System Software | 15CS63

System Software

Semester : VI Course Code : 15CS63

Course Title : System Software AND Compiler Design

Faculty : Niranjan Murthy C

Dept : Computer Science & engineering

Prerequisites: Basic concepts of microprocessors (10CS45)

Description

This course gives an introduction to the design and implementation of
various types of system software. A central theme of the course is the
relationship between machine architecture and system software. The
design of an assembler or an operating system is greatly influenced by
the architecture of the machine on which it runs. These influences are
emphasized and demonstrated through the discussion of actual pieces
of system softare fo a variety of real machines.

Outcomes

The students should be able to:

1.
2.
3.

Student able to Define System Sotware such as Assembler and Macroprocessor.

Student able to Define System Sotware such as Loaders and Linkers

Student able to lexical analysis and syntax analysisFamiliaize with source file ,object and
executable file structures and libraries

Describe the front and back end phases of compiler and their importance to students

GMIT, Davangere Deepak D J
1

System Software | 15CS63

MODULE- 1

» Introduction to System Software,

» Machine Architecture of SIC and SIC/XE.

» Assemblers: Basic assembler functions, machine dependent assembler features,
» machine independent assembler features, assembler design options.

» Macroprocessors: Basic macro processor functions, ->10 Hours
MACHINE ARCHITECTURE

System Software:

= System software consists of a variety of programs that support the operation of a computer.

= Application software focuses on an application or problem to be solved.

= System softwares are the machine dependent softwares that allows the user to focus on the
application or problem to be solved, without bothering about the details of how the
machine works internally.

Examples: Operating system, compiler, assembler, macroprocessor, loader or linker, debugger, text
editor, database management systems, etc.

Difference between System Software and application software

System Software Application Software

System software is machine dependent Application software is not dependent on the
underlying hardware.

System software focus is on the computing | Application software provides solution to a

system. problem
Examples: Operating system, compiler, | Examples: Antivirus, Microsoft office
assembler

SIC — Simplified Instructional Computer

Simplified Instructional Computer (SIC) is a hypothetical computer that includes the hardware
features most often found on real machines. There are two versions of SIC, they are,
standard model (SIC), and, extension version (SIC/XE) (extra equipment or extra expensive).

SIC Machine Architecture:

We discuss here the SIC machine architecture with respect to its Memory and Registers,
Data Formats, Instruction Formats, Addressing Modes, Instruction Set, Input and Output.

Memory:

There are 215 bytes in the computer memory, that is 32,768 bytes. It uses Little Endian format to
store the numbers, 3 consecutive bytes form a word , each location in memory contains 8-bit bytes.

Registers:

There are five registers, each 24 bits in length. Their mnemonic, number and use are given in the
following table.

GMIT, Davangere Deepak D J
2

System Software | 15CS63

Mnemonic Number Use

A 0 Accumulator; used for arithmetic operations
X 1 Index register; used for addressing

L 2 Linkage register; JSUB

PC 8 Program counter

SW 9 Status word, including CC

Data Formats:

Integers are stored as 24-bit binary numbers. 2’s complement representation is used for negative
values, characters are stored using their 8-bit ASCIl codes.No floating-point hardware on the
standard version of SIC.

Instruction Formats:

Opcode(8) | X | Address (15)

X is used to indicate indexed-addressing mode.
All machine instructions on the standard version of SIC have the 24-bit format as shown above.
Addressing Modes:

Only two modes are supported: Direct and Indexed

Mode Indication Target address calculation
Direct x=0 TA = address
Indexed x=1 TA = address + (x)

() are used to indicate the content of a register.
Instruction Set

= Load and store registers (LDA, LDX, STA, STX)

= |nteger arithmetic (ADD, SUB, MUL, DIV), all involve register A and a word in memory.
= Comparison (COMP), involve register A and a word in memory.

= Conditional jump (JLE, JEQ, JGT, etc.)

= Subroutine linkage (JSUB, RSUB)

Input and Output

= One byte at a time to or from the rightmost 8 bits of register A.

= Each device has a unique 8-bit ID code.

= Test device (TD): test if a device is ready to send or receive a byte of data.
= Read data (RD): read a byte from the device to register A

= Write data (WD): write a byte from register A to the device.

SIC/XE Machine Architecture:

Memory

GMIT, Davangere Deepak D J
3

System Software | 15CS63

= Maximum memory available on a SIC/XE system is 1 Megabyte (2 20 bytes).
Registers

= Additional B, S, T, and F registers are provided by SIC/XE, in addition to the registers of SIC.

Mnemonic Number Special use

B 3 Base register

S 4 General working register

T 5 General working register

F 6 Floating-point accumulator (48 bits)

Floating-point data type:
= There is a 48-bit floating-point data type, F*2(e-1024)
Instruction Formats :
The new set of instruction formats fro SIC/XE machine architecture are as follows.
Format 1 (1 byte): contains only operation code (straight from table).

Format 2 (2 bytes): first eight bits for operation code, next four for register 1 and following four for
register 2. The numbers for the registers go according to the numbers indicated at the registers
section (ie, register T is replaced by hex 5, F is replaced by hex 6).

Format 3 (3 bytes): First 6 bits contain operation code, next 6 bits contain flags, last 12 bits contain
displacement for the address of the operand. Operation code uses only 6 bits, thus the second hex
digit will be affected by the values of the first two flags (n and i). The flags, in order, are: n, i, x, b, p,
and e. Its functionality is explained in the next section. The last flag e indicates the instruction format
(0 for 3 and 1 for 4).

Format 4 (4 bytes): same as format 3 with an extra 2 hex digits (8 bits) for addresses that require
more than 12 bits to be represented.

Addressing Modes:
Five possible addressing modes plus the combinations are as follows.

1. Direct (x, b, and p all set to 0): operand address goes as it is. n and i are both set to the same
value, either 0 or 1. While in general that value is 1, if set to 0 for format 3 we can assume that the
rest of the flags (x, b, p, and e) are used as a part of the address of the operand, to make the format
compatible to the SIC format.

2. Relative (either b or p equal to 1 and the other one to 0): the address of the operand should be
added to the current value stored at the B register (if b = 1) or to the value stored at the PC register

(ifp=1)

3. Immediate(i = 1, n = 0): The operand value is already enclosed on the instruction (ie. lies on the
last 12/20 bits of the instruction)

4. Indirect(i = 0, n = 1): The operand value points to an address that holds the address for the
operand value.

GMIT, Davangere Deepak D J
4

System Software | 15CS63

5. Indexed (x = 1): value to be added to the value stored at the register x to obtain real address of
the operand. This can be combined with any of the previous modes except immediate.

The various flag bits used in the above formats have the following meanings
e ->e =0 means format 3, e =1 means format 4
Bits x,b,p : Used to calculate the target address using relative, direct, and indexed addressing Modes.

Bits i and n: Says, how to use the target address b and p - both set to 0, disp field from format 3
instruction is taken to be the target address.

For a format 4 bits b and p are normally set to 0, 20 bit address is the target address
x -x is set to 1, X register value is added for target address calculation
i=1, n=0 Immediate addressing, TA: TA is used as the operand value, no memory reference

i=0, n=1 Indirect addressing, ((TA)): The word at the TA is fetched. Value of TA is taken as the address
of the operand value

i=0, n=0 or i=1, n=1 Simple addressing, (TA):TA is taken as the address of the operand value
Two new relative addressing modes are available for use with instructions assembled using format 3.
Instruction Set:

SIC/XE provides all of the instructions that are available on the standard version. In addition we
have, Instructions to load and store the new registers LDB, STB, etc, Floating-point arithmetic
operations, ADDF, SUBF, MULF, DIVF, Register move instruction : RMO, Register-to-register
arithmetic operations, ADDR, SUBR, MULR, DIVR and, Supervisor call instruction : SVC.

Input and Output:

There are I/O channels that can be used to perform input and output while the CPU is executing
other instructions. Allows overlap of computing and I/O, resulting in more efficient system
operation. The instructions SIO, TIO, and HIO are used to start, test and halt the operation of 1/0
channels.

Example programs SIC:
Example 1: Simple data and character movement operation

LDA FIVE
STA ALPHA
LDCH CHARZ
STCH c1
ALPHA RESW 1
FIVE WORD 5
CHARZ BYTE cz
Cc1 RESB 1

Example 2: Arithmetic operations

LDA ALPHA
ADD INCR
SUB ONE
STA BETA

GMIT, Davangere Deepak D J
5

System Software | 15CS63

WORD
RESW
RESW
RESW

O =

Example 3: Looping and Indexing operation

MOVECH

ELEVEN

LDX
LDCH
STCH
TIX
LT

BYTE
RESB
WORD
WORD

ZERO ; X=0
STR1, X

STR2, X

ELEVEN

MOVECH

C ‘HELLO WORLD’
11

0

11

Example 4: Input and Output operation

INLOOP

OUTLP

INDEV
OUTDEV
DATA

TD
JEQ
RD
STCH

D
JEQ
LDCH
WD

BYTE
BYTE
RESB

INDEV ; TEST INPUT DEVICE

INLOOP ; LOOP UNTIL DEVICE IS READY
INDEV ; READ ONE BYTE INTO A
DATA ; STORE A TO DATA

OUTDEV ; TEST OUTPUT DEVICE

OuUTLP ; LOOP UNTIL DEVICE IS READY
DATA ; LOAD DATAINTO A

OUTDEV ; WRITE ATO OUTPUT DEVICE
X ‘F5’ ; INPUT DEVICE NUMBER

X ‘08 ; OUTPUT DEVICE NUMBER

1 ; ONE-BYTE VARIABLE

Example 5: To transfer two hundred bytes of data from input device to memory

CLOOP

INDEV
RECORD
ZERO
B200

LDX
TD
JEQ
RD
STCH
TIX
LT

BYTE
RESB
WORD
WORD

ZERO
INDEV
CLOOP
INDEV
RECORD, X
B200
CLOOP

X ‘F5’
200

200

6

GMIT, Davangere

Deepak D J

System Software | 15CS63

Example Programs (SIC/XE)

Example 1: Simple data and character movement operation

LDA #5
STA ALPHA
LDA #90
ALPHA RESW 1
c1 RESB 1

Example 2: Arithmetic operations

LDS INCR
LDA ALPHA
ADD S,A
SUB #1
STA BETA
ALPHA RESW 1
BETA RESW 1
INCR RESW 1

Example 3: Looping and Indexing operation

LDT #11

LDX #0
MOVECH LDCH STR1, X

STCH STR2, X

TIXR T

LT MOVECH
STR1 BYTE C ‘HELLO WORLD’
STR2 RESB 11

Assemblers - 1

A Simple Two-Pass Assembler

Main Functions

Basic Functions of an Assembler

;X=0
; LOAD A FROM STR1
; STORE ATO STR2

Translate mnemonic operation codes to their machine language equivalents
Assign machine addresses to symbolic labels used by the programmers
Depend heavily on the source language it translates and the machine language it produces.
E.g., the instruction format and addressing modes

7 GMIT, Davangere

Deepak D J

System Software | 15CS63

110
115
120
145
130
139
140
145
150
95
160
165
170
L%
180
185
190
195

THREE WORD

COPY FILE FROM INI
SAVE RETURN ADDRE:
READ INPUT RECORD
TEST FOR EOF (LEN

EXIT IF EOF FOUND
WRITE OUTPUT RECOI
LOOP

INSERT END OF FILI

SET LENGTH = 3
WRITE EOF

GET RETURN ADDRES:
RETURN TO CALLER

@ SUBROUTINE TO READ RECORD INTO BUFFER
RDREC LDX ZERO CLEAR LOOP COUNT!
LDA ZERO CLEAR A TO ZERO
RLOOP ™ INPUT TEST INPUT DEVIC
JEQ RLOOP LOOP UNTIL READY
RD INPUT READ CHARACTER I
COMP ZERO TEST FOR END OF
JEQ EXIT EXIT LOOP IF EOR
STCH STORE CHARACTER |
TIX LOOP UNLESS MAX |
JLT HAS BEEN REACH
EXIT STX LENG’I‘H SAVE RECORD LENG
RSUB RETURN TO CALLER
INPUT BYTE 1* CODE FOR INPUT D
MAXLEN WORD

8

GMIT, Davangere

Deepak D J

System Software | 15CS63

19D ;

200 ’ SUBROUTINE TO WRITE RECORD FROM BUFFER
205

210 LDX ZERO CLEAR LOOP COUI
215 . TD OUTPUT TEST OUTPUT DE
220 JEQ WLOOP LOOP UNTIL REA]
483 LDCH BUFFER, X GET CHARACTER

230 WD OUTPUT WRITE CHARACTE
239 TIX LENGTH LOOP UNTIL ALL
240 WLOOP HAVE BEEN WR
245 RETURN TO CALL
250 OUTPUT BY gl CODE FOR OUTPU

e _|tis a copy function that reads some record$ ron] a ﬁg ified input device and then copies
them to a specified output deviceE“l\ﬁ:] 1 %
— Reads a record from the input device (codaF1)
— Copies the record to the output device (code\Q5)
— Repeats the above steps until encountering EOF
— Then writes EOF to the output device
— Then call RSUB to return to the caller

RDREC and WRREC

e Data transfer
— Arecord is a stream of bytes with a null character (0016) at the end.
— Ifarecord is longer than 4096 bytes, only the first 4096 bytes are copied.
— EOF is indicated by a zero-length record. (l.e., a byte stream with only a null
character.
— Because the speed of the input and output devices may be different, a buffer is used
to temporarily store the record
e Subroutine call and return
— Online 10, “STL RETADDR” is called to save the return address that is already stored
in register L.
— Otherwise, after calling RD or WR, this COPY cannot return back to its caller.

Assembler Directives

e Assembler directives are pseudo instructions
— They will not be translated into machine instructions.
— They only provide instruction/direction/information to the assembler.
e Basic assembler directives :
o START: Specify name and starting address for the program
o END : Indicate the end of the source program, and (optionally) the first executable
instruction in the program. Assembler Directives (cont’d)
o BYTE : Generate character or hexadecimal constant, occupying as many bytes as
needed to represent the constant.

