covarage

caittaton B /ZZ/ jor. every Pmﬁfﬁm P every
fe&t Ket J‘m‘(fjéu ﬁ A wr g P o alzo saksjies »

w.r. t. P

\ =7 -
Eo: Zfﬁcemufni alt /owﬁ%ﬂm branches AULK unseg

M'wfhg/r;ﬁ all Pzpinm@ Afate rmenty

¥ Ytes of PHdequaay criteria
- 2 g v

3% | TSI XE e Cteon Pppivathed
-buidance in dé’y/f/nﬂ_ a 7%0?0&7/«) +e gt Strte

ex: A .f}éQlj/Co,f[Uy)»-baféd CHifesion ma/ /X_L/Wex%

¢sd lates ¢ 'm"r"",“'ﬁ rf)%fgvbf Hke Combriadiony

~
>
C
<5
~
Vet

Oj vatues

% —p Pevulmnq mre&slnyg Jektx :
._/pogf hoc Qha/i_ug what m7}>¢ ; hove rwsped
with this [ect Curte ?
—b ojter 110 Combinotion
e ﬁ#f/ﬁn rect Surte fovrn KPCCigr o tung

Theyr Ule Stogyctura)l Ch%ér/ﬁﬁ(i Coverage 7
ol - ﬁmmhe&) fe k/;/fv/(ﬁﬁw‘ o rsced (’?@/C

CHAPTER 7B -

TEST EXECUTION .
) h\\\
OV ERUIE LA

* _Plutormating Test Fxecut o
e L

—ﬁﬁe‘é’limmﬁ fest- cades amnd Test (urteg)€

Ccreatiiie .

m any c/a/‘yn ac%/vn} A demamd/n
titellectua) acHV/// v“e?wa/nf Aurnan
JMdﬁng(nf- -

ﬁgycecufmﬁ Te&F &U&s Chould te autormorte
~be&7n once , execule rrany firoes

- Tegh am’pmgﬁon —feparat @l Fhe cHeative heimgn
/,rppggg im Hae m.fcjzzmugaf /pafpcezf! 051
fest protess pxe eytron .

;r?om TEST CHSE SpPECIFICATIONS To

/ L7 ChSed

¥ (c’?/é% destgn 147%?7 7/6/O/£ fesi- Cage
é/beczjlcczf.foﬁ@ / vather Fhar Comirete oAote .

7

—ex /! ’b (qr7€ POSIfive namber | pot 4 20023

7
e

ex2: "a Sosted segeence /enﬁf—f/, S0 ot

o a//)hq betq , chi, e a’

2

&+ A i)'u/g 074 thum b 1o ﬁ‘?m“ tWhrle Fert cace cﬁ&’/ /nVD/V@r
dudgemmf and coeativity , Teskt cace 7@’76&7{’7‘/017 <bpuld

S A Y I JON

—p .

x—~7__’
v Automatic generation of cwncrere feot copes

;)om mere Abstract Test cage ffffcfjrcmmnf

dedirtes the /m/m(% 0/ £2va/) /n"}érjace cha
e COoUYge 0)} devtfoprment.

CO@'V&VW%?’//? ChO?M’ To the tedF SUtte <ave 5/
reZu;red Wwith each /)nﬁﬁrm akai

'7??5 /P

but C/zanﬁe,f
to fest cate A/”C{g‘lcafmm are ///qd'i 10 be Imolles
and more /Deal'ged Fhoxn Cﬁanﬂ@ 0 the

Correre fo
Z5 ’)Lé‘g 7£ MX€£ .
L

¥ thMrrHafma ‘7‘&&’# cakelX {Aa"r /j’m‘/zsjy Levero]

Conkitsarnt4 maﬁ('be le'rY)/D/g /i the Corxtrarnts

Qre /nd@/endéhf , but becomes rmoze dyj/cu/f

o outpmate ©Ohen /m//f/)/e CO??(;Lrﬁ/nf,f APP{;(Fo the
Karru 7ien .

_SCAFFBLDING .

‘% -V- COode O[EVQ/DPQJ 1o iaci/i-faf\e fefff/ni_)3 Colled
J rf(‘déit)/c/fn;z , ﬁé—[(thfﬁ)étﬁ o The fem/mt*/%y

Abvucturt R edected axpurd A bu}/dmoi d{c/mof
ConKlyuction O mocy tairente .

f fCa};}LDIﬁ(/”3€ Mok tnclude -

>7€ff dnvexs (A’ubx‘ﬁiuhhg /ﬂ}/ a marp or Qm///né; Pojou/aﬁan)
/_(54# haire st [/iu%#fuh

/07]pq(r/f 0/ the df%%we : 7
O’€P/0imenfﬁén VI¥Dh 'Y)(n) '
___bil/fulﬂcﬁﬁ;hn/ Jor jﬂﬁ(‘}fﬂnzz/ﬁ called py used %L

| —
¥ [he /)LJJ/)Dh) o/f fcc%o[dr-mﬁ are <o fyo"”q’e v _

COD‘?l)’D[/abI//& o execute Tttt (ufes crrvy

Obteyvapilit, 7o [/ud(ie he pulco me % el

oxecutton .

