
System Software 15CS63

    1 GMIT, Davangere                                                                                                           Deepak D J

System Software
Semester       :    VI Course Code :   15CS63

Course Title  :    System Software AND Compiler Design

Faculty           :  Niranjan Murthy C

Dept                :   Computer Science & engineering

Prerequisites:    Basic concepts of microprocessors (10CS45)

Description This course gives an introduction to the design and implementation of 
various types of system software. A central theme of the course is the 
relationship between machine architecture and system software. The 
design of an assembler or an operating system is greatly influenced by 
the architecture of the machine on which it runs. These influences are 
emphasized and demonstrated through the discussion of actual pieces 
of system softare fo a variety of real machines.

 

Outcomes
The students should be able to:

1. Student able to Define System Sotware such as Assembler and Macroprocessor.
2. Student able to Define System Sotware such as Loaders and Linkers
3. Student able to lexical analysis and syntax analysisFamiliaize with source file ,object and 

executable file structures and libraries
4. Describe the front and back end phases of compiler and their importance to students



System Software 15CS63

    2 GMIT, Davangere                                                                                                           Deepak D J

MODULE- 1

 Introduction to System Software,
 Machine Architecture of SIC and SIC/XE.
 Assemblers: Basic assembler functions, machine dependent assembler features,
 machine independent assembler features, assembler design options.
 Macroprocessors: Basic macro processor functions,    ->10 Hours

MACHINE ARCHITECTURE

System Software: 

 System software consists of a variety of programs that support the operation of a computer.
 Application software focuses on an application or problem to be solved. 
 System softwares are the machine dependent softwares that allows the user to focus on the 

application or problem to be solved, without bothering about the details of how the 
machine works internally.

Examples:  Operating system, compiler, assembler, macroprocessor, loader or linker, debugger, text 
editor, database management systems, etc.

Difference between System Software and application software

System Software Application Software
System software is machine dependent Application software is not dependent on the 

underlying hardware.
System software focus is on the computing 
system.

Application software provides solution to a 
problem

Examples:  Operating system, compiler, 
assembler

Examples: Antivirus, Microsoft office

SIC – Simplified Instructional Computer

Simplified Instructional Computer (SIC) is a hypothetical computer that includes the hardware 
features most often found on real machines. There are two versions of SIC, they are, 
standard model (SIC), and, extension version (SIC/XE) (extra equipment or extra expensive).

SIC Machine Architecture:

We discuss here the SIC machine architecture with respect to its Memory and Registers, 
Data Formats, Instruction Formats, Addressing Modes, Instruction Set, Input and Output.

Memory: 

There are 215 bytes in the computer memory, that is 32,768 bytes. It uses Little Endian format to 
store the numbers, 3 consecutive bytes form a word , each location in memory contains 8-bit bytes. 

Registers:

There are five registers, each 24 bits in length. Their mnemonic, number and use are given in the 
following table.



System Software 15CS63

    3 GMIT, Davangere                                                                                                           Deepak D J

Mnemonic Number Use 

A 0 Accumulator; used for arithmetic operations

X 1 Index register; used for addressing

L 2 Linkage register; JSUB

PC 8 Program counter 

SW 9 Status word, including CC

Data Formats:

Integers are stored as 24-bit binary numbers. 2’s complement representation is used for negative 
values, characters are stored using their 8-bit ASCII codes.No floating-point hardware on the 
standard version of SIC.

Instruction Formats:

Opcode(8) x Address (15)
X is used to indicate indexed-addressing mode.

All machine instructions on the standard version of SIC have the 24-bit format as shown above. 

Addressing Modes:

Only two modes are supported: Direct and Indexed 

Mode Indication Target address calculation

Direct x= 0 TA = address 

Indexed  x= 1 TA = address + (x)

() are used to indicate the content of a register.

Instruction Set

 Load and store registers (LDA, LDX, STA, STX)
 Integer arithmetic (ADD, SUB, MUL, DIV), all involve register A and a word in memory.
 Comparison (COMP), involve register A and a word in memory.
 Conditional jump (JLE, JEQ, JGT, etc.)
 Subroutine linkage (JSUB, RSUB)

Input and Output

 One byte at a time to or from the rightmost 8 bits of register A.
 Each device has a unique 8-bit ID code.
 Test device (TD): test if a device is ready to send or receive a byte of data.
 Read data (RD): read a byte from the device to register A
 Write data (WD): write a byte from register A to the device.

SIC/XE Machine Architecture:

Memory 



System Software 15CS63

    4 GMIT, Davangere                                                                                                           Deepak D J

 Maximum memory available on a SIC/XE system is 1 Megabyte (2 20 bytes).  

Registers  

 Additional B, S, T, and F registers are provided by SIC/XE, in addition to the registers of SIC. 

Mnemonic Number Special use

 B 3 Base register

S 4 General working register

T 5 General working register

F 6 Floating-point accumulator (48 bits)

Floating-point data type:

 There is a 48-bit floating-point data type, F*2(e-1024)

Instruction Formats :

The new set of instruction formats fro SIC/XE machine architecture are as follows. 

Format 1 (1 byte): contains only operation code (straight from table). 

Format 2 (2 bytes): first eight bits for operation code, next four for register 1 and following four for 
register 2. The numbers for the registers go according to the numbers indicated at the registers 
section (ie, register T is replaced by hex 5, F is replaced by hex 6).

Format 3 (3 bytes): First 6 bits contain operation code, next 6 bits contain flags, last 12 bits contain 
displacement for the address of the operand. Operation code uses only 6 bits, thus the second hex 
digit will be affected by the values of the first two flags (n and i). The flags, in order, are: n, i, x, b, p, 
and e. Its functionality is explained in the next section. The last flag e indicates the instruction format 
(0 for 3 and 1 for 4).

Format 4 (4 bytes): same as format 3 with an extra 2 hex digits (8 bits) for addresses that require 
more than 12 bits to be represented.

Addressing Modes:

Five possible addressing modes plus the combinations are as follows.

1. Direct (x, b, and p all set to 0): operand address goes as it is. n and i are both set to the same 
value, either 0 or 1. While in general that value is 1, if set to 0 for format 3 we can assume that the 
rest of the flags (x, b, p, and e) are used as a part of the address of the operand, to make the format 
compatible to the SIC format.

2. Relative (either b or p equal to 1 and the other one to 0): the address of the operand should be 
added to the current value stored at the B register (if b = 1) or to the value stored at the PC register 
(if p = 1)

3. Immediate(i = 1, n = 0): The operand value is already enclosed on the instruction (ie. lies on the 
last 12/20 bits of the instruction)

4. Indirect(i = 0, n = 1): The operand value points to an address that holds the address for the 
operand value.



System Software 15CS63

    5 GMIT, Davangere                                                                                                           Deepak D J

5. Indexed (x = 1): value to be added to the value stored at the register x to obtain real address of 
the operand. This can be combined with any of the previous modes except immediate. 

The various flag bits used in the above formats have the following meanings

e - > e = 0 means format 3, e = 1 means format 4

Bits x,b,p : Used to calculate the target address using relative, direct, and indexed addressing Modes.

Bits i and n: Says, how to use the target address b and p - both set to 0, disp field from format 3 
instruction is taken to be the target address.

For a format 4 bits b and p are normally set to 0, 20 bit address is the target address

x -x is set to 1, X register value is added for target address calculation

i=1, n=0 Immediate addressing, TA: TA is used as the operand value, no memory reference

i=0, n=1 Indirect addressing, ((TA)): The word at the TA is fetched. Value of TA is taken as the address 
of the operand value

i=0, n=0 or i=1, n=1 Simple addressing, (TA):TA is taken as the address of the operand value

Two new relative addressing modes are available for use with instructions assembled using format 3.

Instruction Set:

SIC/XE provides all of the instructions that are available on the standard version. In addition we 
have, Instructions to load and store the new registers LDB, STB, etc, Floating-point arithmetic 
operations, ADDF, SUBF, MULF, DIVF, Register move instruction : RMO, Register-to-register 
arithmetic operations, ADDR, SUBR, MULR, DIVR and, Supervisor call instruction : SVC.