GMIT, Davangere Deepak D J
9

System Software | 15CS63

o WORD : Generate one-word integer constant
o RESB: Reserve the indicated number of bytes for a data area
o RESW : Reserve the indicated number of words for a data area

An Assembler’s Job

Convert mnemonic operation codes to their machine language codes

Convert symbolic (e.g., jump labels, variable names) operands to their machine addresses
Use proper addressing modes and formats to build efficient machine instructions
Translate data constants into internal machine representations

Output the object program and provide other information (e.g., for linker and loader)

Object Program Format
e Header
Col.1 H
Col. 2~7 Program name
Col. 8~13 Starting address of object program (hex)
Col. 14-19 Length of object program in bytes (hex)
o Text
Coll T
Col.2~7 Starting address for object code in this record (hex)
Col. 8~9 Length of object code in this record in bytes (hex)
Col. 10~69 Object code, represented in hexa (2 col. per byte)
e End
Col.1 E
Col.2~7 Address of first executable instruction in object program (hex)
The Object Code for COPY
H COPY 001000 00107A
T 001000 1E 141033 482039 001036 281030 301015 482061 3C1003
00102A 0C1039 00102D
T O00101E 15 0C1036 482061 081044 4C0000 454F46 000003 000000
T 002039 1E 041030 001030 E0205D 30203F D8205D 281030 302057
549039 2C205E 38203F
T 002057 1C 101036 4C0O000 F1 001000 041030 E02079 302064 509039

DC2079 2C1036

GMIT, Davangere Deepak D J
10

System Software | 15CS63

T 002073 07 382064 4C0000 05
E 001000

NOTE: There is no object code corresponding to addresses 1033-2038. This storage is simply
reserved by the loader for use by the program during execution.

Two Pass Assembler

e Passl
— Assign addresses to all statements in the program
— Save the values (addresses) assigned to all labels (including label and variable
names) for use in Pass 2 (deal with forward references)
— Perform some processing of assembler directives (e.g., BYTE, RESW, these can affect
address assignment)

— Assemble instructions (generate opcode and look up addresses)
— Generate data values defined by BYTE, WORD

— Perform processing of assembler directives not done in Pass 1
— Write the object program and the assembly listing

A Simple Two Pass Assembler Implementation

\ 4

/\

Algorithms and Data Structures

Three Main Data Structures

e Operation Code Table (OPTAB)
e Location Counter (LOCCTR)
e Symbol Table (SYMTAB)

OPTAB (operation code table)

e Content
— The mapping between mnemonic and machine code. Also include the instruction
format, available addressing modes, and length information.
e Characteristic
— Static table. The content will never change.
e Implementation

GMIT, Davangere Deepak D J
11

System Software | 15CS63

— Array or hash table. Because the content will never change, we can optimize its
search speed.
e Inpass 1, OPTAB is used to look up and validate mnemonics in the source program.
e Inpass 2, OPTAB is used to translate mnemonics to machine instructions.

Location Counter (LOCCTR)

e This variable can help in the assignment of addresses.
e [ltisinitialized to the beginning address specified in the START statement.

e After each source statement is processed, the length of the assembled instruction and data
area

e to be generated is added to LOCCTR.

® Thus, when we reach a label in the source program, the current value of LOCCTR gives the
address to be associated with that label.

Symbol Table (SYMTAB)

e Content
— Include the label name and value (address) for each label in the source program.
— Include type and length information (e.g., int64)
— With flag to indicate errors (e.g., a symbol defined in two places)
¢ Characteristic
— Dynamic table (l.e., symbols may be inserted, deleted, or searched in the table)
¢ Implementation
— Hash table can be used to speed up search — Because variable names may be very similar
(e.g., LOOP1, LOOP2), the selected hash function must perform well with such non-random
keys.

The Pseudo Code for Pass 1

Begin

read first input line

if OPCODE = ‘START’ then begin
save #[Operand] as starting addr
initialize LOCCTR to starting address
write line to intermediate file
read next line

end(if START)

else
initialize LOCCTR to 0

While OPCODE != ‘END’ do

begin

if this is not a comment line then

GMIT, Davangere Deepak D J
12

System Software | 15CS63

begin

if there is a symbol in the LABEL field then

begin

search SYMTAB for LABEL
if found then
set error flag (duplicate symbol)
else
(if symbol)
search OPTAB for OPCODE
if found then
add 3 (instr length) to LOCCTR
else if OPCODE = ‘WORD’ then
add 3 to LOCCTR
else if OPCODE = ‘RESW’ then
add 3 * #{OPERAND] to LOCCTR
else if OPCODE = ‘RESB’ then
add #{OPERAND] to LOCCTR

else if OPCODE = ‘BYTE’ then

begin
find length of constant in bytes
add length to LOCCTR

end

else

set error flag (invalid operation code)

end (if not a comment)

write line to intermediate file

read next input line

end { while not END}

write last line to intermediate file

Save (LOCCTR - starting address) as program length

13

GMIT, Davangere

Deepak D J

System Software | 15CS63

End {pass 1}

The Pseudo Code for Pass 2

Begin
read 1st input line
if OPCODE = ‘START’ then
begin
write listing line
read next input line
end
write Header record to object program
initialize 1st Text record
while OPCODE != ‘END’ do
begin
if this is not comment line then
begin
search OPTAB for OPCODE
if found then
begin
if there is a symbol in OPERAND field then
begin
search SYMTAB for OPERAND field then
if found then
begin

store symbol value as operand address

else
begin

store 0 as operand address

set error flag (undefined symbol)
end

14 GMIT, Davangere

Deepak D J

System Software | 15CS63

end (if symbol)

else store 0 as operand address

assemble the object code instruction

else if OPCODE = ‘BYTE’ or ‘WORD” then

convert constant to object code

if object code doesn’t fit into current Text record then

begin
Write text record to object code
initialize new Text record
end
add object code to Text record
end {if not comment}
write listing line
read next input line
end
write listing line
read next input line
write last listing line

End {Pass 2}

Machine dependent Assembler Features

Assembler Features
* Machine Dependent Assembler Features
— Instruction formats and addressing modes (SIC/XE)
— Program relocation
* Machine Independent Assembler Features
— Literals
— Symbol-defining statements

— Expressions

15 GMIT, Davangere

Deepak D J

System Software | 15CS63

— Program blocks

— Control sections and program linking

A SIC/XE Program

10
12
13
15
20
25
30
35
40
45
50
55
60
65
70
80
35
100
105
110
115
120
125
130
152
133
135
140
145
150
165
160
165
170
75
180
185
195

COFY START

FIRST STL
LDB
BASE

CLOOP +JSUB
LDA
COMP

JEQ
+JSUB

ENDFIL LDA

EOF BYTE
RETADR RESW
LENGTH RESW
BUFFER RESB

0
RETADR
#LENGTH
LENGTH
RDREC
LENGTH
#0
ENDFIL
WRREC
CLOOP

BUFFER
#3
LENGTH
WRREC
@RETADR
C'EQOF’

4096

COPY FILE FROM INPUT TO
SAVE RETURN ADDRESS
ESTABLISH BASE REGISTER

READ INPUT RECORD

OuTPUT

TEST FOR EOF (LENGTH = 0)

EXIT IF EOF FOUND
WRITE OUTPUT RECORD
LOOP

INSERT END OF FILE MARKER

SET LENGTH = 3
WRITE EOF

RETURN TO CALLER

LENGTH OF RECORD
4096-BYTE BUFFER AREA

SUBROUTINE TO READ RECORD INTO BUFFER

RDREC CLEAR
CLEAR
CLEAR
+LDT

RLOOP ™™D
JEQ
RD
COMPR
JEQ
STCH
TIXR

EXIT STX

INPUT BYTE

X
A
S

#4096
INPUT
RLOOP
INPUT
A,S
EXIT
BUFFER, X
T
RLOOP
LENGTH

XLPLT

CLEAR LOOP COUNTER
CLEAR A TO ZERO
CLEAR S TO ZERO

TEST INPUT DEVICE
LOOP UNTIL READY

READ CHARACTER INTO REGISTER A
TEST FOR END OF RECORD (X'00')

EXIT LOCP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAX LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

RETURN TO CALLER

CODE FOR INPUT DEVICE

16

GMIT, Davangere

Deepak DJ

System Software | 15CS63

200 i SUBROUTINE TO WRITE RECORD FROM BUFFER

205 .

210 WRREC CLEAR X CLEAR LOOP COUNTER

212 LDT LENGTH

2 h WLOOP TD OQUTPUT TEST OUTPUT DEVICE

220 JEQ WLOOP LOOP UNTIL READY

245 LDCH BUFFER, X GET CHARACTER FROM BUFFER
230 WD OUTPUT WRITE CHARACTER

235 TIXR i LOOP UNTIL ALL CHARACTERS
240 JLT WLOOP HAVE BEEN WRITTEN

245 RSUB RETURN TO CALLER

250 OUTPUT BYTE %1057 CODE FOR OUTPUT DEVICE
265 END FIRST

SIC/XE Instruction Formats and Addressing Modes

PC-relative or Base-relative (BASE directive needs to be used) addressing: op m
e Indirect addressing: op @m
* Immediate addressing: op #c
e Extended format (4 bytes): +op m
* Index addressing: op m,X
» Register-to-register instructions
Relative Addressing Modes

e PC-relative or base-relative addressing mode is preferred over direct addressing
mode.

— Can save one byte from using format 3 rather than format 4.
* Reduce program storage space
e Reduce program instruction fetch time
— Relocation will be easier.
The Differences Between the SIC and SIC/XE Programs

» Register-to-register instructions are used whenever possible to improve execution
speed.

— Fetch a value stored in a register is much faster than fetch it from the
memory.

* Immediate addressing mode is used whenever possible.

— Operand is already included in the fetched instruction. There is no need to
fetch the operand from the memory.

* Indirect addressing mode is used whenever possible.

GMIT, Davangere Deepak D J
17

System Software

15CS63

— Just one instruction rather than two is enough.

Object code

17202D
69202D

4B101036
032026
290000
332007
4B10105D
3F2FEC
032010
0F2016
010003
0F200D
4B10105D
3E2003
454F46

SUBROUTINE TO READ RECORD INTO BUFFER

The Object Code
Line Loc Source statement
5 0000 COPY START 0
10 0000 FIRST STL RETADR
12 0003 LDB #LENGTH
13 BASE LENGTH
15 0006 CLOOP +JSUB RDREC
20 000A LDA LENGTH
25 000D COMP #0
30 0010 JEQ ENDFIL
35 0013 +JSUB WRREC
40 0017 J CLOOP
45 001A ENDFIL LDA EOF
50 001D STA BUFFER
55 0020 LDA #3
60 0023 STA LENGTH
65 0026 +JSUB WRREC
70 002A J @RETADR
80 002D EOF BYTE C’'EOF’
95 0030 RETADR RESW 1
100 0033 LENGTH RESW 1
105 0036 BUFFER RESB 4096
110
115
120 .
125 1036 RDREC CLEAR p. 4
130 1038 CLEAR A
132 103A CLEAR S
133 103C +LDT #4096
135 1040 RLOOP ™D INPUT
140 1043 JEQ RLOOP
145 1046 RD INPUT
150 1049 COMPR A,S
155 104B JEQ EXIT
160 104E STCH BUFFER, X
165 1051 PR T
170 1053 JLT RLOOP
175 1056 EXIT 1104 LENGTH
180 1059 RSUB
185 105C INPUT BYTE X'F1’

108

B410
B400
B440
75101000
E32019
332FFA
DB2013
A004
332008
57C003
B850
3B2FEA
134000
4F0000
¥l

18

GMIT, Davangere

Deepak DJ

System Software | 15CS63

1895 .

200 . SUBROUTINE TO WRITE RECORD FROM BUFFER
205 :

210 105D WRREC CLEAR X B410
212 105F LDT LENGTH 774000
215 1062 WLOOP TD OUTPUT E32011
220 1065 JEQ WLOOP 332FFA
225 1068 LDCH BUFFER, X 53C003
230 106B WD OUTPUT DF2008
235 106E TIXR T B850
240 1070 JLT WLOOP 3B2FEF
245 1073 RSUB 4F0000
250 1076 OuTPUT BYTE X.05" 05

255 END FERSH

Generate Relocatable Programs

* Let the assembled program starts at address 0 so that later it can be easily moved to
any place in the physical memory.

e Actually, as we have learned from virtual memory, now every process
(executed program) has a separate address space starting from 0.

» Assembling register-to-register instructions presents no problems. (e.g., line 125 and
150)

* Register mnemonic names need to be converted to their corresponding
register numbers.

« This can be easily done by looking up a name table.
PC or Base-Relative Modes
e Format 3: 12-bit displacement field (in total 3 bytes)
— Base-relative: 0~4095
— PC-relative: -2048~2047
e Format 4: 20-bit address field (in total 4 bytes)

» The displacement needs to be calculated so that when the displacement is added to
PC (which points to the following instruction after the current instruction is fetched)
or the base register (B), the resulting value is the target address.

« If the displacement cannot fit into 12 bits, format 4 then needs to be used. (E.g., line
15 and 125)

— Bit e needs to be set to indicate format 4.

— A programmer must specify the use of format 4 by putting a + before the
instruction. Otherwise, it will be treated as an error.

GMIT, Davangere Deepak D J
19

System Software | 15CS63

Base-Relative v.s. PC-Relative

e The difference between PC and base relative addressing modes is that the assembler
knows the value of PC when it tries to use PC-relative mode to assembles an

GMIT, Davangere Deepak D J
20

System Software | 15CS63

instruction. However, when trying to use base-relative mode to assemble an
instruction, the assembler does not know the value of the base register.

— Therefore, the programmer must tell the assembler the value of register B.
— This is done through the use of the BASE directive. (line 13)

— Also, the programmer must load the appropriate value into register B by
himself.

— Another BASE directive can appear later, this will tell the assembler to change
its notion of the current value of B.

— NOBASE can also be used to tell the assembler that no more base-relative
addressing mode should be used.

GMIT, Davangere Deepak D J
21

System Software | 15CS63

GMIT, Davangere Deepak D J
22

System Software | 15CS63

Relocatalle Is Desired

1 . F=x} Dl (e 1 b L L Lede Lol EWaYaValld n
b T[I pProgratit nrrig. .14 SPYTUITICS Uial 1T TTTUsSt U 1Uaucuyu atl dUuuicsSsS 1UUU TUTI LUITCLL

execution. This restriction is too inflexible for the loader.

e If the program is loaded at a different address, say 2000, its memory references will
access wrong data! For example:

— 55 101B LDATHREE 00102D

» Thus, we want to make programs relocatable so that they can be loaded and execute
correctly at any place in the memory.

Address Modification Is Required

If we can use a hardware relocation register (MMU), software relocation can be avoided
here. However, when linking multiple object Programs together, software relocation is still
needed.

GMIT, Davangere Deepak D J
23

System Software | 15CS63

0000
0006

1036

1076

4B101036 | (+JSUB RDREC)

B410 r—RDREC

5000 :

5006 | 48106036 |(+JSUB RDREC)
6036 | B410 e— RDREC

6076 :

7420

7426 | 4B108456 | (+JSUB RDREC)

8456 | B410 le— RDREC

8496

(a) (b) (c)

What Instructions Needs to be Modified?

Only those instructions that use absolute (direct) addresses to reference symbols.
The following need not be modified:
— Immediate addressing (no memory references)

— PC or Base-relative addressing (Relocatable is one advantage of relative
addressing, among others.)