V< Lome F1ri ¢ f('ﬁ//g/d/n /< rfgu/r@d h’/g”’”/ﬂ/ﬁ
make a module *QNWM/D// bt over, 1o

I Caerre il ofe V\')(I piptwe 7F v pl o A vreddear

N)?Leﬁﬂvf/on Dp/ each - module /J’(a/}o/d,p fﬁr

fopf’fbf/abf/;{z and observalk)p, ey be vequireq
bocruce the wz%ema/ (771l o ces &f the X e
ma;e 7704 pz’pv/de fuji/(’/enf comtrvl) Yo drive Fbe
module wnder fest 1hru’ Ffegt Cages or

Zuéjlczenf ()bfﬁnﬁ/ﬂ)&/i? 0/ Ih e \é‘///écf.

Ex ;. contrdesr an 1ntesdctive p?)??gﬂ‘/m Thot 13
normallu drtven 7hrpugh o §UJ ALeume that- acty,
m{?hf te porton o0 thru' o full automated o nd
unattended Cgcle of Integration, Comprlatron, and
lect elecutton .

tE-ls nececsary o (p@jas’m £ ore 7‘€«§+mf thou! Fhe
tNfesacftve c/\q«egjlace but ¢t 15 Neithey m@(orfm}/)0 I
QM(C(emL fo execute alt 1e8t Casee fheo ay . froal)
odrtver progiimg /ndzpmq'enﬁ of GUL Car dérve epel rmodyle
Through /a.rio_ fegt~ Suee in a Shorr tie

.\/,F

QENERIC VERSUS SPECIFIC ~F€;9Ffloz,b//y§

& How genesal sheuld Scoddolding be D
H ﬁ a ﬁo ’ /nz :
— e coulld burld a Adetvey and Stubc]/07

giik) | fedH cate

py ot least ém@%or out *30”? Qammm«, code %

fhe dotver and €87 fnﬁm% (Qﬁ ! _J\Ur)}’i_).

Y Zguimer fac'/mr oud- SO0 Cormarympn (SM/)POH
Ccode , to Ovve A (ar/{ 770 9 fest Cates ng,m

doi #-a (ms in ODATEPs)

or ({uer"r/ ?Cnerﬂfe e datw Quterrak ca)y

%

frem 4 e abstract hoode @is e fnost

—

—

—f’m/j[c AA@C(?])

TEST ORPHCLES
g Deérm‘ﬂon! the J‘Db'[ﬁb\)arc thot 07//5//65’ & /DO{&S/bLa?/
catfesion to o prrgions erecution 8 Called O

FeRE oracle | oY X!mp/%/ a Orocle

ar] cF#ttedron (& uxum/;ﬁ
maﬂ«z a/)/D/t7a a /DC?M //a//

a pert y the Aactual

4 [n practce, N3 /"”"'/ﬁ

n thatl rejleds 0”/;'
¢ en a/ﬂpm,’t/mamn ,

yary €XeCUtrormg

crtterin

/)%'o yam /K/Jec# tcotHon o !

ard ﬁearelfore /afref Sprpe mﬁ'

it ought fo fail

+ Severn) pRyHal Teol Grattes 'wo:? Pe rrase

COX#\e//MHVé_ Mrevn oue HMHrab 18 rvere 00”’/)""’/””7{/0«(;
¥ A Fedt oracle may also ﬁ}VQ éa/!f- a/",ﬁkf’f”f ,

1’0[’,’7 on Xecyuprpn That E'_-;L_Ouﬁhf/— 7‘0/@{3,

FIS2 Calahang 1h Fest €xe cutsron Qo-e A/deh

(/u Undesiralle
¥ [he LPAF D)atle Wl Can Obfatn ;4

&% DFacle
. v CYPe 0k £/ tHhg
that defecrs deviay ont Fron, e ttatron

Mai 07 méﬁ Not ke actual /a;fui((.

e ("vmlt)ﬂd’/s‘/fh bated practe

O
—_— TEed hasreqg
[lect Cose l ‘, Wit cp 281860
{ : based 44"
} YTy . drrele
i Expected vuppous] , .LD”’L—"/ff’\’/i

Undes Fesg
;{7: £ +elt- hadre g With a co
640 e fn; ceftes

PPpaHtslor, based togr @
&+ cageg Cond & o p

)
(/”D?’“”” nput, ,omc/febeo’ou/yw) paes
- With a Cermpasretor, baced Olade , we need