Input and Output:

There are I/O channels that can be used to perform input and output while the CPU is executing 
other instructions. Allows overlap of computing and I/O, resulting in more efficient system 
operation. The instructions SIO, TIO, and HIO are used to start, test and halt the operation of I/O 
channels.

Example programs SIC:
Example 1: Simple data and character movement operation 

LDA  FIVE 
STA  ALPHA 
LDCH  CHARZ 
STCH C1 

ALPHA RESW 1 
FIVE WORD 5 
CHARZ  BYTE C’Z’ 
C1 RESB 1

Example 2: Arithmetic operations 
LDA ALPHA 
ADD INCR 
SUB ONE 
STA BETA 

…….. 



System Software 15CS63

    6 GMIT, Davangere                                                                                                           Deepak D J

…….. 
…….. 
ONE WORD  1 
ALPHA RESW  1 
BEETA RESW  1
INCR RESW   1

Example 3: Looping and Indexing operation 
LDX ZERO ; X = 0 

MOVECH LDCH STR1, X 
STCH STR2, X 
TIX ELEVEN 
JLT MOVECH 

. . . . . .

. . . . . .

. . . . . .
STR1 BYTE C ‘HELLO WORLD’ 
STR2 RESB 11 
ZERO WORD 0 
ELEVEN WORD 11 

Example 4: Input and Output operation 
INLOOP TD  INDEV ; TEST INPUT DEVICE 

JEQ INLOOP ; LOOP UNTIL DEVICE IS READY 
RD  INDEV ; READ ONE BYTE INTO A 
STCH DATA ; STORE A TO DATA 

. 

. 
OUTLP TD OUTDEV ; TEST OUTPUT DEVICE

JEQ OUTLP ; LOOP UNTIL DEVICE IS READY 
LDCH  DATA ; LOAD DATA INTO A
WD OUTDEV ; WRITE A TO OUTPUT DEVICE

. 

. 
INDEV BYTE X ‘F5’ ; INPUT DEVICE NUMBER 
OUTDEV BYTE X ‘08’ ; OUTPUT DEVICE NUMBER 
DATA RESB 1 ; ONE-BYTE VARIABLE

Example 5: To transfer two hundred bytes of data from input device to memory 
LDX ZERO 

CLOOP TD INDEV
JEQ  CLOOP 
RD INDEV 
STCH RECORD, X 
TIX B200
JLT CLOOP

. 

. 
INDEV BYTE X ‘F5’
RECORD RESB 200 
ZERO WORD  0 
B200 WORD 200



System Software 15CS63

    7 GMIT, Davangere                                                                                                           Deepak D J

Example Programs (SIC/XE) 
Example 1: Simple data and character movement operation

LDA  #5 
STA ALPHA 
LDA #90 

.

. 

. 
ALPHA RESW 1 
C1 RESB 1

Example 2: Arithmetic operations 
LDS INCR 
LDA ALPHA
ADD S,A 
SUB #1 
STA BETA 

………… 
…………
ALPHA RESW 1 
BETA RESW 1 
INCR RESW 1

Example 3: Looping and Indexing operation 
LDT #11 
LDX #0 ;X = 0 

MOVECH LDCH STR1, X ; LOAD A FROM STR1 
STCH STR2, X ; STORE A TO STR2
TIXR T
JLT MOVECH

.

.
STR1 BYTE C ‘HELLO WORLD’
STR2 RESB 11

Assemblers - 1

A Simple Two-Pass Assembler 

 Main Functions 

 Translate mnemonic operation codes to their machine language equivalents 
 Assign machine addresses to symbolic labels used by the programmers 
 Depend heavily on the source language it translates  and the machine language it produces. 
 E.g., the instruction format and addressing modes 

Basic Functions of an Assembler 



System Software 15CS63

    8 GMIT, Davangere                                                                                                           Deepak D J



System Software 15CS63

    9 GMIT, Davangere                                                                                                           Deepak D J

• It is a copy function that reads some records from a specified input device and then copies 
them to a specified output device 

– Reads a record from the input device (code F1) 
– Copies the record to the output device (code 05) 
– Repeats the above steps until encountering EOF. 
– Then writes EOF to the output device  
– Then call RSUB to return to the caller 
–

 RDREC and WRREC 

 Data transfer  
– A record is a stream of bytes with a null character (0016) at the end. 
– If a record is longer than 4096 bytes, only the first 4096 bytes are copied. 
– EOF is indicated by a zero-length record. (I.e., a byte stream with only a null 

character. 
– Because the speed of the input and output devices may be different, a buffer is used 

to temporarily store the record 
 Subroutine call and return  

– On line 10, “STL RETADDR” is called to save the return address that is already stored 
in register L. 

– Otherwise, after calling RD or WR, this COPY cannot return back to its caller. 

 Assembler Directives 

 Assembler directives are pseudo instructions 
– They will not be translated into machine instructions. 
– They only provide instruction/direction/information to the assembler. 

 Basic assembler directives : 
o START :   Specify name and starting address for the program 
o END :   Indicate the end of the source program, and (optionally) the first executable 

instruction in the program. Assembler Directives (cont’d) 
o BYTE :  Generate character or hexadecimal constant, occupying as many bytes as 

needed to represent the constant. 



System Software 15CS63

    10 GMIT, Davangere                                                                                                           Deepak D J

o WORD : Generate one-word integer constant 
o RESB :  Reserve the indicated number of bytes for a data area 
o RESW : Reserve the indicated number of words for a data area 

 An Assembler’s Job 

 Convert mnemonic operation codes to their machine language codes 
 Convert symbolic (e.g., jump labels, variable names) operands to their machine addresses  
 Use proper addressing modes and formats to build efficient machine instructions 
 Translate data constants into internal machine representations 
 Output the object program and provide other information (e.g., for linker and loader) 

 Object Program Format 

 Header 

Col. 1  H 

Col. 2~7  Program name 

Col. 8~13  Starting address of object program (hex) 

Col. 14-19  Length of object program in bytes (hex) 

 Text  

Col.1   T 

Col.2~7  Starting address for object code in this record (hex) 

Col. 8~9  Length of object code in this record in bytes (hex) 

Col. 10~69  Object code, represented in hexa (2 col. per byte) 

 End 

Col.1  E 

Col.2~7  Address of first executable instruction in object program  (hex) 

The Object Code for COPY 

H COPY  001000 00107A 

T 001000 1E 141033 482039 001036 281030 301015 482061 3C1003 

00102A 0C1039 00102D 

T 00101E 15 0C1036 482061 081044 4C0000 454F46 000003 000000 

T 002039 1E 041030 001030 E0205D 30203F D8205D 281030 302057 

549039 2C205E 38203F 

T 002057 1C 101036 4C0000 F1 001000 041030 E02079 302064 509039 

DC2079 2C1036 



System Software 15CS63

    11 GMIT, Davangere                                                                                                           Deepak D J

T 002073 07 382064 4C0000 05 

E 001000  

NOTE: There is no object code corresponding to addresses 1033-2038. This storage is simply 
reserved by the loader for use by the program during execution. 

Two Pass Assembler 

 Pass 1 
– Assign addresses to all statements in the program 
– Save the values (addresses) assigned to all labels (including label and variable 

names) for use in Pass 2 (deal with forward references) 
– Perform some processing of assembler directives (e.g., BYTE, RESW, these can affect 

address assignment) 
 Pass 2 

– Assemble instructions (generate opcode and look up addresses) 
– Generate data values defined by BYTE, WORD 
– Perform processing of assembler directives not done in Pass 1 
– Write the object program and the assembly listing 

A Simple Two Pass Assembler Implementation 

Algorithms and Data Structures

Three Main Data Structures 

• Operation Code Table (OPTAB)  
• Location Counter (LOCCTR)  
• Symbol Table (SYMTAB) 

 OPTAB (operation code table) 

 Content 
– The mapping between mnemonic and machine code. Also include the instruction 

format, available addressing modes, and length information. 
 Characteristic 

– Static table. The content will never change. 
 Implementation 



System Software 15CS63

    12 GMIT, Davangere                                                                                                           Deepak D J

– Array or hash table. Because the content will never change, we can optimize its 
search speed. 