— Register-to-register instructions (no memory references)

The Modification Record

When the assembler generate an address for a symbol, the address to be inserted
into the instruction is relative to the start of the program.

The assembler also produces a modification record, in which the address and length
of the need-to-be-modified address field are stored.

The loader, when seeing the record, will then add the beginning address of the
loaded program to the address field stored in the record.

GMIT, Davangere Deepak D J
24

System Software | 15CS63

Modification record:

The Relocatable Oblect Code

HACOPY

o

=

A

ol 1
Col. 2-7

Col. 89

AUDOOOOADOJIO??

M

Starting location of the address field to b
ative to the beginning of the program (he

Length of the address field to be mo
bytes (hexadecimal)

TOUOOOOAIDAI7202DA69202DA43101036A032026A290000A332007A4B10105DA3F2FECA032010
TOOOOIDAl3A0F2016A010003A0F200DA4B10105DA3E2003A454F46
TOUIOSBAIDABIb 10AB&00AB&40A75lOlOOOAESZO19A332FF%PB2013AA004A332008A5TCOD3ABBSO

TA001053A1 DABBZFEAAI 34000},{4F0000AF IABlu 10A774000AE320 1 1A332FFAA53C003ADF2 GOBABB.")O

TAOU1070/\07/\332FEFA6F0000/\05

HA000007A05
MA000014A05
MADOO()Z?AOS
F?\OOOOOO

25

GMIT, Davangere

Deepak DJ

System Software | 15CS63

MODULE-2

» Loaders and Linkers: Basic Loader Functions,

» Machine Dependent Loader

» Features, Machine Independent Loader Features,
» Loader Design Options,

» Implementation Examples.

Machine Independent Assembler Features

These are the features which do not depend on the architecture of the machine. These are:
= Lliterals
= Expressions
= Program blocks
= Control sections

Literals
A literal is defined with a prefix = followed by a specification of the literal value.
Example:

45 001A ENDFIL LDA =C“EOF" 032010

93 002D * LTORG =C“EOF" 454F46

The example above shows a 3-byte operand whose value is a character string EOF. The object code
for the instruction is also mentioned. It shows the relative displacement value of the location where
this value is stored. In the example the value is at location (002D) and hence the displacement value
is (010).

As another example the given statement below shows a 1-byte literal with the hexadecimal value
‘05’.

215 1062 WLOOP TD =X"05" E32011

It is important to understand the difference between a constant defined as a literal and a
constant defined as an immediate operand. In case of literals the assembler generates the specified
value as a constant at some other memory location. In immediate mode the operand value is
assembled as part of the instruction itself. Example

55 0020 LDA #03 010003

All the literal operands used in a program are gathered together into one or more literal pools. This
is usually placed at the end of the program. The assembly listing of a program containing literals
usually includes a listing of this literal pool, which shows the assigned addresses and the generated
data values. In some cases it is placed at some other location in the object program. An assembler
directive LTORG is used. Whenever the LTORG is encountered, it creates a literal pool that contains

GMIT, Davangere Deepak D J
26

System Software | 15CS63

all the literal operands used since the beginning of the program. The literal pool definition is done
after LTORG is encountered. It is better to place the literals close to the instructions.

A literal table is created for the literals which are used in the program. The literal table contains the
literal name, operand value and length. The literal table is usually created as a hash table on the
literal name.

Implementation of Literals:

During Pass-1:

The literal encountered is searched in the literal table. If the literal already exists, no action is taken;
if it is not present, the literal is added to the LITTAB and for the address value, it waits till it
encounters LTORG for literal definition. When Pass 1 encounters a LTORG statement or the end of
the program, the assembler makes a scan of the literal table. At this time each literal currently in the
table is assigned an address. As addresses are assigned, the location counter is updated to reflect
the number of bytes occupied by each literal.

During Pass-2:

The assembler searches the LITTAB for each literal encountered in the instruction and replaces it
with its equivalent value as if these values are generated by BYTE or WORD. If a literal represents an
address in the program, the assembler must generate a modification relocation for, if it all it gets
affected due to relocation. The following figure shows the difference between the SYMTAB and
LITTAB.

SYMTAB MHams= Value LITTAB
QOPY O
FIRET L] Literal Hex Length Addregs
CLOOP & Value
ENDF IL 1A C*EOF”* 454F4 6 3 oo2D
RETADR 20 X'05° 05 1 1076
LENZTH a3
BUFFER EYS
BUIOFEND 103&
MAXLEN 1000
RDREC lo03&
RLOOP 1040
EXIT 1L0S&
INPOUT 1L05C
WEREEC LoD
WLOOE lo&8Zz

Symbol-Defining Statements:
EQU Statement:

Most assemblers provide an assembler directive that allows the programmer to define symbols and
specify their values. The directive used for this EQU (Equate). The general form of the statement is

Symbol EQU value

This statement defines the given symbol (i.e., entering in the SYMTAB) and assigning to it the
value specified. The value can be a constant or an expression involving constants and any

GMIT, Davangere Deepak D J
27

System Software | 15CS63

othersymbol which is already defined. One common usage is to define symbolic names that can be
used to improve readability in place of numeric values.

For example
+LDT #4096

This loads the register T with immediate value 4096, this does not clearly show what exactly this
value indicates. If a statement is included as:

MAXLEN EQU 4096 and then
+LDT #MAXLEN

Then it clearly indicates that the value of MAXLEN is some maximum length value. When the
assembler encounters EQU statement, it enters the symbol MAXLEN along with its value in the
symbol table. During LDT the assembler searches the SYMTAB for its entry and its equivalent value
as the operand in the instruction. The object code generated is the same for both the options
discussed, but is easier to understand. If the maximum length is changed from 4096 to 1024, it is
difficult to change if it is mentioned as an immediate value wherever required in the instructions.
We have to scan the whole program and make changes wherever 4096 is used. If we mention this
value in the instruction through the symbol defined by EQU, we may not have to search the whole
program but change only the value of MAXLENGTH in the EQU statement (only once).

ORG Statement:

This directive can be used to indirectly assign values to the symbols. The directive is usually called
ORG (for origin). Its general format is:

ORG value
where value is a constant or an expression involving constants and previously defined symbols.

When this statement is encountered during assembly of a program, the assembler resets its location
counter (LOCCTR) to the specified value. Since the values of symbols used as labels are taken from
LOCCTR, the ORG statement will affect the values of all labels defined until the next ORG is
encountered. ORG is used to control assignment storage in the object program.Sometimes altering
the values may result in incorrect assembly.

ORG can be useful in label definition. Suppose we need to define a symbol table with the following
structure:

SYMBOL 6 Bytes
VALUE 3 Bytes
FLAG 2 Bytes

The table looks like the one given below.

GMIT, Davangere Deepak D J
28

System Software | 15CS63

SYMBOL VALUE FLAGS
STAB
(100 entries)

The symbol field contains a 6-byte user-defined symbol; VALUE is a one-word representation of the
value assigned to the symbol; FLAG is a 2-byte field specifies symbol type and other information. The
space for the table can be reserved by the statement:

STAB RESB 1100

If we want to refer to the entries of the table using indexed addressing, place the offset value of the
desired entry from the beginning of the table in the index register. To refer to the fields SYMBOL,
VALUE, and FLAGS individually, we need to assign the values first as shown below:

SYMBOL EQU STAB
VALUE EQU STAB+6
FLAGS EQU STAB+9

To retrieve the VALUE field from the table indicated by register X, we can write a statement:
LDA VALUE, X

The same thing can also be done using ORG statement in the following way:

STAB RESB 1100
ORG STAB
SYMBOL RESB 6
VALUE RESW 1
FLAG RESB 2
ORG STAB+1100

The first statement allocates 1100 bytes of memory assigned to label STAB. In the second statement
the ORG statement initializes the location counter to the value of STAB. Now the LOCCTR points to
STAB. The next three lines assign appropriate memory storage to each of SYMBOL, VALUE and FLAG
symbols. The last ORG statement reinitializes the LOCCTR to a new value after skipping the required
number of memory for the table STAB (i.e., STAB+1100).

While using ORG, the symbol occurring in the statement should be predefined as is required in EQU
statement. For example for the sequence of statements below:

ORG ALPHA

GMIT, Davangere Deepak D J
29

System Software | 15CS63

BYTE1 RESB 1

BYTE2 RESB 1

BYTE3 RESB 1
ORG

ALPHA RESB 1

The sequence could not be processed as the symbol used to assign the new location counter
value is not defined. In first pass, as the assembler would not know what value to assign to ALPHA,
the other symbol in the next lines also could not be defined in the symbol table. This is a kind of
problem of the forward reference.

EXPRESSIONS:

Assemblers also allow use of expressions in place of operands in the instruction. Each such
expression must be evaluated to generate a single operand value or address. Assemblers generally
arithmetic expressions formed according to the normal rules using arithmetic operators +, - *, /.
Division is usually defined to produce an integer result. Individual terms may be constants, user-
defined symbols, or special terms. The only special term used is * (the current value of location
counter) which indicates the value of the next unassigned memory location. Thus the statement

BUFFEND EQU *

Assigns a value to BUFFEND, which is the address of the next byte following the buffer area. Some
values in the object program are relative to the beginning of the program and some are absolute
(independent of the program location, like constants). Hence, expressions are classified as either
absolute expression or relative expressions depending on the type of value they produce.

Absolute Expressions:

The expression that uses only absolute terms is absolute expression. Absolute expression may
contain relative term provided the relative terms occur in pairs with opposite signs for each pair.
Example:

MAXLEN EQU BUFEND-BUFFER

In the above instruction the difference in the expression gives a value that does not depend on the
location of the program and hence gives an absolute immaterial o the relocation of the program. The
expression can have only absolute terms. Example:

MAXLEN EQU 1000

Relative Expressions: All the relative terms except one can be paired as described in “absolute”. The
remaining unpaired relative term must have a positive sign. Example:

STAB EQU OPTAB + (BUFEND — BUFFER)

Handling the type of expressions: to find the type of expression, we must keep track the type of
symbols used. This can be achieved by defining the type in the symbol table against each of the
symbol as shown in the table below:

GMIT, Davangere Deepak D J
30

System Software | 15CS63

Symbol Type Value
RETADR R 0030
BUFFER R 0036
BUFEND R 1036
MAXLEN A 1000

Program Blocks:

Program blocks allow the generated machine instructions and data to appear in the object
program in a different order by Separating blocks for storing code, data, stack, and larger data block.

Assembler Directive USE:
USE [blockname]

At the beginning, statements are assumed to be part of the unnamed (default) block. If no USE
statements are included, the entire program belongs to this single block. Each program block may
actually contain several separate segments of the source program. Assemblers rearrange these
segments to gather together the pieces of each block and assign address. Separate the program into
blocks in a particular order. Large buffer area is moved to the end of the object program. Program
readability is better if data areas are placed in the source program close to the statements that
reference them.

In the example below three blocks are used :

= Default: executable instructions
= CDATA: all data areas that are less in length
= CBLKS: all data areas that consists of larger blocks of memory

CDATA

CBLKS

GMIT, Davangere Deepak D J
31

System Software | 15CS63
(default) block - Block number
o000l oY coey START 0
0000 0 FIRST STL RETADR 172063
0003 0 CLOOP JSUB RDREC 482021
0006 0 LOA LENGTH 032060
0009 0 COMP #0 290000
oooc 0 JEQ ENDFIL 332006
000F 0 JSUB WRREC 4B203B
0012 0 J CLOOP 3IF2FEE
00156 0 ENDFIL LOA =C'EQF 032055
001& 0 STA BUFFER 0F2056
001B 0 LDA #3 010003
001E 0 STA LEMNGTH 0F2043
0021 0 JSUB WRREC 482029
0024 0 J E@RETADR JE203F
10000 1 USE CDATA 4 CDATA block
000D~ 1 RETADR RESW 1
00 1 LENGTH RESW 1
10000 2 USE CBLKS =+ CBLKS block
Q000 2 BUFFER RESDB UG
1000 2 BUFEND EQU .
1000 MAXLEN EQU BUFEMD-BUFFER
I (default) block
1 0027 ; 0 RDREC USE
0027 0 CLEAR X B410
0029 0 CLEAR A B400
0028 1] CLEAR s B440
002D 0 +LDT #MAXLEN 75101000
0031 0 RLOOP TD INFUT E32038
0034 0 JEOQ RLOOP 332FFA
0037 0 RD INFUT DB2032
003A 0 COMPR AS ADD4
Qo3Cc 0 JEQ EXIT 332008
003F 0 STCH BUFFER,X 5TAOZF
0042 0 TIXR T Baso
0044 0 JLT RLOOP 3AB2FEA
| 0047 0 EXIT STX LENGTH 13201F
004A, 0 RSUB 4F0000
_ {0006] 1 USE CDATA = CDATA block
0006 1 INFUT BYTE X'E1 F1
{default) block
004D O _UsE~
004D 0 WRREC CLEAR X B410
004F 0 LDT LENGTH 72017
0052 0 WLOOP TD =xos E3201B
0055 0 JEQ WLOORP 322FFA
0058 0 LDCH BUFFER.X 53A016
00sB a WD =X'08' DF2012
005E 0 TIXR T B850
0060 0 JLT WLOOP 3B2FEF
0063 0 RSUB 4F0000
10007, 1 CDATA <——CDATA block
LTORG
ooo7 1 # =C'EOF 454F46
. D00A 1 ® =xX'os' 05
END FIRST

GMIT, Davangere

32

Deepak DJ

System Software | 15CS63

Arranging code into program blocks:
Pass1
A separate location counter for each program block is maintained.
Save and restore LOCCTR when switching between blocks.
At the beginning of a block, LOCCTR is set to 0.
Assign each label an address relative to the start of the block.

Store the block name or number in the SYMTAB along with the assigned relative address of
the label

Indicate the block length as the latest value of LOCCTR for each block at the end of Pass1

Assign to each block a starting address in the object program by concatenating the program
blocks in a particular order

Pass 2.

Calculate the address for each symbol relative to the start of the object program by adding
The location of the symbol relative to the start of its block

The starting address of this block

Control Sections:

A control section is a part of the program that maintains its identity after assembly; each
control section can be loaded and relocated independently of the others. Different control sections
are most often used for subroutines or other logical subdivisions. The programmer can assemble,
load, and manipulate each of these control sections separately.

Because of this, there should be some means for linking control sections together. For
example, instructions in one control section may refer to the data or instructions of other control
sections. Since control sections are independently loaded and relocated, the assembler is unable to
process these references in the usual way. Such references between different control sections are
called external references.