/J@a/rcfed o@{ﬁ/uf-- jor- Cach /-r)/wa
APrecompures or desved |

—> D otele M{: actual Mo /D'afqd,c,tgq' Qubpur ind
e ports Z{ﬁ//we ’f /m[7 CI.%W,

R 18 begd- KU fert for £avart ne. ?& land FRRe forf
) ‘722;(L Cag &, 29 fosr Br0ysmnt o g sns 21a R

- 7 s

8
—

.«/_?,-—
¥ pariia) O rot e
> Okatles tat Chetk deXulis teittrout W/@h‘hm to 4
predicted ouwlput aie of fen pastal i b

cente Jtrads H"‘f&’ can depect Lome Vo fattvm g

0/ the | \wedu o J/D@ij{CO%/On but~ ppy dlher g

> rw(y ede)s ﬂt”fe&&a? but oy Kcy//f,«._omL

Condrirons /0 b (OTFOOSINELy
u .

SELE CHECKS AL ORPCLES

o e . T oot barress |
(€St lzia?&-e«s |
g .
/ N { | /Dn’ﬁcmm
[LIt trpet fr—yy Hrter et S —
f— — = Ei% ¢ heeke Fan }
L —{ “DH}-ICQ“HM]

¥ An oracle Can also he wontren af Sel}l checju

- Q{{%@h POXAI_b/E fe /Udie CoFoectriess evitheut
/9erl(‘f/n‘? redufds
s 75}(@1(7 these. P@[} checks dlre trn e /cm'rr %

wg’/ bu+ 'dff(fhed to Le chetked dc/n,;q

executton .
G I /e genermfé, cOn & 1desel ﬂwd df&/ﬁr) /@mc;;cp 1

malse A$8eYHons and g‘e(}l chectss Fo b= /J‘(’f Uf
£ (de ejjecu an /My’m;«n Ltate

— /Zf —
,}e__féfzz cheltks (M HMe ﬁ?’m 05 AELCHL 6 g Crrbedo e |
i P;’pﬁkam aode gpoe LM%U/ Pf/maz’? o7

ckeck-/n? module dnd /fu/’%usyhmw/()vp/ /x/becﬁ/@ho,q
Jaltéey Thar Oovs al) /)ﬁi&am Aclﬂawor_

AL ! .,
— Uduble with (Q?Q’ au forg ondy Qg//y V(’M?H’Ld
F&F Surtes
borarts

— Ojf—é)’l Y ?)ﬁ/ir V44 Pﬁrﬁa/ cbeck
- 37_(\0?’0[-2(4 marni, oy rrof /LO//'UI“(_{'/_ Lot Dot

wa

CHPTURE AND REPLHY.

v Kome Ftmes 1118 dijltculy fo erther derice 4 precice

dexc&{p}mm O/ 0M&lﬂbr\o7’ Mlezuaﬂ(ﬂ

Chatrapf*ei/ze comecd behavioyr //01 fj}féﬁw Sehp cheaks

e roeven i e 'Xe/mcmfe 7Le(5fm/ /W;Mm /—(4)70;’70”&?/#7
ﬁ”)‘m §HI/ Some /Pe&f?nvq o/ 74 §L/I 1% %?c//m

/9

¥ i one Canmot- Qom/J/eH/ avoeid buran f’?"D/Vf’mx"n
one Can At leosl— avold unpeceelar

Fekt (ale executton ,

zrefe?HHom o} taee co &t~ and O//UF%{,{)»),AW %0;7 ervay
$ e printrple I8 Simple |

m«ljm-ﬁ Lime ASuch a fegt cate 15 cxeeuted Jhe

e cle)[unc,ﬁ_on 14 ca)rred oOuf bf a human And

the Ihternlon LLegUen e j¢ Capfured trevided the
éxecutton was dudjgd @f hvmon Mfey)&@»; fo be Coh”(/'/?LJ

the Cg/)ﬁ,rm/ (29 rpow forms 49 ([n/pw‘/ Predicfed oufpu#)fazr

A-:qfhl'_n.L/:J Ao drna /\l/; ')’/-'Dlh!lﬂ/] ,)

\—L«\L CPl1alsnn ss 0o

| —)
¥ (e favrh?_g /%Pm AUtomio fFed ¢ fesdin With 4

(a/gf'u)’ed /sg (Ifejﬁﬁnd! vry PO man beatld ~and ~
e & t- (ﬁc/bz ve Can LContiryge r/a: tige ?/\J ,ég/of(

St g srvolcdated Aﬁ' {fﬂmf C}‘Q”ﬂf}f ta #be fn‘ Fony

¥ Inappin g e concivte Ltate fo on absbuet modef

o e gemerall guirte [imiled
Luf ¢ , ﬁ i/

— /6/

uraaujysalou -