 In pass 1, OPTAB is used to look up and validate mnemonics in the source program. 
 In pass 2, OPTAB is used to translate mnemonics to machine instructions. 

Location Counter (LOCCTR)  

• This variable can help in the assignment of addresses. 
• It is initialized to the beginning address specified in the START statement. 
• After each source statement is processed, the length of the assembled instruction and data 

area 
 to be generated is added to LOCCTR. 
• Thus, when we reach a label in the source program, the current value of LOCCTR gives the 

address to be associated with that label. 

Symbol Table (SYMTAB) 

• Content 
– Include the label name and value (address) for each label in the source program. 
– Include type and length information (e.g., int64) 
– With flag to indicate errors (e.g., a symbol defined in two places)  

• Characteristic 
– Dynamic table (I.e., symbols may be inserted, deleted, or searched in the table) 

• Implementation 
– Hash table can be used to speed up search – Because variable names may be very similar 
(e.g., LOOP1, LOOP2), the selected hash function must perform well with such non-random 
keys. 

The Pseudo Code for Pass 1 

Begin

read first input line

if OPCODE = ‘START’ then begin

save #[Operand] as starting addr

initialize LOCCTR to starting address

write line to intermediate file

read next line

end( if START)

else

initialize LOCCTR to 0

While OPCODE != ‘END’ do

begin

if this is not a comment line then



System Software 15CS63

    13 GMIT, Davangere                                                                                                           Deepak D J

begin

if there is a symbol in the LABEL field then

begin

search SYMTAB for LABEL

if found then

set error flag (duplicate symbol)

else

(if symbol)

search OPTAB for OPCODE

if found then

add 3 (instr length) to LOCCTR

else if OPCODE = ‘WORD’ then

add 3 to LOCCTR

else if OPCODE = ‘RESW’ then

add 3 * #[OPERAND] to LOCCTR

else if OPCODE = ‘RESB’ then

add #[OPERAND] to LOCCTR

else if OPCODE = ‘BYTE’ then

begin

find length of constant in bytes

add length to LOCCTR

end

else

set error flag (invalid operation code)

end (if not a comment)

write line to intermediate file

read next input line

end { while not END}

write last line to intermediate file

Save (LOCCTR – starting address) as program length



System Software 15CS63

    14 GMIT, Davangere                                                                                                           Deepak D J

End {pass 1}

The Pseudo Code for Pass 2

Begin

read 1st input line

if OPCODE = ‘START’ then

begin

write listing line

read next input line

end

write Header record to object program

initialize 1st Text record

while OPCODE != ‘END’ do

begin

if this is not comment line then

begin

search OPTAB for OPCODE

if found then

begin

if there is a symbol in OPERAND field then

begin

search SYMTAB for OPERAND field then

if found then

begin

store symbol value as operand address

else

begin

store 0 as operand address

set error flag (undefined symbol)

end



System Software 15CS63

    15 GMIT, Davangere                                                                                                           Deepak D J

end (if symbol)

else store 0 as operand address

assemble the object code instruction

else if OPCODE = ‘BYTE’ or ‘WORD” then

convert constant to object code

if object code doesn’t fit into current Text record then

begin

Write text record to object code

initialize new Text record

end

add object code to Text record

end {if not comment}

write listing line

read next input line

end

write listing line

read next input line

write last listing line

End {Pass 2}

Machine dependent Assembler Features

Assembler Features

• Machine Dependent Assembler Features

– Instruction formats and addressing modes (SIC/XE)

– Program relocation

• Machine Independent Assembler Features

– Literals

– Symbol-defining statements

– Expressions



System Software 15CS63

    16 GMIT, Davangere                                                                                                           Deepak D J

– Program blocks

– Control sections and program linking 

A SIC/XE Program



System Software 15CS63

    17 GMIT, Davangere                                                                                                           Deepak D J

SIC/XE Instruction Formats and Addressing Modes

• PC-relative or Base-relative (BASE directive needs to be used) addressing:  op m

• Indirect addressing: op @m

• Immediate addressing:   op #c

• Extended format (4 bytes): +op m

• Index addressing: op m,X 

• Register-to-register instructions

Relative Addressing Modes

• PC-relative or base-relative addressing mode is preferred over direct addressing 
mode.

– Can save one byte from using format 3 rather than format 4. 

• Reduce program storage space

• Reduce program instruction fetch time

– Relocation will be easier.

The Differences Between the SIC and SIC/XE Programs

• Register-to-register instructions are used whenever possible to improve execution 
speed.

– Fetch a value stored in a register is much faster than fetch it from the 
memory.

• Immediate addressing mode is used whenever possible.

– Operand is already included in the fetched instruction. There is no need to 
fetch the operand from the memory.

• Indirect addressing mode is used whenever possible.



System Software 15CS63

    18 GMIT, Davangere                                                                                                           Deepak D J

– Just one instruction rather than two is enough.

The Object Code



System Software 15CS63

    19 GMIT, Davangere                                                                                                           Deepak D J

Generate Relocatable Programs

• Let the assembled program starts at address 0 so that later it can be easily moved to 
any place in the physical memory.

• Actually, as we have learned from virtual memory, now every process 
(executed program) has a separate address space starting from 0.

• Assembling register-to-register instructions presents no problems. (e.g., line 125 and 
150)

• Register mnemonic names need to be converted to their corresponding 
register numbers.

• This can be easily done by looking up a name table.

PC or Base-Relative Modes

• Format 3: 12-bit displacement field (in total 3 bytes)

– Base-relative: 0~4095

– PC-relative: -2048~2047

• Format 4: 20-bit address field (in total 4 bytes)

• The displacement needs to be calculated so that when the displacement is added to 
PC (which points to the following instruction after the current instruction is fetched) 
or the base register (B), the resulting value is the target address.

• If the displacement cannot fit into 12 bits, format 4 then needs to be used. (E.g., line 
15 and 125)

– Bit e needs to be set to indicate format 4.

– A programmer must specify the use of format 4 by putting a + before the 
instruction. Otherwise, it will be treated as an error.



System Software 15CS63

    20 GMIT, Davangere                                                                                                           Deepak D J

Base-Relative v.s. PC-Relative

• The difference between PC and base relative addressing modes is that the assembler 
knows the value of PC when it tries to use PC-relative mode to assembles an 



System Software 15CS63

    21 GMIT, Davangere                                                                                                           Deepak D J

instruction. However, when trying to use base-relative mode to assemble an 
instruction, the assembler does not know the value of the base register.

– Therefore, the programmer must tell the assembler the value of register B.

– This is done through the use of the BASE directive. (line 13)

– Also, the programmer must load the appropriate value into register B by 
himself.

– Another BASE directive can appear later, this will tell the assembler to change 
its notion of the current value of B.

– NOBASE can also be used to tell the assembler that no more base-relative 
addressing mode should be used. 



System Software 15CS63

    22 GMIT, Davangere                                                                                                           Deepak D J



System Software 15CS63

    23 GMIT, Davangere                                                                                                           Deepak D J

Relocatable Is Desired

• The program in Fig. 2.1 specifies that it must be loaded at address 1000 for correct 
execution. This restriction is too inflexible for the loader. 

• If the program is loaded at a different address, say 2000, its memory references will 
access wrong data! For example:

– 55    101B      LDA THREE           00102D

• Thus, we want to make programs relocatable so that they can be loaded and execute 
correctly at any place in the memory.

Address Modification Is Required

If we can use a hardware relocation register (MMU), software  relocation can be avoided 
here. However, when linking multiple object Programs together, software relocation is  still 
needed.



System Software 15CS63

    24 GMIT, Davangere                                                                                                           Deepak D J

What Instructions Needs to be Modified?

• Only those instructions that use absolute (direct) addresses to reference symbols.