The assembler generates the information about each of the external references that will
allow the loader to perform the required linking. When a program is written using multiple control
sections, the beginning of each of the control section is indicated by an assembler directive
assembler directive: CSECT

The syntax :
sechame CSECT
separate location counter for each control section

Control sections differ from program blocks in that they are handled separately by the
assembler. Symbols that are defined in one control section may not be used directly another control
section; they must be identified as external reference for the loader to handle. The external
references are indicated by two assembler directives:

EXTDEF (external Definition):

GMIT, Davangere Deepak D J
33

System Software | 15CS63

It is the statement in a control section, names symbols that are defined in this section but may be
used by other control sections. Control section names do not need to be named in the EXTREF as

they are automatically considered as external symbols.

EXTREF (external Reference):

It names symbols that are used in this section but are defined in some other control section.

The order in which these symbols are listed is not significant. The assembler must include proper
information about the external references in the object program that will cause the loader to insert
the proper value where they are required.

_Implicitly defined as an external symbaol

F
COopy

. first control section

START4 0 COPY FILE FROM INPUT TO OUTPUT
EXTDEF __ BUFFER,BUFEND,LENGTH
EXTREF RDREC,WRREC
FIRST STL RETADR SAVE RETURN ADDRESS
CLOOP [+1suB ROREC READ INPUT RECORD
LDA LENGTH TEST FOR EOF (LENGTH=0)
COoMP #0
JEQ ENDFIL EXIT IF EOF FOUND
[+psuB WRREC WRITE OUTPUT RECORD
] CLoop LOOP
ENDFIL LDA =C'EQF INSERT END OF FILE MARKER
STA BUFFER
LDA #3 SET LENGTH = 3
STA LENGTH
[+hsuB WRREC WRITE EOF
] @RETADR RETURN TO CALLER
RETADR RESW 1
LENGTH RESW 1 LENGTH OF RECORD
LTORG
BUFFER RESB 4096 4096-BYTE BUFFER AREA
BUFEND EQU *
MAXLEN EQU BUFFEND-BUFFER
Implicitly defined as an external symbol
rofEC CSECT . —— second control section
' SUBROUTINE TO READ RECORD INTO BUFFER
'EXTREF BUFFER,LENGTH,BUFFEND
CLEAR X CLEAR LOOP COUNTER
CLEAR A CLEAR A TO ZERD
CLEAR S CLEAR S TO ZERO
LDT MAXLEN
RLOCE TD INPUT TEST INPUT DEVICE
JEQ) RLOOP LOOP UNTIL READY
RD INPUT READ CHARACTER INTO REGISTER A
COMPR AS TEST FOR END OF RECORD (X'007)
JEQ EXIT EXIT LOOP IF EQR
+STCH BUFFER,X STORE CHARACTER IN BUFFER
TIXR T LOOP UNLESS MAX LEMGTH HAS
T RLOOP BEEN REACHED
EXIT +5TX LENGTH SAVE RECORD LENGTH
RSUB RETURN TO CALLER
INPUT BYTE ¥F1 CODE FOR INPUT DEVICE
MAXLEN WORD BUFFEND-BUFFER

34

GMIT, Davangere

Deepak DJ

System Software | 15CS63
_~ Implicitly defined as an external symbol
v _— third control section
WRREC CSECT o
SUBROUTINE TO WRITE RECORD FROM BUFFER
{EXTREF LENGTH,BUFFER |
CLEAR X CLEAR LOOP COUNTER
+LDT LENGTH
WLOOP TD =X'05" TEST OUTPUT DEVICE
JEQ WLOOP LOOP UNTIL READY
+LDCH BUFFER, X GET CHARACTER FROM BUFFER
WD =X'05' WRITE CHARACTER
TIXR T LOOP UNTIL ALL CHARACTERS HAVE
JLT WLOOP BEEN WRITTEN
RSUB RETURN TO CALLER
END FIRST

Object Code for the example program:

ooon - COPY START 0

EXTDEF BUFFER,BUFFEND LENGTH

EXTREF RDREC,WRREC
0000 FIRST STL RETADR 172027
0003 CLOOP +J5UB ROREC 4ptooo00 Case 1
0007 LDA LEMGTH 032023
0004 COMP #0 290000
000D JEQ EMDFIL 332007
0010 +I5UB WRREC 4B100000
o014] CLOOP 3IF2FEC
o017 ENDFIL LDA =CEOF 032016
00LA 5TA BUFFER OF2016
0010 LD& #3 010003
020 STA LENGTH DF200A
0023 +J5UB WRREC 4B100000
anz7] @RETADR 3E2000
0024 RETADR RESW 1
0020 LENGTH RESW 1

LTORG
0030 * =C'EQF 454F46
0033 BUFFER RESE 4096
1033 BUFEND EQU *
1000 MAXLEN EQU BUFEMD-BUFFER

35 GMIT, Davangere Deepak D J

System Software

15CS63

O} RDREC CSECT
SUBROUTINE TO READ RECORD INTO BUFFER

EXTREF BUFFER,LENGTH,BUFEND
O CLEAR K Ed1id
Wiz CLE&R & Erdid
W CLEAR < ErlHa
LG LT MAELEN Fr2F
g RLCEIP T IMPLIT E320ME
00C JEQ RLODE 332FFA
00F RD INPUT DB2015
12 COMPR AS F
0014 JEQ EXIT 332009
[+5TCH BLIFFER,, ¥ e LN
(HIHE TIXR T BERD
(10 R BLOCE IBIFEY
(121 ExIT +5Tx LENGTH | 13 10HICI |
(124 RELB AELHI0
27 INPUT BYTE XF1° Fi
0023 MAXLEN WORD BUFFEMD-EUFFER [poooog | Case 2
00 WRREC CSECT

SUBROUTIME TO WRITE RECORD FROM BLIFFER

EXTREF LEMGTH, BUFFER
I CLEAR X B4l
002 +LDT LENGTH 700000
DO0G WLOOP D =X'05 E32012
Dong JEQ WLOOP 332FFA
(1] +LIXCH BUFFER,X S3G00000 |
ooin) =005 DF2008
0013 TINR T Basn
15 T WLOOR IB2FEE
0018 RSUB AFO000

EMD FIRST
D01 ' =X'015" 05

The assembler must also include information in the object program that will cause the loader to
insert the proper value where they are required. The assembler maintains two new record in the
object code and a changed version of modification record.

Define record (EXTDEF)

Col. 1

Col. 2-7 Name of external symbol defined in this control section

Col. 8-13 Relative address within this control section (hexadecimal)

Col.14-73 Repeat information in Col. 2-13 for other external symbols

Refer record (EXTREF)

Col. 1

Col. 2-7 Name of external symbol referred to in this control section

Col. 8-73 Name of other external reference symbols

36

GMIT, Davangere

Deepak DJ

System Software | 15CS63

Modification record

Col.1 M

Col. 2-7 Starting address of the field to be modified (hexadecimal)

Col. 8-9 Length of the field to be modified, in half-bytes (hexadecimal)

Col.11-16 External symbol whose value is to be added to or subtracted from the indicated field

A define record gives information about the external symbols that are defined in this
control section, i.e., symbols named by EXTDEF.

A refer record lists the symbols that are used as external references by the control section,
i.e., symbols named by EXTREF.

The new items in the modification record specify the modification to be performed: adding
or subtracting the value of some external symbol. The symbol used for modification my be defined
either in this control section or in another section.

The object program is shown below. There is a separate object program for each of the control
sections. In the Define Record and refer record the symbols named in EXTDEF and EXTREF are
included.

In the case of Define, the record also indicates the relative address of each external symbol within
the control section.

For EXTREF symbols, no address information is available. These symbols are simply named in the
Refer record.

COPY
HCOPY 000000001033

DBUFFER000033BUFENDO01033L ENGTHO0002D

RRDREC WRREC|

10000001 D1 7202748100000032023290000332007481000003F 2FECN320160F2016
T0000100DO100030F200A4B1000003E2000

100003003454F 46

MO0000405+RDREC

MD0001105+WRREC

M00002405+WRREC

E000000

GMIT, Davangere Deepak D J
37

System Software | 15CS63

RDEEC
HRDREC £0000000002B
RBUFFERLENGTHBUFEND |
10000001 DB410B400B44077201FE3201B332FFADB2015A00433200957900000B850
700001DOE3B2FEY] 31000004F000QF 1000000
N00001805+BUFFER
M00002105+LENGTH
MO0002806+BUFEND =
"ﬂﬂﬂﬂzﬂﬂﬁ:ﬂuFFER | BUFEMND - BUFFER
E
WRREC
HWRREC 00000000001C
RLENGTHBUFFER
10000001 GB41077100000E3201232FFA53900000DF2008B8503B2F EE4F000005
M00000305+LENGTH |
MO000ODOS5+BUFFER |
E

Assembler Desigh Options

One and Multi-Pass Assembler
So far, we have presented the design and implementation of a two-pass assembler.
Here, we will present the design and implementation of
— One-pass assembler
If avoiding a second pass over the source program is necessary or desirable.
— Multi-pass assembler
Allow forward references during symbol definition.
One-Pass Assembler
The main problem is about forward reference.
Eliminating forward reference to data items can be easily done.
— Simply ask the programmer to define variables before using them.
However, eliminating forward reference to instruction cannot be easily done.
— Sometimes your program needs a forward jump.

— Asking your program to use only backward jumps is too restrictive.

GMIT, Davangere Deepak D J
38

System Software

15CS63

11U

115
120
121
122
124
125
130
£35
140
145

2039
ARy

. 15\9@ are two types _ﬂfene-pass assembler:

160
165
170
1713

Loc Source statement Object ¢
COPY START 1000

EOF BYTE C’'EQF' 454F46

THREE WORD 3 000003

ZERO WORD 0 000000

RETADR RESW p
LENGTH RESW 1

BUFFER RESB 4096 /

200F FIRST STL RETADR 141009
2012 CLOOP JSUB RDREC 48203D
2005 LDA LENGTH 00100C
SUBROUTINE TO READ RECOR

INPUT BYTE X'Fl’ F
MAXLEN WORD 4096 i

203D RDREC LDX ZERO 0
2040 LDA ZERO 0
2043 RLOOP TD INPUT E
2046 JEQ RLOOP 3
2049 RD INPUT {3
COMP ZERO 2

155 producedhbjéttode directly in memory for immédiate executiofsi X T'T' 3
%cgéaager is needed STCH BUFFER g X >
2055 TIX MAXLEN 2
JZ)ed:-)agd-go for program developmenbaf‘%esting RLOOP %
Ec@@ﬁr computipgxXenter where most'stidents reassefnbig theirplograms '
RSUB 4

180

10K

S95iEe

Can save time for scanning the source code again

Internal Implementation

Produce the usual kind of object program for later execution

39

GMIT, Davangere

Deepak DJ

System Software | 15CS63

The assembler generate object code instructions as it scans the source program.

If an instruction operand is a symbol that has not yet been defined, the operand address is
omitted when the instruction is assembled.

The symbol used as an operand is entered into the symbol table.
This entry is flagged to indicate that the symbol is undefined yet.

The address of the operand field of the instruction that refers to the undefined symbol is
added to a list of forward references associated with the symbol table entry.

When the definition of the symbol is encountered, the forward reference list for that symbol
is scanned, and the proper address is inserted into any instruction previously generated.

Memory
address Contgpn/ Symbol V
1000 454F4600 00030000/ OOXXXXXX XXXXXXXX LENGTH (1
1010 XXXXXXXX XXXXXX XXXXXXXX XXXXXXXX RDREC *
. THREE |1
L]
2000 XXXXXXX KXXXXXX XXXXX x1l4 ZERO 1
2010 1ooc 28100 s TR
2020 0
3 EOF 1
ENDFIL LA
; 4/
RETADR |1
BUFFER |1
CLOOP |2
~EIRST 1<

40 GMIT, Davangere Deepak D J

System Software | 15CS63

Memory Symbol Value
address Contents _ENGTH T T00C]
1000 454F4600 00030000 OOXXXXXX XXXXXXXX RDREC | 203D
1010 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
. THREE 1003
L]
. ZERO 1006
2000 XXXXXXXX XXXXXXXX XXXXXXXX XXX d ; 7
2010 10094820 3D00100C 28100630 02448—— WRHEO (14 [9% 201F
2020 2~U010000C 100F0010 OSS&clo0s EOF 1000

40094C00 O0OF10010 00041006
43D82039 28100630

ENDFIL | 2024

RETADR | 1009

BUFFER | 100F

* Between scanning line 40 and 160:
CLOOP | 201

— Online 45, when te symbol ENDFIL is defined, the 5
SYMTAB entry.

€
O0F

3 ! : : _MAXLEN | 203A
erts this value into the instruction operand field{at-address_

INPUT 2039

— The assembler then in
201C).

— From this point on, any reference 2050

to ENDFIL would not be forward feféfences a’ﬁ&{i L

\g

would not be entered into a list. RLOOP/,’ZO#.S’
* At the end of the processing of the program, any SYMTAB entries fMmarked with *

indicate undefined symbols.
— These should be flagged by the assembler as errors.
Multi-Pass Assembler
* If we use a two-pass assembler, the following symbol definition cannot be allowed.
ALPHA EQU BETA
BETA EQU DELTA
DELTA RESW 1

» This is because ALPHA and BETA cannot be defined in pass 1. Actually, if we allow multi-pass
processing, DELTA is defined in pass 1, BETA is defined in pass 2, and ALPHA is defined in
pass 3, and the above definitions can be allowed.

* This is the motivation for using a multi-pass assembler.

41 GMIT, Davangere Deepak D J

System Software

15CS63

» It is unnecessary for a multi-pass assembler to make more than two passes over the entire

program.

* Instead, only the parts of the program involving forward references need to be processed in

multiple passes.

* The method presented here can be used to process any kind of forward references.

Multi-Pass Assembler Implementation

Steps:

» Use a symbol table to store symbols that are not totally defined yet.

* For a undefined symbol, in its entry,

— We store the names and the number of undefined symbols which contribute to the

calculation of its value.

— We also keep a list of symbols whose values depend on the defined value of this

symbol.

* When a symbol becomes defined, we use its value to reevaluate the values of all of the

symbols that are kept in this list.

* The above step is performed recursively.

1 HALFSZ
MAXLEN
3 PREVBT

4 BUFFER
- BUFEND

EQU
EQU
EQU

RESB
EQU

MAXLEN/
BUFEND-E
BUFFER-]

System Software | 15CS63

HALFSZ(&1 %XLENQ 0

P

7S
BUFEND | * or—p| MAXLEN
HALFSZ |&1| MAXLEN/2 0
MAXLEN |&2| BUFEND-BUFFER &r—| HALFSZ
BUFFER | * &+—P| MAXLEN

System Software | 15CS63

BUFEND | * o+r—{ MAXLEN | 0

HALFSZ |&1| MAXLEN/2 0
PREVBT |&1|BUFFER-1 0
MAXLEN |&2| BUFEND-BUFFER o+—P| HALFSZ | 0

BUFEND | * o MAXL!