• The following need not be modified:

– Immediate addressing (no memory references)

– PC or Base-relative addressing (Relocatable is one advantage of relative 
addressing, among others.)

– Register-to-register instructions (no memory references)

The Modification Record

• When the assembler generate an address for a symbol, the address to be inserted 
into the instruction is relative to the start of the program.

• The assembler also produces a modification record, in which the address and length 
of the need-to-be-modified address field are stored.

• The loader, when seeing the record, will then add the beginning address of the 
loaded program to the address field stored in the record.



System Software 15CS63

    25 GMIT, Davangere                                                                                                           Deepak D J

The Relocatable Object Code



System Software 15CS63

    26 GMIT, Davangere                                                                                                           Deepak D J

MODULE-2

 Loaders and Linkers: Basic Loader Functions, 
 Machine Dependent Loader
 Features, Machine Independent Loader Features,
 Loader Design Options,
 Implementation Examples.

Machine Independent Assembler Features

These are the features which do not depend on the architecture of the machine. These are: 
 Literals 
 Expressions 
 Program blocks 
 Control sections

Literals

A literal is defined with a prefix = followed by a specification of the literal value. 

Example:  

45  001A  ENDFIL  LDA  =C‟EOF‟  032010 

- 

- 

93   002D   *          LTORG =C‟EOF‟  454F46

  The example above shows a 3-byte operand whose value is a character string EOF. The object  code 
for the instruction is also mentioned. It shows the relative displacement value of the location where 
this value is stored. In the example the value is at location (002D) and hence the displacement value 
is (010). 

As another example the given statement below shows a 1-byte literal with the hexadecimal value 
‘05’. 

215  1062  WLOOP  TD  =X‟05‟    E32011

It is important to understand the difference between a constant defined as a literal and a 
constant defined as an immediate operand. In case of literals the assembler generates the specified 
value as a constant at some other memory location. In immediate mode the operand value is 
assembled as part of the instruction itself. Example  

55  0020      LDA  #03    010003  

  All the literal operands used in a program are gathered together into one or more  literal pools. This 
is usually placed at the end of the program. The assembly listing of a program containing literals 
usually includes a listing of this literal pool, which shows the assigned addresses and the generated 
data values. In some cases it is placed at some other location in the object program. An assembler 
directive LTORG is used. Whenever the LTORG is encountered, it creates a literal pool that contains 



System Software 15CS63

    27 GMIT, Davangere                                                                                                           Deepak D J

all the literal operands used since the beginning of the program.  The literal pool definition is done 
after LTORG is encountered. It is better to place the literals close to the instructions.  

  A literal table is created for the literals which are used in the program. The literal table contains the  
literal name, operand value and length.  The literal table is usually created as a hash table on the 
literal name.

Implementation of Literals:  

During Pass-1: 

  The literal encountered is searched in the literal table. If the literal already exists, no action is taken; 
if it is not present, the literal is added to the LITTAB and for the address value, it waits till it 
encounters LTORG for literal definition. When Pass 1 encounters a LTORG statement or the end of 
the program, the assembler makes a scan of the literal table. At this time each literal currently  in the 
table is assigned an address. As addresses are assigned, the location counter is updated to reflect 
the number of bytes occupied by each literal.  

During Pass-2:

  The assembler searches the LITTAB for each literal encountered in the instruction and replaces it 
with its equivalent value as if these values are generated by BYTE or WORD. If a literal represents an 
address in the program, the assembler must generate a modification relocation for, if it all it gets 
affected due to relocation. The following figure shows the difference between the SYMTAB and 
LITTAB.

Symbol-Defining Statements: 

EQU Statement: 

  Most assemblers provide an assembler directive that allows the programmer to define symbols and 
specify their values. The directive used for this EQU (Equate). The general form of the statement is 

  Symbol    EQU    value 

 

This statement defines the given symbol (i.e., entering in the SYMTAB) and assigning to it the  
value specified. The value can be a constant or an expression involving constants and any 



System Software 15CS63

    28 GMIT, Davangere                                                                                                           Deepak D J

othersymbol which is already defined. One common usage is to define symbolic names that can be 
used to improve readability in place of numeric values.

 For example 

  +LDT    #4096 

This loads the register T with immediate value 4096, this does not clearly show what exactly this 
value indicates. If a statement is included as: 

  MAXLEN  EQU    4096 and then 

           +LDT    #MAXLEN

Then it clearly indicates that the value of MAXLEN is some maximum length value. When the 
assembler encounters EQU statement, it enters the symbol MAXLEN along with its value in the 
symbol table. During LDT the assembler searches the SYMTAB for its entry and its equivalent value 
as the operand in the instruction. The object code generated is the same for both the options 
discussed, but is easier to understand. If the maximum length is changed from 4096 to 1024, it is 
difficult to change if it is mentioned as an immediate value wherever required in the instructions. 
We have to scan the whole program and make changes wherever 4096 is used. If we mention this 
value in the instruction through the symbol defined by EQU, we may not have to search the whole 
program but change only the value of MAXLENGTH in the EQU statement (only once).  

ORG Statement: 

  This directive can be used to indirectly assign values to the symbols. The directive is usually called 
ORG (for origin). Its general format is: 

  ORG    value 

where value is a constant or an expression involving constants and previously defined symbols. 

When this statement is encountered during assembly of a program, the assembler resets its location 
counter (LOCCTR) to the specified value. Since the values of symbols used as labels are taken from 
LOCCTR, the ORG statement will affect the values of all labels defined until the next ORG is 
encountered. ORG is used to control assignment storage in the object program.Sometimes altering 
the values may result in incorrect assembly.   

  ORG can be useful in label definition. Suppose we need to define a symbol table with the following 
structure: 

SYMBOL 6 Bytes 

VALUE  3 Bytes 

FLAG    2 Bytes 

The table looks like the one given below.



System Software 15CS63

    29 GMIT, Davangere                                                                                                           Deepak D J

The symbol field contains a 6-byte user-defined symbol; VALUE is a one-word representation of the 
value assigned to the symbol; FLAG is a 2-byte field specifies symbol type and other information. The 
space for the table can be reserved by the statement: 

STAB    RESB    1100   

If we want to refer to the entries of the table using indexed addressing, place the offset value of the 
desired entry from the beginning of the table in the index register. To refer to the fields SYMBOL, 
VALUE, and FLAGS individually, we need to assign the values first as shown below:  

SYMBOL  EQU    STAB 

VALUE  EQU    STAB+6 

FLAGS  EQU    STAB+9  

To retrieve the VALUE field from the table indicated by register X, we can write a statement: 

  LDA    VALUE, X  

The same thing can also be done using ORG statement in the following way:

STAB    RESB    1100 

    ORG    STAB 

SYMBOL  RESB    6 

VALUE RESW   1 

FLAG    RESB    2 

    ORG    STAB+1100  

The first statement allocates 1100 bytes of memory assigned to label STAB. In the second statement 
the ORG statement initializes the location counter to the value of STAB. Now the LOCCTR points to 
STAB. The next three lines assign appropriate memory storage to each of SYMBOL, VALUE and FLAG 
symbols. The last ORG statement reinitializes the LOCCTR to a new value after skipping the required 
number of memory for the table STAB (i.e., STAB+1100).  

While using ORG, the symbol occurring in the statement should be predefined as is required in EQU 
statement. For example for the sequence of statements below:  

      ORG    ALPHA   



System Software 15CS63

    30 GMIT, Davangere                                                                                                           Deepak D J

BYTE1 RESB    1 

BYTE2 RESB    1 

BYTE3 RESB    1 

      ORG     

ALPHA    RESB    1  

The sequence could not be processed as the symbol used to assign the new location counter 
value is not defined.  In first pass, as the assembler would not know what value to assign to ALPHA, 
the other symbol in the next lines also could not be defined in the symbol table. This is a kind of 
problem of the forward reference.  

EXPRESSIONS:    

  Assemblers also allow use of expressions in place of operands in the instruction. Each such 
expression must be evaluated to generate a single operand value or address. Assemblers generally 
arithmetic expressions formed according to the normal rules using arithmetic operators +, - *, /. 
Division is usually defined to produce an integer result.  Individual terms may be constants, user-
defined symbols, or special terms. The only special term used is * ( the current value of location 
counter)  which indicates the value of the next unassigned memory location. Thus the statement  

  BUFFEND  EQU    *  

Assigns a value to BUFFEND, which is the address of the next byte following the buffer area.  Some 
values in the object program are relative to the beginning of the program and some are absolute 
(independent of the program location, like constants). Hence, expressions are classified as either 
absolute expression or relative expressions depending on the type of value they produce.  

Absolute Expressions:  

The expression that uses only absolute terms is absolute expression. Absolute expression may 
contain relative term provided the relative terms occur in pairs with opposite signs for each pair. 
Example:  

  MAXLEN   EQU     BUFEND-BUFFER 

In the above instruction the difference in the expression gives a value that does not depend on the 
location of the program and hence gives an absolute immaterial o the relocation of the program. The 
expression can have only absolute terms. Example: 

  MAXLEN   EQU     1000 

 Relative Expressions: All the relative terms except one can be paired as described in “absolute”. The 
remaining unpaired relative term must have a positive sign. Example: 

STAB     EQU     OPTAB + (BUFEND – BUFFER)

Handling the type of expressions: to find the type of expression, we must keep track the type of 
symbols used. This can be achieved by defining the type in the symbol table against each of the 
symbol as shown in the table below:



System Software 15CS63

    31 GMIT, Davangere                                                                                                           Deepak D J

Program Blocks:  

  Program blocks allow the generated machine instructions and data to appear  in the object 
program in a different order by Separating blocks for storing code, data, stack, and larger data block. 

Assembler Directive USE:      

USE   [blockname] 

At the beginning, statements are assumed to be part of the unnamed (default) block. If no USE 
statements are included, the entire program belongs to this single block. Each program block may 
actually contain several separate segments of the source program. Assemblers rearrange these 
segments to gather together the pieces of each block and assign address. Separate the program into 
blocks in a particular order. Large buffer area is moved to the end of the object program. Program 
readability is better  if data areas are placed in the source program close to the statements that 
reference them.

In the example below three blocks are used : 

 Default: executable instructions  
 CDATA: all data areas that are less in length 
 CBLKS: all data areas that consists of larger blocks of memory



System Software 15CS63

    32 GMIT, Davangere                                                                                                           Deepak D J



System Software 15CS63

    33 GMIT, Davangere                                                                                                           Deepak D J

Arranging code into program blocks:  

Pass 1 

A separate location counter for each program block is maintained.  

Save and restore LOCCTR when switching between blocks.  

At the beginning of a block, LOCCTR is set to 0. 

Assign each label an address relative to the start of the block. 

Store the block name or number in the SYMTAB along with the assigned relative address of 
the label 

Indicate the block length as the latest value of LOCCTR for each block at the end of Pass1 

Assign to each block a starting address in the object program by concatenating the program 
blocks in a particular order  

Pass 2 

Calculate the address for each symbol relative to the start of the object program by adding 
The location of the symbol relative to the start of its block 

The starting address of this block   

Control Sections:  

  A control section is a part of the program that maintains its identity after assembly; each 
control section can be loaded and relocated independently of the others. Different control sections 
are most often used for subroutines or other logical subdivisions. The programmer can assemble, 
load, and manipulate each of these control sections separately.  

 Because of this, there should be some means for linking control sections together. For 
example, instructions in one control section may refer to the data or instructions of other control 
sections. Since control sections are independently loaded and relocated, the assembler is unable to 
process these references in the usual way.  Such references between different control sections are 
called external references.  

The assembler generates the information about each of the external references that will 
allow the loader to perform the required linking. When a program is written using multiple control 
sections, the beginning of each of the control section is indicated by an assembler directive 
assembler directive: CSECT 

The syntax :

  secname CSECT 

separate location counter for each control section  

Control sections differ from program blocks in that they are handled separately by the 
assembler. Symbols that are defined in one control section may not be used directly another control 
section; they must be identified as external reference for the loader to handle. The external 
references are indicated by two assembler directives:  

EXTDEF (external Definition):  



System Software 15CS63

    34 GMIT, Davangere                                                                                                           Deepak D J

  It is the statement in a control section, names symbols that are defined in this section but may be 
used by other control sections. Control section names do not need to be named in the EXTREF as 
they are automatically considered as external symbols.  

EXTREF (external Reference): 

  It names symbols that are used in this section but are defined in some other control section.  

The order in which these symbols are listed is not significant. The assembler must include proper 
information about the external references in the object program that will cause the loader to insert 
the proper value where they are required.  



System Software 15CS63

    35 GMIT, Davangere                                                                                                           Deepak D J



System Software 15CS63

    36 GMIT, Davangere                                                                                                           Deepak D J

The assembler must also include information in the object program that will cause the loader to 
insert the proper value where they are required. The assembler maintains two new record in the 
object code and a changed version of modification record.   

Define record (EXTDEF) 

Col. 1     D 

Col. 2-7   Name of external symbol defined in this control section 

Col. 8-13   Relative address within this control section (hexadecimal) 

Col.14-73  Repeat information in Col. 2-13 for other external symbols  

Refer record (EXTREF) 

Col. 1     R 

Col. 2-7  Name of external symbol referred to in this control section 

Col. 8-73  Name of other external reference symbols



System Software 15CS63

    37 GMIT, Davangere                                                                                                           Deepak D J

Modification record 

Col. 1     M 

Col. 2-7   Starting address of the field to be modified (hexadecimal) 

Col. 8-9   Length of the field to be modified, in half-bytes (hexadecimal) 

Col.11-16   External symbol whose value is to be added to or subtracted from the indicated field

A define record gives information about the external symbols that  are defined in this 
control section, i.e., symbols named by EXTDEF.  

A refer record lists the symbols that are used as external references by the control section, 
i.e., symbols named by EXTREF. 

The new items in the modification record specify the modification to be performed: adding 
or subtracting the value of some external symbol. The symbol used for modification my be defined 
either in this control section or in another section.  

  The object program is shown below. There is a separate object program for each of the control 
sections. In the  Define Record  and  refer record  the symbols named in EXTDEF and EXTREF are 
included.   

In the case of Define,  the record also indicates the relative address of each external symbol within 
the control section.  

For EXTREF symbols, no address information is available. These symbols are simply named in the 
Refer record.  



System Software 15CS63

    38 GMIT, Davangere                                                                                                           Deepak D J

Assembler Design Options

One and Multi-Pass Assembler

• So far, we have presented the design and implementation of a two-pass assembler.

• Here, we will present the design and implementation of

– One-pass assembler

• If avoiding a second pass over the source program is necessary or desirable.

– Multi-pass assembler

• Allow forward references during symbol definition.

One-Pass Assembler

• The main problem is about forward reference.

• Eliminating forward reference to data items can be easily done.

– Simply ask the programmer to define variables before using them.

• However, eliminating forward reference to instruction cannot be easily done.

– Sometimes your program needs a forward jump.

– Asking your program to use only backward jumps is too restrictive.



System Software 15CS63

    39 GMIT, Davangere                                                                                                           Deepak D J

• There are two types of one-pass assembler:

– Produce object code directly in memory for immediate execution

• No loader is needed

• Load-and-go for program development and testing

• Good for computing center where most students reassemble their programs 
each time.

• Can save time for scanning the source code again

– Produce the usual kind of object program for later execution

Internal Implementation



System Software 15CS63

    40 GMIT, Davangere                                                                                                           Deepak D J

• The assembler generate object code instructions as it scans the source program.

• If an instruction operand is a symbol that has not yet been defined, the operand address is 
omitted when the instruction is assembled.

• The symbol used as an operand is entered into the symbol table.

• This entry is flagged to indicate that the symbol is undefined yet.

• The address of the operand field of the instruction that refers to the undefined symbol is 
added to a list of forward references associated with the symbol table entry.

• When the definition of the symbol is encountered, the forward reference list for that symbol 
is scanned, and the proper address is inserted into any instruction previously generated.