HALFSZ |&1| MAXLEN/2 0
PREVBT |1033 0
 ,MAXLEN | &1| BUFEND-BUFFER o—t+—P{ HALF!

 BUFFER 1034 0

System Software | 15CS63

BUFEND | 2034 0
HALFSZ | 800 s 0
|
PREVBT | 1033 0
MAXLEN | 1 000/ / 0
BUFFER | 1034 0

45

GMIT, Davangere

Deepak DJ

System Software | 15CS63

MODULE-3

Lexical Analysis

» Role of lexical analyzer
Specification of tokens
Recognition of tokens
Lexical analyzer generator

Finite automata

YV V VvV V V

Design of lexical analyzer generator

The role of lexical analyzer

Why to separate Lexical analysis

1. Simplicity of design

2. Improving compiler efficiency

3. Enhancing compiler portability
Tokens, Patterns and Lexemes

e Atoken is a pair a token name and an optional token value

e A pattern is a description of the form that the lexemes of a tok

e A lexeme is a sequence of characters in the source program t
token

Example

46 GMIT, Davangere Deepak D J

System Software | 15CS63

> Attributes for tokens
E=M*C**2

<id, pointer to symbol table entry for E>
<assign-op>

<id, pointer to symbol table entry for M>
<mult-op>

<id, pointer to symbol table entry for C>
<exp-op>

<number, integer value 2>

> Lexical errors
Some errors are out of power of lexical analyzer to recognize:
o fi(a==1(x))..
However it may be able to recognize errors like:
o d=2r
Such errors are recognized when no pattern for tokens matches a
character sequence

> Error recovery

1. Panic mode: successive characters are ignored until we reach to a well formed token
2. Delete one character from the remaining input

3. Insert a missing character into the remaining input

GMIT, Davangere Deepak D J
47

System Software | 15CS63

4. Replace a character by another character
5. Transpose two adjacent characters

> Input buffering

Sentinels

48 GMIT, Davangere Deepak D J

System Software | 15CS63

4,

v

Specification of tokens

In theory of compilation regular expressions are used to formalize the specification
of tokens

Regular expressions are means for specifying regular languages
Example:
i. Letter_(letter_ | digit)*

Each regular expression is a pattern specifying the form of strings

Regular expressions

€ is a regular expression, L(€) = {€}

If ais a symbol in Sthen a is a regular expression, L(a) = {a}

(r) | (s) is a regular expression denoting the language L(r) L(s)
(r)(s) is a regular expression denoting the language L(r)L(s)

(r)* is a regular expression denoting (L(r))*

GMIT, Davangere Deepak D J
49

System Software | 15CS63

6. (r)is aregular expression denoting L(r)

» Regular definitions

1. di1->r1

2. d2->r2

3. ..

4. dn->rn

5. Example:

6. letter >A|B|..|Z]a|b]|..|Z]|_
7. digit >0]1]..]9

8. id -> letter_ (letter_ | digit)*

» Extensions

One or more instances: (r)+
Zero of one instances: r?
Character classes: [abc]
Example:

letter_ ->[A-Za-z_]

digit ->[0-9]

id -> |etter_(letter|digit)*

» Recognition of tokens

Starting point is the language grammar to understand the tokens:

stmt -> if expr then stmt
| if expr then stmt else stmt
| €
expr -> term relop term
| term
term ->id
| number
> Recognition of tokens (cont.)
The next step is to formalize the patterns:
digit ->[0-9]
Digits -> digit+
number -> digit(.digits)? (E[+-]? Digit)?
letter -> [A-Za-z_]

id -> letter (letter| digit)*

If -> if

Then ->then

Else ->else

Relop -><|>|<=|>=]|=]|<>

We also need to handle whitespaces:

50 GMIT, Davangere

Deepak D J

System Software | 15CS63

ws -> (blank | tab | newline)+

> Transition diagrams

start . <
(4

— @ return (relop, LE)
>
return (relop, NE)

kS

“\»._ other > @ return (relop, LT)

return (relop, EQ)

other
return (relop, GT)

retum (relop, GE)

©0

> Transition diagrams (cont.)

Ietter or digit

(o) letter)’1\ other O
_/

e Transition diagram for whltespace
delim

return (getToken(), installlD())

start

e Transition diagram for unsigned numbers

51 GMIT, Davangere Deepak D J

System Software | 15CS63

+0r - - other *

digit

_ other * b

Architecture of a transition-diagram-based lexical analyzer

digit digit

start @ digit)’El\ @digit

TOKEN getRelop()
{
TOKEN retToken = new (RELOP)
while (1) { /* repeat character processing until a
return or failure occurs */

switch(state) {
case 0: c= nextchar();
if (c == ‘<‘) state = 1;
else if (c == ‘=) state = 5;
else if (c == >’) state = 6;
elsefail(); /* lexeme is not a relop */
break;

case 1: ...

case 8: retract();
retToken.attribute = GT;

return(retToken);

> Finite Automata

» Regular expressions = specification

GMIT, Davangere Deepak D J
52

System Software | 15CS63

» Finite automata = implementation
» A finite automaton consists of
o Aninput alphabet
o Asetof states S
o Astartstaten
o Aset of accepting statesF S
o Aset of transitions state ™t state
® Transition
S, ?S,
® |sread
In state s, on input “a” go to state s,
e |[fend of input
e |[fin accepting state => accept, othewise => reject
e [f no transition possible => reject
Example
e Alphabetstill {0, 1}
The operation of the automaton is not completely defined by the input

On input “11” the automaton could be in either state

MODULE-4

GMIT, Davangere Deepak D J
53

System Software | 15CS63

> Syntax Analysis: Introduction,

> Role Of Parsers, Context Free Grammars,
» Writing a grammar,

> Top Down Parsers,

> Bottom-Up Parsers,

> Operator-Precedence Parsing

The role of parser

Uses of gramm

E>E+T|T
T->T*F|F
F->(E) | id
E->TE
E'->+TE' | €
T->FT

T ->*FT | €
F->(E) | id

Error handling

54 GMIT, Davangere Deepak D J

System Software | 15CS63

e Common programming errors
® |exical errors
® Syntactic errors
® Semantic errors
® |ogical errors
e Error handler goals
e Report the presence of errors clearly and accurately
e Recover from each error quickly enough to detect subsequent errors
e Add minimal overhead to the processing of correct progrms
Context free grammars
e Terminals
e Nonterminals
e Start symbol
® Productions
Derivations
e Productions are treated as rewriting rules to generate a string
e Rightmost and leftmost derivations
e E>E+E|E*E|-E|(E)]id
e Derivations for —(id+id)
® E=>-E=>-(E)=>-(E+E) => -(id+E)=>-(id+id)
Parse trees
e -(id+id)

® E=>-E=>-(E) =>-(E+E) => -(id+E)=>-(id+id)

_/E\E P

/|_ /I\J
/IT\J E/J\E
I L

Elimination of ambiguity

GMIT, Davangere Deepak D J
55

System Software | 15CS63

stmt — If expr then stmt

| If expr then stmt else stmt

|nﬂ1&r

o —

r them stmt else smi
yd AN
83

E2 52

\\

e:pr then st

S

pr then stmit else stmt

E1

EZ &1 52

stmit

SN

expr then

L\.

EZ &1

t

Elimination of left recursion

e A grammar is left recursive if it has a non-terminal A such that there is a derivation
A=> Aa

e Top down parsing methods cant handle left-recursive grammars
e Asimple rule for direct left recursion elimination:

e Forarule like:

56 GMIT, Davangere Deepak D J

System Software | 15CS63

e A->AalB
e We may replace it with
e A>BA
o AN->aA e
Left factoring

e |eft factoring is a grammar transformation that is useful for producing a grammar
suitable for predictive or top-down parsing.

e Consider following grammar:
e Stmt -> if expr then stmt else stmt
J | if expr then stmt
® On seeinginput if it is not clear for the parser which production to use
® We can easily perform left factoring:
e |f we have A->aBl | aB2 then we replace it with
e A ->aA
e A->B1]|B2
> TOP DOWN PARSING

A Top-down parser tries to create a parse tree from the root towards the leafs scanning
input from left to right

It can be also viewed as finding a leftmost derivation for an input string

Example: id+id*id

E->TE
E'->+TE | €
T->FT

T > *FT' | €
F->(E)|id

GMIT, Davangere Deepak D J
57

System Software | 15CS63

Recursive descent parsing
Consists of a set of procedures, one for each nonterminal
Execution begins with the procedure for start symbol

A typical procedure for a non-terminal

void A() {
choose an A-production, A->X1X2..Xk
for (i=1to k) {
if (Xi is a nonterminal
call procedure Xi();
else if (Xi equals the current input symbol a)
advance the input to the next symbol;
else /* an error has occurred */
}
}
Example

GMIT, Davangere Deepak D J
58

System Software | 15CS63

S->cAd
A->ab | a

Input: cad

First and Follow
e First() is set of terminals that begins strings derived from
e |f a=>e then is also in First(g)

e |n predictive parsing when we have A-> a|, if First(a) and First(B) are
disjoint sets then we can select appropriate A-production by looking
at the next input

e Follow(A), for any nonterminal A, is set of terminals a that can appear immediately
after A in some sentential form

e |f we have S => aAap for some aand Bthen a is in Follow(A)
If A can be the rightmost symbol in some sentential form, then S is in Follow(A)
Computing First

o To compute First(X) for all grammar symbols X, apply following rules until no more
terminals or € can be added to any First set:

1. If Xis a terminal then First(X) = {X}.

2. If X is a nonterminal and X->Y1Y2...Yk is a production for some k>=1, then
place a in First(X) if for some i a is in First(Yi) and € is in all of
First(Y1),...,First(Yi-1) that is Y1...Yi-1 => €. if € is in First(Yj) for j=1,...,k then
add ¢ to First(X).

3. If X->gis a production then add € to First(X)
e Example!
Computing follow

e To compute First(A) for all nonterminals A, apply following rules until nothing can be
added to any follow set:

1. Place S in Follow(S) where S is the start symbol

GMIT, Davangere Deepak D J
59

System Software | 15CS63

2. If there is a production A-> aBB then everything in First(B) except € is in
Follow(B).

3. If there is a production A->B or a production A->aBp where First(p)
contains €, then everything in Follow(A) is in Follow(B)

e Example!
LL(1) Grammars
Predictive parsers are those recursive descent parsers needing no backtracking
Grammars for which we can create predictive parsers are called LL(1)
The first L means scanning input from left to right
The second L means leftmost derivation
And 1 stands for using one input symbol for lookahead

A grammar G is LL(1) if and only if whenever A-> a|Bare two distinct productions of G,
the following conditions hold:

For no terminal a do aandp both derive strings beginning with a
At most one of a or Bcan derive empty string
If a=> € then Bdoes not derive any string beginning with a terminal in Follow(A).
Construction of predictive parsing table
For each production A->a in grammar do the following:
For each terminal a in First(a) add A->in M[A,a]

If € is in First(a), then for each terminal b in Follow(A) add A-> € to M[A,b]. If € is
in First(a) and S is in Follow(A), add A-> € to M[A,$] as well

If after performing the above, there is no production in M[A,a] then set M[A,a] to error .

Example

GMIT, Davangere Deepak D J
60

System Software | 15CS63

Non-recursive predicting parsing

A

61

GMIT

Davarj

gere

v

Deepak DJ

System Software | 15CS63

Predictive parsing algorithm
Set ip point to the first symbol of w;
Set X to the top stack symbol;
While (X<>S) { /* stack is not empty */
if (X is a) pop the stack and advance ip;
else if (X is a terminal) error();
else if (M[X,a] is an error entry) error();
else if (M[X,a] = X->Y1Y2..Yk) {
output the production X->Y1Y2..Yk;
pop the stack;
push Yk,...,Y2,Y1 on to the stack with Y1 on top;

}

set X to the top stack symbol;

GMIT, Davangere Deepak D J
62

System Software | 15CS63

BOTTOMUP PARSING

Shift-reduce parser

The general idea is to shift some symbols of input to the stack until a reduction can be
applied

At each reduction step, a specific substring matching the body of a production is
replaced by the nonterminal at the head of the production

The key decisions during bottom-up parsing are about when to reduce and about what
production to applyA reduction is a reverse of a step in a derivation

The goal of a bottom-up parser is to construct a derivation in reverse:
E=>T=>T*F=>T*id=>F*id=>id*id

Handle pruning

e A Handle is a substring that matches the body of a production and whose
reduction represents one step along the reverse of a rightmost derivation

Shift reduce parsing (cont.)

GMIT, Davangere Deepak D J
63

System Software | 15CS63

Basic operations:

Shift,Reduce,Accept, Error Example: id*id

LR Parsing
The most prevalent type of bottom-up parsers
LR(k), mostly interested on parsers with k<=1
Why LR parsers?
Table driven
Can be constructed to recognize all programming language constructs

Most general non-backtracking shift-reduce parsing method

GMIT, Davangere Deepak D J
64

System Software | 15CS63

Can detect a syntactic error as soon as it is possible to do so

Class of grammars for which we can construct LR parsers are superset of those
which we can construct LL parsers

States of an LR parser
States represent set of items
An LR(0) item of G is a production of G with the dot at some position of the body:
For A->XYZ we have following items

A->.XYZ
A->X.YZ
A->XY.Z
A->XYZ.

In a state having A->.XYZ we hope to see a string derivable from XYZ next on the
input.

What about A->X.YZ?
Constructing canonical LR(0) item sets
Augmented grammar:
G with addition of a production: S’->S
Closure of item sets:

If I'is a set of items, closure(l) is a set of items constructed from | by the following
rules:

Add every item in | to closure(l)

If A->a.BB is in closure(l) and B->y is a production then add the item B->.y
to clsoure(l).

Example: E’->E
E>E+T|T

T->T*F|F,F->(E)|id

GMIT, Davangere Deepak D J
65

System Software | 15CS63

for (each item A-> a.BB in J)
for (each prodcution B->y of G)
if (B->.y is not in J)
add B->.y to J;
until no more items are added to J on one round;

return J;

GOTO Algorithm

SetOfltems GOTO(I,X) {
J=empty;
if (A->a.XBisinl)

add CLOSURE(A-> aX. B) to J;

66 GMIT, Davangere Deepak D J

System Software | 15CS63

return J;
}
Canonical LR(0) items
Void items(G’) {

C= CLOSURE({[S’->.S]});

repeat

for (each set of items | in C)
for (each grammar symbol X)
if (GOTO(I,X) is not empty and not in C)

add GOTO(1,X) to C;

until no new set of items are added to C on a round;

67 GMIT, Davangere Deepak D J

System Software | 15CS63

1) o id*ids Shiftto s

(2) 05 $id *1d$ Reduce by F-:
3) o3 sk “ids Reduce by T-
(4) 02 $T “id$ Shift to 7

(5) 027 $T* ids Shift to 5

(6) o275 $T*id $ Reduce by F-:
(7) 02710 $T*F $ Reduce by T-
(8) 02 $T $ Reduce by E-
(9) o $E $ accept

LR parsing aIgoritthI‘I‘l-l

let a be the first symbol of ws;

while(1) { /*repeat fo&ever */

68 | GMIT, Davangere ACTION GOTO)J_

System Software | 15CS63

let s be the state on top of the stack;
if (ACTION([s,a] = shift t) {
push t onto the stack;
let a be the next input symbol;
} else if (ACTION[s,a] = reduce A->B) {
pop |B| symbols of the stack;
let state t now be on top of the stack;
push GOTO[t,A] onto the stack;
output the production A->pB;
} else if (ACTION[s,a]=accept) break; /* parsing is done */

else call error-recovery routine;

0 S5 S4 1 2 3
! S6 Acc
k s
4

(2) 05 id
4 S5 S4 8 2 3

(3) 03 F
5 R R R6 R6) .

6 6 (4) 02

' 5 3 (5) o27 T*
6 S5 Sq 9 3 5

(6) 0275 T*d

S S 10
' ’ ! (7) 02710 T*F
Co?istructing SLR pargﬁig table Su
9Method Rt 57 Ri Ri (8) 02 T
B — (9) o1 E

10 R3 R3 R3 R3 9

(10) 016 E+
1 R5 Rs Rs5 Rs5

(11) 0165 E+id
(12) 0163 E+F

System Software | 15CS63

Construct C={10,11, ..., In}, the collection of LR(0) items for G’
State i is constructed from state li:
If [A->a.af] is in li and Goto(li,a)=lj, then set ACTION[i,a] to “shift j”

If [A->a.] is in li, then set ACTION[i,a] to “reduce A->a” for all a in
follow(A)

If {S’->.S] is in i, then set ACTIONII,S] to “Accept”
If any conflicts appears then we say that the grammar is not SLR(1).
If GOTO(li,A) = Ij then GOTO[i,Al=j
All entries not defined by above rules are made “error”

The initial state of the parser is the one constructed from the set of items
containing [S’->.S]

70

GMIT, Davangere Deepak D J

System Software | 15CS63

MODULE-5

> Syntax Directed Translation
> Intermediate code generation
» Code generation

Introduction

e We can associate information with a language construct by attaching attributes to
the grammar symbols.

e A syntax directed definition specifies the values of attributes by associating semantic
rules with the grammar productions.

Ordering the evaluation of attributes

If dependency graph has an edge from M to N then M must be evaluated before the
attribute of N

Thus the only allowable orders of evaluation are those sequence of nodes N1,N2,...,Nk
such that if there is an edge from Ni to Nj then i<j

Such an ordering is called a topological sortof a graph
Example!

S-Attributed definitions

An SDD is S-attributed if every attribute is synthesized

We can have a post-order traversal of parse-tree to evaluate attributes in S-attributed
definitions

postorder(N) {
for (each child C of N, from the left) postorder(C);

evaluate the attributes associated with node N;

GMIT, Davangere Deepak D J
71

System Software | 15CS63

S-Attributed definitions can be implemented during bottom-up parsing without the need
to explicitly create parse trees

L-Attributed definitions

e A SDD is L-Attributed if the edges in dependency graph goes from Left to Right but
not from Right to Left.

® More precisely, each attribute must be either
e Synthesized

® |nherited, but if there us a production A->X1X2...Xn and there is an inherited
attribute Xi.a computed by a rule associated with this production, then the
rule may only use:

e |nherited attributes associated with the head A

e Either inherited or synthesized attributes associated with the
occurrences of symbols X1,X2,...,Xi-1 located to the left of Xi

® |nherited or synthesized attributes associated with this occurrence of
Xi itself, but in such a way that there is no cycle in the graph

Application of Syntax Directed Translation
e Construction of syntax trees
e Leaf nodes: Leaf(op,val)
® |Interior node: Node(op,c1,c2,...,ck)
Example:
Production
E->E1+T
E->E1-T
E->T
T->(E)
T->id
T->num
Semantic RULE
E.node=new node(‘+’, E1.node,T.node)
E.node=new node(‘-’, E1.node,T.node)

E.node = T.node

GMIT, Davangere Deepak D J
72

System Software | 15CS63

T.node = E.node
T.node = new Leaf(id,id.entry)

T.node = new Leaf(num,num.val)

Syntax tree for L-attributed definition

Syntax directed translation schemes

An SDT is a Context Free grammar with program fragments embedded within production
bodies

Those program fragments are called semantic actions
They can appear at any position within production body

Any SDT can be implemented by first building a parse tree and then performing the
actions in a left-to-right depth first order

Typically SDT’s are implemented during parsing without building a parse tree .
Postfix translation schemes

Simplest SDDs are those that we can parse the grammar bottom-up and the SDD is s-
attributed

For such cases we can construct SDT where each action is placed at the end of the
production and is executed along with the reduction of the body to the head of that
production

SDT’s with all actions at the right ends of the production bodies are called postfix SDT’s

GMIT, Davangere Deepak D J
73

System Software | 15CS63

Parse-Stack implementation of postfix SDT’s

In a shift-reduce parser we can easily implement semantic action using the parser stack

For each nonterminal (or state) on the stack we can associate a record holding its

attributes

Then in a reduction step we can execute the semantic action at the end of a production
to evaluate the attribute(s) of the non-terminal at the leftside of the production

And put the value on the stack in replace of the rightside of production

EXAMPLE

L->En {print(stack[top-1].val);
top=top-1;}

E->E1+T {stack[top-2].val=stack[top-2].val+stack.val;
top=top-2;}

E->T

T->T1*F {stack[top-2].val=stack[top-2].val+stack.val;
top=top-2;}

T->F

F->(E) {stack[top-2].val=stack[top-1].val

top=top-2;}

F -> digit

74 GMIT, Davangere

Deepak D J

System Software | 15CS63

Intermediate Code Generation
® Intermediate code is the interface between front end and back end in a compiler

e |deally the details of source language are confined to the front end and the details of
target machines to the back end (a m*n model)

e |n this chapter we study intermediate representations, static type checking and
intermediate code generation.

Variants of syntax trees

e |tis sometimes beneficial to crate a DAG instead of tree for Expressions.

e This way we can easily show the common sub-expressions and then use that
knowledge during code generation

e Example: a+a*(b-c)+(b-c)*d

SDD for creating DAG’sSDD for creating DAG’s

75 GMIT, Davangere Deepak D J

System Software | 15CS63

Value-number method for constructing DAG’s
e Algorithm
e Search the array for a node M with label op, left child | and right child r
e |[fthereis such a node, return the value number M

e [f not create in the array a new node N with label op, left child I, and right
child r and return its value

e We may use a hash table

Three address code

e |n a three address code there is at most one operator at the right side of an
instruction

GMIT, Davangere Deepak D J
76

System Software | 15CS63

Example:

Data structures for three address codes
e Quadruples
e Has four fields: op, argl, arg2 and result
e Triples
e Temporaries are not used and instead references to instructions are made
® |[ndirect triples

® |n addition to triples we use a list of pointers to triples.

Type Expressions
Example: int[2][3]
array(2,array(3,integer))

A basic type is a type expression

GMIT, Davangere Deepak D J
77

System Software | 15CS63

A type name is a type expression

A type expression can be formed by applying the array type constructor to a number and
a type expression.

A record is a data structure with named field

A type expression can be formed by using the type constructor g for function types
If s and t are type expressions, then their Cartesian product s*t is a type expression
Type expressions may contain variables whose values are type expressions.

Short-Circuit Code

if (x <100 || x> 200 && x '=y) x =03

if x < 100 goto Lo
ifFalse x > 200 goto Li
ifFalse x !'= y goto L
Ls: x=20
Ly

Flow-of-Control Statements

L]

GMIT, Davangere Deepak D J
78

System Software | 15CS63

S — if(B) 5 else S
S - while (B) 5
-1 10 . B.true — to B.true
B.code _|to B false B.code _|to_B.false
B.t . .
rue Sy .code B.true : S .code
B.false : goto S.next
i B.false :
(a) if Jalse : | o code
S.next :
: to B.true
begin Beode oo (b) if-else
-code _|to B.false
B.true :
“1 Sy code
goto begin
B.false : | (c) while

79 GMIT, Davangere Deepak D J

i qc&plf_ﬁt h\\f Pﬁ tug, r:t:m T"E?Tﬁdm

.. mcgulﬂr gxyYesIon —————

aq,. .) i)

| o k o ﬂttmﬂq,umwﬂ%h S mgﬁg,mff uﬁag}
. (= {00,0bba.bhY it

yoaulay expYe S onJ will be ! |
m+ab+m+@l (- dong. 1w Arvko)
a_{ ot h) tb(ath) VAT e 8 A
B — (ﬂttb)fﬁlfb) AT _ =

oot 2 0 |
B on ahhabboad, . .y

L oven number of s

=(b*ab’*"ab"fj Hb Lk

VQJ ﬁtﬂﬁ’hhﬁ o O\ .

a(ath)® W Fr

AL S QJ .EYIQL_ LUM"L {IL — e
”-ﬂmﬁﬁ, B PPt W R

e E i"-— ol T . —— o — e — e e —— - —
[

o amﬂgz_i cmm% O 3}
a,-fb) afath)

rH mmng onol ﬂﬂdéﬂ-fg Wi T

-}
T,

L

""-*- . - ;

ath)? b -

el """" e
x _ﬁ .._..I

ymoo |
TN

NS

i L]
i L o .
= :F.

——

Scanned by CamScanner

SR e

1 oe o(an) o+ @) + (268} + plavy?

— 1 et = (n)onf (a1

*"'}‘ e a _(1{1 ﬁ b L@)i‘
" [for_hoth add)

Scanned by CamScanner

j b e T 4 d
N P ol M(r
1

Scanned by CamScanner

4 l =
ey

= -;..'E= =.'-=I-L;|'..=,__--—_-' _,FE' -] - ; * _
gl coowers RE: aoX +abo*b

1 L
. B

= 3 WWM% OFA CL.

Scanned by CamScanner

o e

E [e Ol

nokQ Mg stake and Ul path A
romoun Intace i BRI, -

 ———— L e e—
o e ——

N A . <~ g
‘6 @ _BpETab . s

ab”C e .
Gt

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

~ Scanned by CamScanner

 Scanned by CamScanner

stepl oumunanng G SET0 1077

* o gy (i, T
— N A
_’I K"r;

.1\. 1

Scanned by CamScanner

Scanned by CamScanner

L o |

o P— — e m— -

——

o s—iaha/bAbfosb/a

WS aen o S

—

#

|
‘_Lﬁ% = {a%@; T‘?i’) ' | ‘i

= — = = = L e c—

SRR o L

o rghsen — oY TR O

- . e SR——— B e L v —
e ——

6w wank moye than ong Qb ¢4

: i
.-_—l-l_-_-_-_- --—I—I—I--—-_ e T e

iy — 4 o

-\S e ———— ey |
1 T
o

Id '8

Scanned by CamScanner

Scanned by CﬁmScalmer

_' L — bBl »

2 . —_——— —

' N i an guen number)P

e e . = - e L e

— = =i

& _an_odd numbec)

Scanned by CamScanner

_ ;__-LQE’U?C{Q._-- -l

A —T@cm

__ﬁ_;t,uwﬂir& Ar Be Vv |

e e e

““_elale*? o

pola

1 h' LBHM e H:Q

SN A anmayy = Qﬁ%u,ul"r ?T_C\m_n’\ﬁl_’i_

—

Lt
- .

%'q

= —

'."'-—-—-—.--_____I

Scanned by CamScanner

ks "’l and o LG fr all .:mnc'jg i dtamhg - T W
T %7 Oﬂb; el

S

Scanned by CamScanner

gg Constnsct DFA for)
---_-_-_4,_“_ 223 S—iabﬁ | _

A o B
- B—10A|bb

1 il

; f.%, .y A% NS el i
e e |
T e i3 Ly L
ey ,
4 | "3

* Scanned by CamScanner

| pnd @ (Gbe g i
e (2 L e T
BTET L B LAl Y e e
e 190 fegy oy - sy P
fmpj,_[Prol_rowwe of RIG io. LG ie (L®) =L
TS na L e
w0 14 B 2 O e Lo -0 _
ge=sasliiolnao k. o o P -
' o F . O e
———ad ' CUMM{ ﬂgh,t qnd Q& immay oy v
L Latel ¥ LA alb™ ;73 MmNy 0

Scanned by CamScanner

Lym_n, a,mgtm 3m__tnﬂ|‘r Py
L~ {w * nalw) and ﬂh[_ﬁfﬂ e ovn ¥

N a1 i R -

- |
e | i = T e e — — — i -
e ™ — e —— R —
. i _r-_ : s
i i Il

I - ————S — - - —— - — -
I == - e il o E—— == - L . — e T —
|

= — e = —_— I — S =
= — e —
—_— — e -

B

T oW o -
| prevandhbe, 0NNy 2000200

e - I ———————

" { contoxt Free Gramuns by (CFL)
goduch o age: N e form 0 AT [N &
M A Y ghordr AEVTT

_____ Pe a2 E_L__J

e e— [T —

Red 10 rllll id E’%gfar ﬂ—?m—%t_ﬁyﬂ Ejiﬂmﬁﬂ_j'_
BN B L ——
¢ o) of may not tLth@B

e T — B — m— = g —

mch rl‘l uﬂuih ' w»?d © ar:r_ﬁpt _

Scanned by CamScanner

ol

gi's ﬁ\;j‘,}/&-ﬁﬁ&{s"juﬁLijfh[fﬁlﬁ

L __..__%Jﬂn.YGYt_ 10 unamb_u'gum, i
_ Ipeeenty ! +< . <R () <My
_Lasocanlys foft toft 104
S ST /T
1 xate/p
ot PG
I
1N

e ——
—
——_——— I T —
— e —
——
ﬁ__
)
—
—
—
—

| et
& -
G — — p 74
"7:3 e
i i

s oo
Scanned by CamScanner

Scanned by CamScanner

th QU
Vs N

—_—t ~e i 0, b

« meqmngw will b¢ |
g i _ ¥l T Ll

e
i
— —Iﬁ

Scanned by CamScanner

1 QUL §tngs rﬂ WhuCh 8CoNA symbo\ from RHS is'a" —

Scanned by CamScanner

TETYEFIR
LB —yB

e]

_at) g

Mﬂ — W L
Scanned by CamScanner

‘-.\ NB * no. of slates are JAme ;v

L T koL pake (8 sang

| . 0 m ohal I any JLaue Giﬁﬂ’ﬁ:{fh
¥ ﬁ: Final state ¢ ﬂﬂ"l A0 mmgl‘gi

10 now) NPy will b Camae o f”'ﬂ

L

e~
..--""'.‘r-... |
St —

y
- oA
e o
J ==

"

B 0 R, 'h‘* cigrpfotesife 2t
A3 A—AB.C ArA—Y A"?_A—‘r}f’
. \> B — B—‘r*}, N BD
- O R s (o T
B-jeﬁac 6BP —
NSECL

Scanned by CamScanner

_;ﬁg;_ﬂmm T R S

gftor COMOYOYY . ==

Scanned by CamScanner

—m = e —
"r'_,-—'_ — — — —— = = e o o =
l..r"
- _ o B — e i I p— — —_— . o — — =
.-"‘-'-'_ p— e
e e — o e . T aa— e S — — —————E e S e — A e ——— e
- o L — — e - - _ — — —
——— T — = e e e
g
= — = e =] — e e o —— - e e e = e e—
= ——
S—— ——— - — = ——— —
. e — — —— e — —
& Mgl T = — =i —— ————
TR e ——— o e [— . e e e = == — -
— L ¥ - g2y I - ey === £
— = —
e - i - —— e — — == __ - — —_— g

Scanned by CamScanner

,_cs)mgmzr_l aﬂt’mxﬂ wmh cmam mmo_pmgmmi -0 target

B flgrom. .