System Software 15CS63

    41 GMIT, Davangere                                                                                                           Deepak D J

• Between scanning line 40 and 160:

– On line 45, when the symbol ENDFIL is defined, the assembler places its value in the 
SYMTAB entry.

– The assembler then inserts this value into the instruction operand field (at address 
201C).

– From this point on, any references to ENDFIL would not be forward references and 
would not be entered into a list.

• At the end of the processing of the program, any SYMTAB entries that are still marked with * 
indicate undefined symbols.

– These should be flagged by the assembler as errors.

Multi-Pass Assembler

• If we use a two-pass assembler, the following symbol definition cannot be allowed. 

ALPHA EQU BETA

BETA EQU DELTA

DELTA RESW 1

• This is because ALPHA and BETA cannot be defined in pass 1. Actually, if we allow multi-pass 
processing, DELTA is defined in pass 1, BETA is defined in pass 2, and ALPHA is defined in 
pass 3, and the above definitions can be allowed.

• This is the motivation for using a multi-pass assembler.



System Software 15CS63

    42 GMIT, Davangere                                                                                                           Deepak D J

• It is unnecessary for a multi-pass assembler to make more than two passes over the entire 
program.

• Instead, only the parts of the program involving forward references need to be processed in 
multiple passes.

• The method presented here can be used to process any kind of forward references.

Multi-Pass Assembler Implementation

Steps:

• Use a symbol table to store symbols that are not totally defined yet.

• For a undefined symbol, in its entry, 

– We store the names and the number of undefined symbols which contribute to the 
calculation of its value.

– We also keep a list of symbols whose values depend on  the defined value of this 
symbol.

• When a symbol becomes defined, we use its value to reevaluate the values of all of the 
symbols that are kept in this list.

• The above step is performed recursively.



System Software 15CS63

    43 GMIT, Davangere                                                                                                           Deepak D J



System Software 15CS63

    44 GMIT, Davangere                                                                                                           Deepak D J



System Software 15CS63

    45 GMIT, Davangere                                                                                                           Deepak D J



System Software 15CS63

    46 GMIT, Davangere                                                                                                           Deepak D J

MODULE-3

Lexical Analysis

 Role of lexical analyzer

 Specification of tokens

 Recognition of tokens

 Lexical analyzer generator

 Finite automata

 Design of lexical analyzer generator

The role of lexical analyzer

Why to separate Lexical analysis and parsing

1. Simplicity of design 

2. Improving compiler efficiency

3. Enhancing compiler portability

Tokens, Patterns and Lexemes

 A token is a pair a token name and an optional token value

 A pattern is a description of the form that the lexemes of a token may take

 A lexeme is a sequence of characters in the source program that matches the pattern for a 
token

Example



System Software 15CS63

    47 GMIT, Davangere                                                                                                           Deepak D J

 Attributes for tokens
E = M * C ** 2

<id, pointer to symbol table entry for E>

<assign-op>

<id, pointer to symbol table entry for M>

<mult-op>

<id, pointer to symbol table entry for C>

<exp-op>

<number, integer value 2>

 Lexical errors
Some errors are out of power of lexical analyzer to recognize:

o fi (a == f(x)) …
However it may be able to recognize errors like:

o d = 2r
Such errors are recognized when no pattern for tokens matches a 
character sequence

 Error recovery
1. Panic mode: successive characters are ignored until we reach to a well formed token
2. Delete one character from the remaining input
3. Insert a missing character into the remaining input



System Software 15CS63

    48 GMIT, Davangere                                                                                                           Deepak D J

4. Replace a character by another character
5. Transpose two adjacent characters

 Input buffering

Sentinels



System Software 15CS63

    49 GMIT, Davangere                                                                                                           Deepak D J

 Specification of tokens

1. In theory of compilation regular expressions are used to formalize the specification 
of tokens

2. Regular expressions are means for specifying regular languages

3. Example:

i. Letter_(letter_ | digit)*

4. Each regular expression is a pattern specifying the form of strings

 Regular expressions

1. Ɛ is a regular expression, L(Ɛ) = {Ɛ}

2. If a is a symbol in ∑then a is a regular expression, L(a) = {a}

3. (r) | (s) is a regular expression denoting the language L(r)  L(s)

4.  (r)(s) is a regular expression denoting the language L(r)L(s)

5. (r)* is a regular expression denoting (L(r))*



System Software 15CS63

    50 GMIT, Davangere                                                                                                           Deepak D J

6. (r) is a regular expression denoting L(r) 

 Regular definitions
1. d1 -> r1
2. d2 -> r2
3. …
4. dn -> rn

5. Example:

6. letter_ -> A | B | … | Z | a | b | … | Z | _
7. digit     -> 0 | 1 | … | 9
8. id          -> letter_ (letter_ | digit)*
 Extensions

One or more instances: (r)+

Zero of one instances: r?

Character classes: [abc]

Example:

letter_  -> [A-Za-z_]

digit     -> [0-9]

id          -> letter_(letter|digit)*

 Recognition of tokens
Starting point is the language grammar to understand the tokens:
stmt -> if expr then stmt
           |  if expr then stmt else stmt
           | Ɛ 
expr -> term relop term
           |  term
term -> id
           |  number

 Recognition of tokens (cont.)
The next step is to formalize the patterns:
digit     -> [0-9]
Digits   -> digit+
number -> digit(.digits)? (E[+-]? Digit)?
letter  -> [A-Za-z_]
id          -> letter (letter|digit)*
If           -> if
Then     -> then
Else       -> else
Relop    -> < | > | <= | >= | = | <>
We also need to handle whitespaces:



System Software 15CS63

    51 GMIT, Davangere                                                                                                           Deepak D J

ws -> (blank | tab | newline)+

 Transition diagrams

 Transition diagrams (cont.)

 Transition diagram for whitespace

 Transition diagram for unsigned numbers



System Software 15CS63

    52 GMIT, Davangere                                                                                                           Deepak D J

Architecture of a transition-diagram-based lexical analyzer

TOKEN getRelop()

{

TOKEN retToken = new (RELOP)

while (1) { /* repeat character processing until a

return or failure occurs */

switch(state) {

case 0: c= nextchar();

  if (c == ‘<‘) state = 1;

  else if (c == ‘=‘) state = 5;

  else if (c == ‘>’) state = 6;

  else fail(); /* lexeme is not a relop */

  break;

case 1: …

…

case 8: retract();

 retToken.attribute = GT;

 return(retToken);

}

 Finite Automata

 Regular expressions = specification



System Software 15CS63

    53 GMIT, Davangere                                                                                                           Deepak D J

 Finite automata = implementation

 A finite automaton consists of

o An input alphabet  

o A set of states S

o A start state n 

o A set of accepting states F  S

o A set of transitions  state input state

 Transition

s1 a s2

 Is read

In state s1 on input “a” go to state  s2

 If end of input

 If in accepting state => accept, othewise => reject

 If no transition possible => reject

Example

 Alphabet still { 0, 1 }

The operation of the automaton is not completely defined by the input

On input “11” the automaton could be in either state 

MODULE-4



System Software 15CS63

    54 GMIT, Davangere                                                                                                           Deepak D J

 Syntax Analysis: Introduction, 
 Role Of Parsers, Context Free Grammars, 
 Writing a grammar,
 Top Down Parsers, 
 Bottom-Up Parsers,
 Operator-Precedence Parsing

The role of parser

Uses of grammars

E -> E + T | T

T -> T * F | F

F -> (E) | id

E -> TE’

E’ -> +TE’ | Ɛ

T -> FT’

T’ -> *FT’ | Ɛ

F -> (E) | id

Error handling



System Software 15CS63

    55 GMIT, Davangere                                                                                                           Deepak D J

 Common programming errors

 Lexical errors

 Syntactic errors

 Semantic errors

 Logical errors

 Error handler goals

 Report the presence of errors clearly and accurately

 Recover from each error quickly enough to detect subsequent errors

 Add minimal overhead to the processing of correct progrms 

Context free grammars

 Terminals

 Nonterminals 

 Start symbol

 Productions

Derivations

 Productions are treated as rewriting rules to generate a string

 Rightmost and leftmost derivations

 E -> E + E | E * E | -E | (E) | id

 Derivations for –(id+id)

 E => -E => -(E) => -(E+E) => -(id+E)=>-(id+id) 

Parse trees

 -(id+id)

 E => -E => -(E) => -(E+E) => -(id+E)=>-(id+id) 

 

Elimination of ambiguity



System Software 15CS63

    56 GMIT, Davangere                                                                                                           Deepak D J

 

Elimination of left recursion

 A grammar is left recursive if it has a non-terminal A such that there is a derivation 
A=> Aα 

 Top down parsing methods cant handle left-recursive grammars

 A simple rule for direct left recursion elimination:

 For a rule like: 



System Software 15CS63

    57 GMIT, Davangere                                                                                                           Deepak D J

 A -> A α|β 

 We may replace it with

 A -> β A’

 A’ -> α A’ | ɛ 

Left factoring

 Left factoring is a grammar transformation that is useful for producing a grammar 
suitable for predictive or top-down parsing.