-—

Mhﬂﬁmiﬁﬁ Mpwqmm J,uﬂ_by_hnﬂ iakog o L0L0f G0 but
At chanced of eccurence of ooy is lest wheh compryed

L Wil compiloy, i
_Javae s e pledfoom tr’dﬂ[l@ _pmgmmmwrg mrgiﬁ_ Java co d{:?

oo ool s conr ted do an ntermedtaitd foym oaried _byte cele
—{dae by 10 compueY) . Tre yto oo i inderprotod by o witued
—padth0.ancl . pgto eocld ean mun gnoony wache,

rF __ —

Bt ~ TRy ___e ﬁmwa/miﬂmm | _ame
- : - o _
| —l_ Preprocess o - | 3
 modefed gourte program

— - e —— e - — = - - - .

. mmmmbwwm

. | (e T & s
ATy ool

ﬂl&c@%ﬁ @ waching codlo

p Linkey [Locioley H—-— Lprary floj
Tﬁ!m&tﬂhl{? obioet Al

ko et rQchu 0 codkd

- .=.-.-._=iﬁ!‘ W0AQ pTOCLIsthd aYd Em
, e | . %

~ Scanned by CamScanner

U0 drgorh

;

i e - ... L ... i e
syox orclly -

I = 133 1) T, 1) Bl LN i
l |

SyAEAY Tro0 Se— . = -

\l; S35 i T S —_— e
i |
¥ |
e 5
¥

Scanned by CamScanner

T T oo m——

M AL ﬂ"ﬁﬁ ﬂf @ Compite ¥, also calied a8 geanpruhg. H
Lk e 0 ool analyger TEEId{ e gtyaamd Of characteys

PG U tho GO progyon and. raups the crayacten ato

_ moavunglul soquentes. caed (evomos . -

___foy fach (exen0 +hQ (0xica anmuysey preduced ad outpet G
o of the foym
ba e OKEN PO, R AL+ VAL
|
R 3

2 gton = mtiad 4 rate k6o

-

~ () puskion i lexom @ papped. oo @ toxen <ud,! Y "
B ld] <=3 _ it
(3) hal 1§ o Grane mMapped 0 _atoken el Q

R e £l 1TSS
&) «di 3y I i =7 Mg 4
2(b) < %7 TSR . | -

A1) <607 BEEEN, | A

Blanki- goparabng the exomey wadld b0 dagcarded bk; lhﬂ .

S T A W o S S —

L rck ph0sQ of Q. campley_aliv calledag g, :]
fax 400 or ponse e i bang created

— — —— — T L —

427 (4> (raid 3 RYCBOY o v

B - <

— e e ———————— e e ———
E— —E————
e N - n—
i
— -

Scanned by CamScanner

|
|

I E)

.
BERRENEENSNY

2
2

' s Tndoynodual? codd QoYe
i e ——— i

2usts 3 oddvess mytrvchon gorerahion o canviit 0. e
' macrany pxecUtaDiV eOchl |

{;]- ~ [lﬁ“iﬂﬂ&ﬂi‘}ﬁﬂ}

fil"{idt?tj' L AN 1

'ES = «idi27 tt2 3

Ciddy =t = - ol
Uy l Hl N j
a n mods £ !'lhfleW@ ﬂ@. mmmm o@tg.ro khwt

ael opde will Tosdlt

Scanned by CamScanner

e 0s ingut an nternedy ate mprmenmm 0t the qung
_prugmn andenops it oot tarqek [arguage .
. —_ plfcay) EU% o

g Bl 3 BDE 22003 o 1) N
. LecMUF. R2,RY #60.0 hm"_“_ ks i

SR e, @), o a
B AnF gl o) 0o i b
| BOTh Lty < —

.M table " | /
v Mo 0 yonablo narmas used sn-thgsauxco p_mgmm

L - L qglleck th infoarmation abou b vavows attnbubeg gf
. B '
| g:uarhﬂﬂ_. = __* _ B
_Inrhad > _
T 3
g 4 e ol

Scanned by CamScanner

* 40 caed & 1oxez {uzad$ e scur(e codt and. dides he. s t

r
_ oo (to feens) -
o Lexewe s an actual rfpmqntabun of @ styeam of thﬂrqrtw q !
o exeme i cayned warh the help Of gavs 2¢ 40 gyntaX analiw:d. L
. Lo cmdegalh, Lo A t
W SOUTIR
. r_t._H_ e LI LY ool lﬂ.‘n’?'l" ~F
. s Bt S~ S GILLEDH
LT T S S || T
! — Has.
 Ndymoo |/ : = Ny 3
| table
iﬁfgh 11 4%4s0) 8 . e |
| dsfinos e yul@ based on I;p EK m,md& WWMM&EH
: /('L :lL il: N '-‘_ y e 4 - TEwre
I’*'.' INLOYVCH EnG AT oypression .
CONVEYTR Oy K > o
0T b
ﬂ EMOEE 1
(I:' Qo N ___ & 3 |

Scanned by CamScanner

= —_—— T T L — e —
C e m—— m—— r e mem e -__ = e — -k = ‘—l—___-_-‘-

e ——— e e —— - e ——

e : B0 5 RSO o M e __4
/’Q_J_L By E+E/Ear E/Lo{ EIid's

1 _QMJUMMXQL_M art;rmgﬁ ﬁ_mmchm ﬁﬂm Dol AL o
ﬁmnﬁiiﬂ»"_ ik ! , —

(litegturetiotes in gyp O _—7 \ 8
RS AR S ; EErE2. S o GO
e § -l 1 =MEHEXE

FRATERE . R, 4 e I
Bl der. - = cPgid¥eat .
St tedir e, 20 . =y vdtid¥cd didn

o= - —m—

L LML — s Al VB !;2 > Y 2 0
E<BRXE | "> exe o A

S E+EXE 2 Excd dn

~Yid+ E X F id B b A >
=t ud+t (dXE ;- 3 = E+ud sad

b id =t f il

| _ﬂgmmin 3 :
vaa ——— — _: . 9

o - ——— o

Scanned by CamScanner

S S—albcloay i . usodend) LA
SOy | W= ahab s —

. ombquwys
/]i\) e TETN

CL \\ i al

~ Scanned f:iy CamScanner

BREC - ik
A—p o Wl ae .

e ——

o -Sta]med by CamScanner

& A i
abb & y

e
—
_

£ e _—
e
- = =

Scanned by CamScanner

Scanned by CamScanner

A

r G s soud HO be rocuyve of there ovuly
oteast I preduchon wiih has yane mmjzlﬂ bomcuc
__LHS and RHS. el ®
_ 2q: D S—ySalb A
' : @) S—aSle W ¥ o
@) S—Fafb AL L

E_U-__' Q + gramnnor (i squid t0 & nErreeumive (€ no
ot 0N _eandany ga@ vamahle - b ak LH§ and

MEE®

J

I

e

. o I—
'._h_ 1

S 5l

‘_I_-'-—I——_.h_-_-_. = -.'_ . g

MO 1
Scanned by CamScanner

et e
-

it Rcson 1o Rght facgion

b e RCUSAOTS B 5

4 1: - - — - ; J -‘—-—\—_—\-.-
e = g e — — e . = A = L il . — s e —— — e

- —
w— - = I e s
— — e
i
1
A ST Eo g — r — — - - Y
.

Ry Right Recumioy

;A‘_?IM W ek
Al— A’ ler %5 5 “'ﬁfﬂ

.,E_ .E_._JT 0 OMVAY £ nta fnq‘n:t Te UV
R A o P 0w 4
B 50 B LR B
O es

Scanned by CamScanner

|

g St‘ziﬁfSlLEtSQSL SRR
b) Tl =

_ C‘{mWﬂ: tﬂtﬂ O'ﬂ.fﬁ'rﬂ‘hﬂle.iht qmmmﬂr by

- - - g —

Scflmned by CamScanner

(@) Brute For(g L

% J—y0Ad|aQ
AT blC |
0.~} ccd|ad.

inve ™ a‘mng
W = addt

JOL. Tty b it jrost wath F—~QaAd @
O

N

| a A 4
3 / \ bk Hot doesmt _-_ﬁlh";x:,f
D C aur dosre d (ton.Q

g
_T.U-ll(ﬂ aqmn RO ekt bacle , ,
and ot wak S QR

.

S
r'}f’ \

(3
71 .
C g d
lucton 0F 8 will i nd wovk

A

nay it ganshg
wath aur g vod

Jh’\l’g .

Scanned by CamScanner

L) qramma¥ -
b
s Wi LL %f’r coNn ccww'f‘e
b Mﬂiﬂlﬂlﬁﬂjﬂ; hL h A (.__El he d’ “‘---=.Hﬁq

DR
Lo Yo ummMT whase mo tople doies Not contaun muttvpkemn\

Mm&f
F‘-:SEEM (clmemmf At df uule#'
r_ﬂMecJ;mﬂs_.uﬂfal 8 T
%b@@@rmwmimw

| b \ Fotlow (A . -
Bl i8 WK (u,mw_n_mﬁmL) . g

F— — - - -

— COMpIroNs ~_ ¢ T M (E
—_* T/? buffer :toswvg the T/P stnng

20" abdd _

— -

_ti tCLC.tL __F“ :
2 PAXEe £ab\R @ (Wivth maiMTV oy have preduction gjﬂh’\ﬁ”ﬁl’)‘d)

3;'-::’-_ Y0y %ﬂwﬂiﬂiﬂﬂﬁm—m .

i
€ o htelng L
' J l

OO Uhatd poneey' !

C :___: I,- IRRI® g - A Yrﬁ_

W U hddd El Cﬁtuﬂ

Scanned bjf CamScanner

!

gonthm_
e Fnt(%) % att of tnmmmal-f o oy bequ 11 sontembed.

form Whth y denved from (¢

RUIQ)

@ 1€ X ¥ o tormaned gupn Fyskit) = &
O TEQC K o pontoyminey dohned by X~y € HQH Tml[ﬁC) -

__-_-_—_-_'_hl

@.TF QC 6L QU NONtyminad_anel (X dﬂ-ﬁVEJ
- A3 X1Xo,. . Xg foxr Kzl
place o m_Font(ee) i frsomg 0y & i M Civt(Xi) and
~ € & nalt of fmt (X Msb(Xa)... . ft(Xn)
| then f’thF) a

B e TR~ Be0cx _ Ry ol

B C L .. n o STV

ey C ; ' i 4 i

B € o L) | - A
B A R Y

e — — ———— e T WG

4 Q nontf‘rmnﬂignd dﬂﬁruzd by ﬂcfh nur{
A0 @ KiXo K Weg) L C S |

- —— ——reereaea———t = 1w e———

— e |
W = - 2 z T ——

)= Fse(X() = mat(_xt)umtwa) |

- FOSt Un)u Post(X2) U rri;s_{rﬁj w{E}

i€ A is atmrtnj Jk;mbcﬂ
and {6

D) athout €

- -
TR

and Sy XA omd B>y F

Scanned by CamScanner

follow) (B2 Fale (s)
(& sapable e ak o ﬂ?ﬂhtmm

_tan flpw) O ot vana by i oquel

i follw of N uomnane uveh

1 4 _

= —_— —

Scanned by CamScanner

(5) §~1®AQ| ¢

-{ h €
AT b Fing(d) = i!; /
Pigt (A) = X7 a}*
low (')
{fujuu N
(5) S-—JT{IA@
A—tbl€
e |
¥ FORE(S) = {&L ¢
it (AJ = { ol o)
Hie(B) = 4¢) Iyt =1 ¢{4)
—_— {g,brf’rdlpfﬁ] | {b;Crd’ D)
) a6 L (e b Wa.0) .]
= A—r afe by €2 {die) 4
B Crele «'drU) LAy
B o d U — ‘{Fr’; - ' b
_—_Q:L—Lﬁ 1 FoNCy.
o e ()
= { dib)
i
2 FQ_”J__BJ——
%
(8

Scanned by CamScanner

Scanned by CamScanner

"0s) svaBoh | qar. . | A}

e YN {QL__wﬁ_ _{ iy
B8 | I me wﬂ*l)

e ™y EF _igrﬂ E\)‘ {\)

% F*9|€ e iyl iR U’*“l 3

b Eafle | | {fey o 00wl

L
el STR8blcd) [0 Cobedd odtuno 88 1

Bbaie. [({eeh o wliondiie s o8
ROy o€ W)L CEEY T TURTE A

Scanned by CamScanner

)

por o qrammay arg (L(1) oy o,

S

— -

ST

Fnt

{8,))

_—
i il
— — — — —_

Scanned by CamScanner

Scanned by CamScanner

©) Ry Rir| RR| R¥| (2]alE

(N1 S (O Ay, P]

Ulfﬂ:rt OLMVRCLQ (0L Yooy O
| Ry (QR[ar[bR
e T R'—y +RR'| RR'[RR|E

Scanned by CamScanner

L QMM i ¢ U2 m- L) for each yug of e
form A=rtd| € _.
£ (@) 1ot) 0 folew (A) = ¢f
o n (LIS aon LL[I‘) qTqmmﬂ-J

i .
'ka’olf:]utlm' Tmmmar W NOtL U—“)

|2 ¢ TOCU AL VO " ga 0 LLU)
“NONT AL ctey

\ T\ LL(")

[|

I-\"

__° O Qiamma ' I Py
y wﬁ] . N whh ey poduceh o ha oty | aternanyve

BT ; voi R

<A-1aA €, @
1a’ BE(S) - {m@ .