 Consider following grammar:

 Stmt -> if expr then stmt else stmt

           | if expr then stmt

 On seeing input if it is not clear for the parser which production to use

 We can easily perform left factoring:

 If we have A->αβ1 | αβ2   then we replace it with

 A  -> αA’

 A’ ->  β1 | β2

 TOP DOWN PARSING

A Top-down parser tries to create a parse tree from the root towards the leafs scanning 
input from left to right

It can be also viewed as finding a leftmost derivation for an input string

Example:   id+id*id

E -> TE’

E’ -> +TE’ | Ɛ

T -> FT’

T’ -> *FT’ | Ɛ

F -> (E) | id



System Software 15CS63

    58 GMIT, Davangere                                                                                                           Deepak D J

Recursive descent parsing

Consists of a set of procedures, one for each nonterminal 

Execution begins with the procedure for start symbol

A typical procedure for a non-terminal

void A() {

choose an A-production, A->X1X2..Xk 

for (i=1 to k) {

if (Xi is a nonterminal 

call procedure Xi();

else if (Xi equals the current input symbol a)

advance the input to the next symbol;

else /* an error has occurred */

}

}

Example



System Software 15CS63

    59 GMIT, Davangere                                                                                                           Deepak D J

S->cAd 

A->ab | a

Input: cad

  

First and Follow

 First() is set of terminals that begins strings derived from 

 If α=>ɛ then is also in First(ɛ)

 In predictive parsing when we have A-> α|β, if First(α) and First(β) are 
disjoint sets then we can select appropriate A-production by looking 
at the next input

 Follow(A), for any nonterminal A, is set of terminals a that can appear immediately 
after A in some sentential form

 If we have S => αAaβ for some αand βthen a is in Follow(A)

If A can be the rightmost symbol in some sentential form, then $ is in Follow(A)

Computing First

 To compute First(X) for all grammar symbols X, apply following rules until no more 
terminals or ɛ can be added to any First set:

1. If X is a terminal then First(X) = {X}.

2. If X is a nonterminal and X->Y1Y2…Yk is a production for some k>=1, then 
place a in First(X) if for some i a is in First(Yi) and ɛ is in all of 
First(Y1),…,First(Yi-1) that is Y1…Yi-1 => ɛ. if ɛ is in First(Yj) for j=1,…,k then 
add ɛ to First(X).

3. If X-> ɛ is a production then add ɛ to First(X)

 Example! 

Computing follow

 To compute First(A) for all nonterminals A, apply following rules until nothing can be 
added to any follow set:

1. Place $ in Follow(S) where S is the start symbol



System Software 15CS63

    60 GMIT, Davangere                                                                                                           Deepak D J

2. If there is a production A-> αBβ then everything in First(β) except ɛ is in 
Follow(B).

3. If there is a production A->B or a production               A->αBβ where First(β) 
contains ɛ, then everything in Follow(A) is in Follow(B)

 Example!

LL(1) Grammars

Predictive parsers are those recursive descent parsers needing no backtracking

Grammars for which we can create predictive parsers are called LL(1)

The first L means scanning input from left to right

The second L means leftmost derivation

And 1 stands for using one input symbol for lookahead 

A grammar G is LL(1) if and only if whenever A-> α|βare two distinct productions of G, 
the following conditions hold:

For no terminal a do αandβ both derive strings beginning with a

At most one of α or βcan derive empty string

If α=> ɛ then βdoes not derive any string beginning with a terminal in Follow(A).

Construction of predictive parsing table

For each production A->α in grammar do the following:

For each terminal a in First(α) add A-> in M[A,a]

If ɛ is in First(α), then for each terminal b in Follow(A) add A-> ɛ to M[A,b]. If ɛ is 
in First(α) and $ is in Follow(A), add A-> ɛ to M[A,$] as well

If after performing the above, there is no production in M[A,a] then set M[A,a] to error .

Example



System Software 15CS63

    61 GMIT, Davangere                                                                                                           Deepak D J

Non-recursive predicting parsing



System Software 15CS63

    62 GMIT, Davangere                                                                                                           Deepak D J

Predictive parsing algorithm

Set ip point to the first symbol of w;

Set X to the top stack symbol;

While (X<>$) { /* stack is not empty */

if (X is a) pop the stack and advance ip;

else if (X is a terminal) error();

else if (M[X,a] is an error entry) error();

else if (M[X,a] = X->Y1Y2..Yk) {

output the production X->Y1Y2..Yk;

pop the stack;

push Yk,…,Y2,Y1 on to the stack with Y1 on top;

}

set X to the top stack symbol;

}



System Software 15CS63

    63 GMIT, Davangere                                                                                                           Deepak D J

BOTTOMUP PARSING

Shift-reduce parser

The general idea is to shift some symbols of input to the stack until a reduction can be 
applied

At each reduction step, a specific substring matching the body of a production is 
replaced by the nonterminal at the head of the production

The key decisions during bottom-up parsing are about when to reduce and about what 
production to applyA reduction is a reverse of a step in a derivation

The goal of a bottom-up parser is to construct a derivation in reverse: 
E=>T=>T*F=>T*id=>F*id=>id*id

Handle pruning

 A Handle is a substring that matches the body of a production and whose 
reduction represents one step along the reverse of a rightmost derivation

Shift reduce parsing (cont.)



System Software 15CS63

    64 GMIT, Davangere                                                                                                           Deepak D J

Basic operations:

Shift,Reduce,Accept, Error Example: id*id

LR Parsing

The most prevalent type of bottom-up parsers

LR(k), mostly interested on parsers with k<=1

Why LR parsers?

Table driven

Can be constructed to recognize all programming language constructs

Most general non-backtracking shift-reduce parsing method



System Software 15CS63

    65 GMIT, Davangere                                                                                                           Deepak D J

Can detect a syntactic error as soon as it is possible to do so

Class of grammars for which we can construct LR parsers are superset of those 
which we can construct LL parsers

States of an LR parser

States represent set of items

An LR(0) item of G is a production of G with the dot at some position of the body:

For A->XYZ we have following items

A->.XYZ

A->X.YZ

A->XY.Z

A->XYZ.

In a state having A->.XYZ we hope to see a string derivable from XYZ next on the 
input.

What about A->X.YZ?

Constructing canonical LR(0) item sets

Augmented grammar:

G with addition of a production: S’->S

Closure of item sets:

If I is a set of items, closure(I) is a set of items constructed from I by the following 
rules:

Add every item in I to closure(I)

If A->α.Bβ is in closure(I) and B->γ is a production then add the item B->.γ 
to clsoure(I).