. o B Fist (A) = {achy >

SR 8.8 et (8 n_ﬁ”ﬂ?(;‘t =)

ten LL(!) gyammay posng:

BT 1_-_—___'___‘_"'-——'-——-—._.

Scanned by CamScanner

|

9 & i] —— — —

i _—-—_"'-..‘-_

_oppymg o mteS

b Pmt[at NEolow ()=,

St . ")l T i

thig i o LL(H grammay

{Q:b;_g\}‘ | .
_—

Lt

AL) o
A

m—

"

Ll

"~ Scanned by CamScanner

W.Sradnns . 1 o o). e SRELES
Rt Sy 0| £ { Y {,d_f_@-__/ i
—9 —va|€ dy (@ PR

—-ﬁCJ_]L_LLJ 'LLU} EMMLL{‘[’!W Uﬂlt pe pryesent n ufferent
B wRibd | |

3 | _{m v 1 e 2 :
Rt (Anday X - s sen - PR
- A =y &) | R ¢) 8 DALY 4

— i pr—— —

SO & not 1L (! ause pat of Hham m-TQ_gﬂfmg_ daNeen..
uferont—ciiy. e |

_QU) §—ya8| € W ~Faliew(J) = muﬁu,f_CJ Fovau(Y)- Fﬁ““*-*L,l
(3 -ﬁm 7 Rllew(e) - folau B) = e fEY
Q—Iﬂ.&lc LYy fdow): Reiow(e)= Foraw(p) ~me.u{;j

P atan

L(T) qYUmMmog e

gy Foew () = follw (o) = £)

1) qyon !E.‘

——y

;3"* ﬂﬂ[uu) =FMt(A) = {_; $)
() fiow(s) - £OUA)
. _ o ko)

— —ﬁ

»e

L P 2S for gCUinQ W
. ‘ :

Scanned by CamScanner

y

- — = =
et B _‘______\
_H-..H'.
o
”' w0 s i LU QMY 3
S—‘]QA@ FUU{I-UU) {5;07")< —
__A—=>abd|C J
i‘i nmmmzmmmqmﬂ odutngn 5ot LLLF)
m o
‘“!.}' 2 i"h'ltBLU(_J FUHELU
/QJ - Pyt s] {@’)“

_ calmed by CamScanner

Scanned by CamScanner

Scanned by CamScanner

1'!'

y on non -
SF G gpliah o only

er
ed by CamScann
Scann

Scanned by CamScanner

Scanned by CamScanner

£y
:
]
£
-
=
g
:
o
@]

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

I - il

E

wud

Po— = ___+ e — — __"_“—-....__\'-\

. o D % -

T L N

AL @_-ﬁr_]f.j_ - s i
Sty - o

- IF FE[HELU [A) N F’BILM(B) 38

\Jr RR carlw{t m sl

E

‘l.

e A——

T —

o if leCLUL)ﬂ Pmnw(eLL [

.y RR onflict M Lﬁm\

Mﬂlﬂ .SLFE.’U) I

Scanned by CamScanner

v ' ? ' : - H_—

.-:'-r - r o .1 ‘. 1 i e hq.-__ﬁ

!Mm el e T IET
- Ewy LQ[Q) ?WW}J“U’I . .&EH qQuammay e

s wmﬂ' L ...meLMLb?__LE_LJ

—— L

"'-—---.-—I-._._.

————

- S i—— e

R
sl

_ i ot
+ 0. O AV n LR < = ofontres m LRIY) gae ty,
o SURLY) ey T vove mml- azm L__LMM__J_JJ_‘__

-

i e e
s g

Scanned by CamScanner

e VAN ; l'flf.;'

P L o ng g ey (W9
o ————Polan (A) = {anhy i 00 1o

L sy i
[ULU[!QI: E(Cl;%} .
- —
"HT ' . a h

e T ——

0 Fona” (A) N Altlaw (B)F @

and m_rmw)_gL%

a ¥R

SLRC!) ¢

) Qagmmg T .

b ..._I

g I e

.Iu

- -.:"-l;-
-,

._-J--'lll__ -----
S Ay

Scanned by CamScanner

Scanned by CamScanner

e —

e

Scanned bY CamScanner

-i’ﬁi%iﬁ@hiﬁﬁu 5r‘".:iiﬂ'-‘ﬂill'

. 01 ‘;J.lr.ll" 17

. ' ; - Lk - 1 --.. -._. o

| 1) 1 o4 :'I e r_:'I-I "

B J K 1 -'III o . _.u_jl I!. E

N Fa - LR

- Py R = ES . L | L il
il : I
'. .
e b “ mm WO .
’ . " N i -
o e N
b L] g ¥ i i

Scanned by CamScanner

Scanned by CamScanner

f0.0f Stades ;- CLRUNY LR(O) = SLR(1)
| *:HLALF?(E) 3

:—m-éJ Tﬂ@lktmw of Slat 2§ . 1 and_thus S |_-_

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

I- | | "-"".- .. -.-.I-'.’.' - - I;'.I_ i -'J’#F',' 4 M
A VO M gmmmar—S N CLRETIA AT o

S e |
= s = U F o T R = : : L g i ::.. -.I 5 &
P Pl b '#:‘"ﬁs g, SRS T iy
" o r | - - E 4 T.I ¥ = 4 L 'I'-
- - . ; el . "l‘.' # - " bl - . i F'. f L
: e = e LI = s 3 iLs i il i o o “ W N =
s : i ? — '. F. G - ;- - v - .. :
L] - i L] & i : ,
i r . - | - :
= B . £ . iy 1 [.

Scanned by CamScanner

e —
Wal m"‘at ; ';;_ﬁgffi-i*,_ ’

TR T W

Scanned by CamScanner

[_.,!i man ANCYYI 1 l.l AN i!. Al ‘ abi/ . AL DY DO

W conantiC todLs U ax O : |

L 1 M.H'I.E s o po i

L %

_— = -

v ; h i ANl y ¥ T T . v N iy
II. L '|.-:. :.|I.-" - _I!i.::il I.I-_I !. -.:IT_ ;-__. :.- -I : q.:“.ﬁl :F_:J: I j--ﬁ-l ; |_ r- E-l ._ - -t.-i.- : o .:- 5 ._ 'L-I;::_:-.!!T- !

TR

Scanned by CamScanner

Scanned by CamScanner

l. -“lli Mu' '__

'*Uc-f SR

c-ﬂi "ﬁart Y

g

| -:.'-'-.-'-: -."- iy L
F#‘ {‘l' |' Il '-.,,.-:l ITE' ﬁ!

.aE._-l:'__ I..Ir 4:..I-- _:.{: e .-.I;E— - .' -__H

B

Scanned by CamScanner

Scanned by CamScanner

L

LN ity

| =

gy

- _;f-"".. .

B e
o g e -l. .
L i

o G
By prard o
PRl

- : e ——— e e 5
mple o& nhonted.

-
i

Scanned by CamScanner

Scanned by CamScanner

WA o Rl e —

Scanned by CamScanner

—

| ’ .*:" _ |.r- n "L L . {\ ."._ L] ’J.l‘-ln _l M, ; Iﬂﬁf Ll'i-' J.I.':'ﬂ- ".Ij ’i ; 3 4 ¥ li J! i :.:-_

-.,_.rl'

o ——
i - i o B
01 VAfLS
2 _‘.JJ!.."-.- VWi

£ o
r.-l. fa
Ir '-'-J.-I‘..-
m'— -Iﬁ. -2 i i |
. T .-. } '_; I:-lir_'-.-ll . ' .:.r. ;' R

Scanned by CamScanner

—————— = ; £
wiﬂm "Efsl;J a Lo iJ SYnary
- e Lo ::.-'.“.‘:-:x'-.'

valiazed g B up (g
G o .
.IIE- o 2R

. 5 F
| e L |
(aced ab- 0 mgrd A i
k -ﬁ- o
.
o - . ;le-. . e A i ~5 Hh
= B’ LF i LA 5
S e Dl = ae” =
il s N
il =vd Buold s
e TN | o we a1 -
e S e T
i - o
1
= -
ER ra W I & 1) Iii':l d i] | ! !
. - - | |I_ & | et | | A" |
E - — 5
1) i E hals s L
" . 1 -
1 ! L I A L .
Ted i 0 |
| '} L 4 1}
Al B
- |

Scanned by CamScanner

Pl L .

L
-]

SR, Y

L:AS
—

| -.—.-.I'.;..E

e !M’i . ond n.mnm a-.;ftu ﬂ&h ﬂ“i {_u plg

LA T _'.IF 'I'l

' I] - - i - .. i !
[| I8 ..'II-':".'."E'.I' ' i.
-8 ==

o) .J..

;, 1

. o Sy NS

Scanned by CamScanner

-.*-"..."r.': -F_"E.—.'""'" i
LEE B L S _J..Ii_-llu - g PLE

Scanned by CamScanner

Scanned by CamScanner

Intermediate Codo Grrator

S

L n_tmnod{m Cod

Scanned by CamScanner

Scanned by CamScanner

'ih'é"' aennE A e
PYER TIVELR€ HATRY 7. TLY T 1§ el

y . Ui 3 adares cogle

J0_3oddress coo: €l = -C

oty

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

™

. s
ey J 1

ol

Scanned by CamScanner

c

Lo e) TR ‘ .
Axod. assignimony

Scanned by CamScanner

Scanned by CamScanner

e,

= ma:r £ (C4d) £ (0sbreT
Py Pt o |1 ?)' (qr; 7)1 Lfm}*—

ot

Scanned by CamScanner

TN .,:f _ .. a9,

o

\they o T0_pung coul

1i T i

Scanned by CamScanner

| OF wighh + CMEEA“JMJ; W

Scanned by CamScanner

ma

il lh,l. e == B

T n

o on U.{__.M’,Lﬂ' 07] = b@w _+((£_J -fmug**ng_ju (210w ¥ width

_lowy = M - 1
U2 - mdixﬂuumumn —
L N9 = Ng. TF0lemends . N 2oLk yuu) |

__sadih = wicith ot mmwnt

__AQi1, 2] = ([k1g)t ¢a) Rt) ¢ (dasep = ((10w % rg)tiwa)

N 00 oMy, ,.l_' AL

M

R RS T EM- £ Leogunt bl

SEEI]-fl.IlEd.by CamScanner

L

B N
F

T T s
ARER
a
s
S
c
Iy

=
[Rees
;

l

] e -
- - =
e - e M . ‘-— -

‘._:,_._
|
|
=
S
')
i

Z:”' —Inc g rimetm »

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

- S =
g i
h | =y

A BRI AR AN AL T
NS DR LVAYA KO0 0 ANRCAGN ANYY) N
- A— N

; F I|.' |
LA

il

.
AW

! o

AN Aﬂ@i..? _QUYYONE

= I.
TAATL

Scanned by CamScanner

or o D add L. nsonchon suche o (=\yt2 A0 g £ b

- .h‘. ‘ .:5 !_. __r -. "-'Li'h._'.-"' - ;‘ :.._
?ﬁa W W = 0

- "i‘i:"!“ | S ﬂ!&‘t ﬂrem.n'-:m 4 1-__r|r .hh"-r F_|._“"h. 1 ;-.j A
"] r' ——

T2 TR TR A

TN I:-; n r"||- | } 1| | -r '_:._:;._'"-:'.__! _I.- J -"-..'"' 4% .-r ;

ey m;---,--- $

DR . e m_;.}.r - ke *ﬂm#

oo il ~ v R

Scanned by CamScanner

£ u.,- 44 ll* YOQiTHor

e = n_l'_--_n_

e

b L 5'~__ a **Ltin s . dl .ﬂt"‘& l i

“-" b *‘*‘*‘ “‘-’ "'-_.'il._td.g'ih‘

.—-"_ = —Fpre—Twe— L, =

_7'0.
1..;-"“"

'ﬁ-ﬂﬁl"’f‘ ﬁ]“ﬂﬁ' ill!ﬂ {-17'
; =¥

Scanned by CamScanner

e
r G 23 _____ LIRS e STHARD bl) Ll
B)
= - F -
- '7" -.---.
— - i . L) e — —— .
N DASIC plack i ' . i
-_--l-u—u—

WITALY NSV O

BT T
o W w1 vag e mat
e end 0f the DIICKH (B 2 1 M/ﬂ

oA Yt T:-? e

. I
: ._"""a ik -

i

_QUL wg f\ﬂﬁg an [{ummgm K el
ST LT & .

YA

U
L ALL

AL I"j F O 11\

camtiny wabth 24 Sl v il oM GAbial wWide. W Lol Raallt BRI SIS
Scanned by CamScanner

oy R_£0(L holds onlg 5"

r'f'

10 UG T0 Qi)
; e

PR - |

'fll

?*;"&'i’m E'h Ahmﬂ i '

L 1"‘1.

"!E"“

Scanned by CamScanner

25 :!.‘h!i#‘_!
ccwé RR Rﬂ bR R Y ;

--.-Ell.ﬂﬂﬂﬂ

r

Scanned by CamScanner

i . LQ_EQ_tq Rt R2 123
Ui, d|Vv

v * " T
AD'D R\1R3, EL —— o) -

R2

Scanned by CamScanner

Machig (rlgpondent _ Machw dopndent

LY WD onphim, _ﬂ_ﬂ_f o . wﬂﬁmfmﬂn b

| redundancy U g PP N, RS . W

L I R & s 3 "- . " . * S e .: .
(4] _stenath reduch :

.' -::" i i
et Tl g

| R .
1 - 5 'I. -
i JJD O
K - =1 --_-1._

Scanned by CamScanner

Scanned by CamScanner

E{ 0 _DASIC

== S - — ==

In@addy 0 Apg

YLK IF [y

IO l 0P Rraraer NI Yt frim _ove 1ocly i e
Lll.l. -'F!.'_I I-l 1

Scanned by CamScanner

I..ll--l: L'J‘. T
-:!.1 1‘*‘-: l_:‘;:h

e —

ﬁﬁt -2

Scanned by CamScanner

Scanned by CamScanner

D Q£B+43 +C
%ﬂ—

Scanned by CamScanner

‘LUifl

.‘ .-;ﬁ; -_'_J..ﬁ'——._.p.....-.u.. T—
@,‘, :! '..I.. LA l...i 6 {..l..,.i_'r..-‘hl l*.n.. Ulf . -..; I:"L‘ r'tr.'l._,. A e

Scanned by CamScanner

| L TR . '- :. .-. -
| '.'.ui Lil m r,.:hl_ 3 g‘:‘ |

Scanned by CamScanner