Example: E’->E

E -> E + T | T

T -> T * F | F, F -> (E) | id



System Software 15CS63

    66 GMIT, Davangere                                                                                                           Deepak D J

Closure algorithm

SetOfItems CLOSURE(I) {

J=I;

repeat

for (each item A-> α.Bβ in J)

for (each prodcution B->γ of G)

if (B->.γ is not in J)

add B->.γ to J;

until no more items are added to J on one round;

return J; 

GOTO Algorithm

SetOfItems  GOTO(I,X) {

   J=empty;

if (A-> α.X β is in I) 

add CLOSURE(A-> αX. β ) to J;



System Software 15CS63

    67 GMIT, Davangere                                                                                                           Deepak D J

return J;

} 

Canonical LR(0) items

Void items(G’) {

C= CLOSURE({[S’->.S]});

repeat

for (each set of items I in C)

   for (each grammar symbol X)

      if (GOTO(I,X) is not empty and not in C)

add GOTO(I,X) to C;

until no new set of items are added to C on a round;

}



System Software 15CS63

    68 GMIT, Davangere                                                                                                           Deepak D J

LR parsing algorithm

let a be the first symbol of w$;

while(1) { /*repeat forever */



System Software 15CS63

    69 GMIT, Davangere                                                                                                           Deepak D J

let s be the state on top of the stack;

if (ACTION[s,a] = shift t) {

push t onto the stack;

let a be the next input symbol;

} else if (ACTION[s,a] = reduce A->β) {

pop |β| symbols of the stack;

let state t now be on top of the stack;

push GOTO[t,A] onto the stack;

output the production A->β;

} else if (ACTION[s,a]=accept) break; /* parsing is done */

else call error-recovery routine;

}

Constructing SLR parsing table

Method



System Software 15CS63

    70 GMIT, Davangere                                                                                                           Deepak D J

Construct C={I0,I1, … , In}, the collection of LR(0) items for G’

State i is constructed from state Ii:

If [A->α.aβ] is in Ii and Goto(Ii,a)=Ij, then set ACTION[i,a] to “shift j”

If [A->α.] is in Ii, then set ACTION[i,a] to “reduce A->α” for all a in 
follow(A)

If {S’->.S] is in Ii, then set ACTION[I,$] to “Accept”

If any conflicts appears then we say that the grammar is not SLR(1).

If GOTO(Ii,A) = Ij then GOTO[i,A]=j

All entries not defined by above rules are made “error”

The initial state of the parser is the one constructed from the set of items 
containing [S’->.S]



System Software 15CS63

    71 GMIT, Davangere                                                                                                           Deepak D J

MODULE-5

 Syntax Directed Translation
 Intermediate code generation
 Code generation

Introduction

 We can associate information with a language construct by attaching attributes to 
the grammar symbols.

 A syntax directed definition specifies the values of attributes by associating semantic 
rules with the grammar productions.

Ordering the evaluation of attributes

If dependency graph has an edge from M to N then M must be evaluated before the 
attribute of N

Thus the only allowable orders of evaluation are those sequence of nodes N1,N2,…,Nk 
such that if there is an edge from Ni to Nj then i<j

Such an ordering is called a topological sortof  a graph

Example!

S-Attributed definitions

An SDD is S-attributed if every attribute is synthesized

We can have a post-order traversal of parse-tree to evaluate attributes in S-attributed 
definitions

postorder(N) {

for (each child C of N, from the left) postorder(C);

evaluate the attributes associated with node N;

}



System Software 15CS63

    72 GMIT, Davangere                                                                                                           Deepak D J

S-Attributed definitions can be implemented during bottom-up parsing without the need 
to explicitly create parse trees

L-Attributed definitions

 A SDD is L-Attributed if the edges in dependency graph goes from Left to Right but 
not from Right to Left.

 More precisely, each attribute must be either

 Synthesized

 Inherited, but if there us a production A->X1X2…Xn and there is an inherited 
attribute Xi.a computed by a rule associated with this production, then the 
rule may only use:

 Inherited attributes associated with the head A

 Either inherited or synthesized attributes associated with the 
occurrences of symbols X1,X2,…,Xi-1 located to the left of Xi

 Inherited or synthesized attributes associated with this occurrence of 
Xi itself, but in such a way that there is no cycle in the graph

Application of Syntax Directed Translation

 Construction of syntax trees

 Leaf nodes: Leaf(op,val)

 Interior node: Node(op,c1,c2,…,ck)

Example:

Production

E -> E1 + T

E -> E1 - T

E -> T

T -> (E)

T -> id

T -> num

Semantic RULE

E.node=new node(‘+’, E1.node,T.node)

E.node=new node(‘-’, E1.node,T.node)

E.node = T.node 



System Software 15CS63

    73 GMIT, Davangere                                                                                                           Deepak D J

T.node = E.node 

T.node = new Leaf(id,id.entry)

T.node = new Leaf(num,num.val)

Syntax tree for L-attributed definition

Syntax directed translation schemes

An SDT is a Context Free grammar with program fragments embedded within production 
bodies

Those program fragments are called semantic actions

They can appear at any position within production body

Any SDT can be implemented by first building a parse tree and then performing the 
actions in a left-to-right depth first order

Typically SDT’s are implemented during parsing without building a parse tree .

Postfix translation schemes

Simplest SDDs are those that we can parse the grammar bottom-up and the SDD is s-
attributed

For such cases we can construct SDT where each action is placed at the end of the 
production and is executed along with the reduction of the body to the head of that 
production

SDT’s with all actions at the right ends of the production bodies are called postfix SDT’s



System Software 15CS63

    74 GMIT, Davangere                                                                                                           Deepak D J

Parse-Stack implementation of postfix SDT’s

In a shift-reduce parser we can easily implement semantic action using the parser stack

For each nonterminal (or state) on the stack we can associate a record holding its 
attributes

Then in a reduction step we can execute the semantic action at the end of a production 
to evaluate the attribute(s) of the non-terminal at the leftside of the production

And put the value on the stack in replace of the rightside of production

EXAMPLE

L -> E n           {print(stack[top-1].val);

   top=top-1;}

E -> E1 + T     {stack[top-2].val=stack[top-2].val+stack.val;

  top=top-2;}

E -> T              

T -> T1 * F      {stack[top-2].val=stack[top-2].val+stack.val;

  top=top-2;}

T -> F               

F -> (E) {stack[top-2].val=stack[top-1].val 

  top=top-2;}

F -> digit



System Software 15CS63

    75 GMIT, Davangere                                                                                                           Deepak D J

Intermediate Code Generation

 Intermediate code is the interface between front end and back end in a compiler

 Ideally the details of source language are confined to the front end and the details of 
target machines to the back end (a m*n model)

 In this chapter we study intermediate representations, static type checking and 
intermediate code generation.

Variants of syntax trees

 It is sometimes beneficial to crate a DAG instead of tree for Expressions.

 This way we can easily show the common sub-expressions and then use that 
knowledge during code generation

 Example: a+a*(b-c)+(b-c)*d

SDD for creating DAG’sSDD for creating DAG’s



System Software 15CS63

    76 GMIT, Davangere                                                                                                           Deepak D J

Value-number method for constructing DAG’s

 Algorithm

 Search the array for a node M with label op, left child l and right child r

 If there is such a node, return the value number M

 If not create in the array a new node N with label op, left child l, and right 
child r and return its value

 We may use a hash table

Three address code

 In a three address code there is at most one operator at the right side of an 
instruction



System Software 15CS63

    77 GMIT, Davangere                                                                                                           Deepak D J

Example: 

Data structures for three address codes

 Quadruples

 Has four fields: op, arg1, arg2 and result

 Triples

 Temporaries are not used and instead references to instructions are made

 Indirect triples

 In addition to triples we use a list of pointers to triples.

Type Expressions

Example: int[2][3]

array(2,array(3,integer))

A basic type is a type expression



System Software 15CS63

    78 GMIT, Davangere                                                                                                           Deepak D J

A type name is a type expression

A type expression can be formed by applying the array type constructor to a number and 
a type expression.

A record is a data structure with named field

A type expression can be formed by using the type constructor g for function types

If s and t are type expressions, then their Cartesian product s*t is a type expression

Type expressions may contain variables whose values are type expressions.

Short-Circuit Code

Flow-of-Control Statements



System Software 15CS63

    79 GMIT, Davangere                                                                                                           Deepak D J


















































































































































































































































